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PHYSICAL CONSTANTS 

v;v 

Avogadro’s number 6.02217 X 1023 particles/mole 
Electronic charge 4.80325 X 10-10esu 

1.60219 X 10-19 coulomb 
Electron mass 9.10956 X 10~28 gm 
Atomic mass unit 1.66053 X 10-24 gm 
Gas constant 8.31434 X 107 erg/mole deg 

1.9872 cal/mole deg 
0.08206 liter atm/mole deg 

Faraday constant 96486.7 coulomb/mole 
23061 cal/volt mole 

Boltzmann constant 1.38062 X 10-16 erg/deg 
Planck constant 6.6262 X 10 27 erg sec 

1 

■ fs.m 
- .|tH« • :?, <• -.. - • i 

ergs/molecule kJ/mole kcal/mole 
electron 

volts/molecule 

ergs/molecule 1 6.0222 X 1013 1.4393 X 1013 6.2415 X lO14 
kJ/mole 1.6605 X 10-14 1 0.23901 1.0364 X lO-2 
kcal/mole 6.9478 X 10~14 4.184 1 4.336 X lO-2 
electron 
volts/molecule 1.6022 X IQ-42 9.6487 X 101 23.061 1 
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Preface 
to the Third Edition 

In preparing this third edition of University Chemistry I have continued to be 

guided by the idea that there is a body of skills and information that chemists 

and those who use chemistry will almost certainly need to master, and which 
matches the preparation of first-year college students. Accordingly, the emphasis 

in a freshman chemistry course should be on leading the student to a thorough 

understanding of the basic ideas and mathematical operations of stoichiometry 

and equilibrium, and on providing a useful introduction to the electronic structure 
of atoms and molecules, chemical kinetics, thermodynamics, states of matter, 

and the descriptive chemistry of the elements. As substantial progress has been 

made in systematizing and clarifying the conceptual aspects of chemistry there 
has been a tendency to introduce increasing amounts of this material at the 

freshman level, often at the expense of eliminating significant portions of 

descriptive chemistry from the course. I believe that it would be a mistake to 
carry this to the point where students and instructors lose sight of the fact that 

chemistry is basically motivated by the desire to expose and understand the 

properties of matter in bulk. Conceptual material should illuminate factual 

material, not eliminate it. 
Accordingly, in this third edition I have incorporated new material on 

descriptive inorganic and organic chemistry. In addition, discussions of the 

practical aspects of electrochemistry and the application of thermodynamics to 

heat engines are included. The chapter on the nucleus has been enlarged con¬ 
siderably by the addition of material on radiometric geochronology, the chemical 

effects of radiation, the synthesis of elements in stars, and the use of nuclear 

fission and fusion as energy sources. 



I have chosen to retain the conventional mixture of CGS and thermochemical 
units employed in previous editions, since these are employed in most reference 
books encountered by the beginning student. However, an appendix on SI 

units has been added, and at appropriate places throughout the book results 

are given in two or more sets of units. Consequently, students should become 

familiar with SI units and their relation to those of other systems. 
As in the past, I have been encouraged and assisted in preparing this revision 

by the comments and suggestions of many students and instructors. To all 

those who have been kind enough to offer this help I would like to extend my 

sincere thanks. 

Berkeley, California B.H.M. 
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Preface 
to the First Edition 

This is a textbook of general chemistry intended for students who have had an 

introductory high-school chemistry course. Its design is based on my experience 

with such a group, which included students who had had a “standard” high- 
school course, one of the two newer courses generated by Chem Study and CBA, 

and a few who had had a second high-school course designed for advanced 
placement in college. Writing a book which emphasizes fundamental principles 

and builds on previous experience presents some difficult problems. It has been 

my experience, one shared by other university teachers, that at this time there 
is no one block of the traditional elementary material so well understood by the 

majority of freshman students that it can be entirely omitted from the beginning 
college course. On the other hand, it is still possible to take advantage of a 

student’s previous training by assuming a general familiarity with the most 

fundamental chemical concepts. The ability to assume such a background allows 
the instructor to treat the elementary material in a critical manner—an approach 

which is generally appreciated by students who might otherwise consider review 

material to be boring. This is the course I have followed in writing this book. 
All the important elementary concepts are discussed, but from what I hope is 

a more penetrating point of view than the one already familiar to the student. 
A further advantage afforded by the student’s previous training is that 

time and space become available for new material, usually treated only in the 

upper division and graduate physical, inorganic, and organic chemistry courses. 

The concepts of elementary thermodynamics, reaction rates, and chemical-bond 
theory are most appropriate in the general chemistry course, for they can be 

immediately applied to systematize the descriptive material of inorganic and 



organic chemistry. There is a danger here to be avoided: there is more material 
which might be presented than can be assimilated by the average beginning 

student. Just “covering” a great deal of advanced material can leave the 
student with no real command of the subject, but instead with a blas6 attitude 
that he has “had all that,” which can inhibit his success in more advanced 

courses. Consequently, I have made an effort to discuss only those advanced 
concepts which are either useful in the general chemistry course or which help 

to give a picture of what presently concerns the professional chemist. 
The organization of this book departs somewhat from the recent standard of 

first presenting a detailed description of the electronic structure of atoms. 
Instead, the first four chapters are principally concerned with the macroscopic 

properties of matter, the origins of the atomic theory, and chemical arithmetic. 
Then follow five chapters which emphasize the characterization of chemical 

reactions and systems. Of these, Chapters 5, 6, and 7 treat, in increasing depth, 
the problem of chemical equilibrium. Thus the first seven chapters contain 

virtually all of the fundamental material of quantitative chemistry, and their 
position is particularly appropriate if the laboratory work in the course is to be 
quantitative in nature. Chapter 8 is an introduction to chemical thermo¬ 

dynamics which unifies the earlier phenomenological treatments of colligative 

properties and chemical equilibria. The thermodynamic concepts introduced 
here are used repeatedly throughout the chapters on descriptive chemistry. 

Chapter 9 treats the problem of chemical reaction rates and emphasizes the idea 
of reaction mechanisms. 

The next two chapters, 10 and 11, are concerned with the electronic structure 
of atoms and the nature of chemical bonding. A part of Chapter 10 is devoted 
to the historical development of the quantum theory in an attempt to show that 

our knowledge of atomic structure and the quantum theory was gained by deduc¬ 
tion from experiments, and not ex cathedra, as some elementary texts seem to 

imply. Deciding what can be said about chemical bonding that is simple, useful, 

and essentially correct is very difficult. I have tried to present a simplified 
point of view, while emphasizing its approximate nature and occasional in¬ 
adequacies. 

The final chapters contain the descriptive material of inorganic and organic 
chemistry. Their general thesis is that chemistry makes sense; that there are 

relationships, trends, and similarities in chemical behavior which can be under¬ 

stood in terms of chemical bonding, thermodynamics, and the periodic table. 
These chapters also contain certain extensions of the conceptual material covered 
earlier; for instance, the bonding in the boron hydrides, and the magnetic prop¬ 
erties of matter. 

The organization of this book is governed principally by my feeling that 

students should be supplied with the background that allows them to do quan¬ 
titative laboratory work as early in the course as possible. I have, however, tried 

to write in a manner which will accommodate the preferences of others. Chapters 
10 and 11 on atomic structure and bonding may be treated immediately after 
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Chapter 1, if the instructor prefers this organization. The material on thermo¬ 
dynamics can be delayed and presented just previous to the descriptive material 
of Chapter 13 et seq. Much of the discussion in Chapter 3 on the structures of 

solids can be combined with descriptive chemistry or with the material on chem¬ 
ical bonding. 

This book is primarily intended for serious students of science, including 

those majoring in biology, engineering subjects, and premedicine, as well as 
physics and chemistry. Calculus Is used in and after Chapter 6; concurrent 

enrollment in the introductory calculus course will provide an entirely adequate 
mathematical background. 

Sincere thanks go to Professors Jerry A. Bell, Francis T. Bonner, and Paul 

B. Dorain for reading the manuscript and making many kind and helpful 

suggestions concerning the material. The entire manuscript was typed by 
Mrs. Nancy Monroe, whose cheerful help and cooperation are greatly appre¬ 
ciated. A considerable portion of this book was written while I was a visitor at 

Oxford University, and I would like to acknowledge the hospitality extended to 

me by the fellows of the Queen’s College, and particularly the many kindnesses 
of Dr. and Mrs. J. W. Linnett. It has been my privilege to associate with two 

outstanding chemistry faculties. I would like to thank my teachers at Harvard 
University and my colleagues at the Berkeley campus of the University of 

California for the stimulation and instruction I have received from them. 

Berkeley, California B.H.M. 
January 1965 
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CHAPTER 1 

STOICHIOMETRY AND 
THE BASIS OF THE 

ATOMIC THEORY 

Our whole understanding of chemical phenomena is based on the atomic theory 

of matter. It is a theory remarkable for the detailed accuracy with which it 
describes a seemingly unknowable part of our physical world, and it stands 

as the most important collection of ideas in science. Throughout this book we 

will be continually drawing on the theory to help us organize and understand 
chemical behavior. Faced with a repeated demonstration of the usefulness, 

detail, and subtlety of the atomic concept, it is natural to wonder how such 
ideas were generated. In this chapter we will briefly outline the origins of the 

atomic theory and show how its development was connected with the growth 

of chemical science. 

1.1 THE ORIGINS OF THE ATOMIC THEORY 

The “atomism” of the Greek philosophers of 400 b.c. provides an interesting 

and enlightening contrast to our present-day atomic theory. The Grecian atom 

was designed to resolve a logical conflict: on one hand there was the observation 
that natural objects are in a constant state of change; on the other there was 

the unshakable faith that there must be a permanence associated with things . 
which are real. The Greeks felt that this philosophical impasse could be avoided 

if invisible atoms were accepted as the permanent constituents of the universe, 
and if observable changes were interpreted in terms of their motions. 

l 



Now it is clear that the phenomena of mixing, evaporation, erosion, and 

precipitation can be readily “explained” in terms of an atomic picture which is 

not at all detailed. With but little elaboration the atomic idea encompasses 
many properties of matter. The existence of solids requires only that certain 

atoms have extensions with which they can interlock themselves to form an 
unyielding mass. The atoms of liquids need only be smooth to flow over one 
another, while the taste of some chemicals arises from sharp edges of their atoms 

slashing at the tongue. While some of these ideas are of remarkable accuracy 

(the enzyme molecules in raw pineapple do indeed “slash” at the tongue by 
destroying the protein structure), they are nothing but conjecture. The Greek 

atomism lacked the essential feature of a scientific theory: it was not supported 
or tested by critical experiments. Since it was a construct of conjecture, it could 

be demolished by more conjecture. The objections which arose concerned the 
simplicity of atoms and the complexity of nature. How could something so 

small and inanimate be responsible for things which live? How could the 
variety of nature arise from particles which, the Greeks felt, differed only 

slightly from one another? How could any body, being a collection of particles 
moving in chaos, have predictable behavior? These are questions which still 

concern us and which stimulate the constant refinement of the modern atomic 

theory. They are also questions which, by 40 b.c., led to the abandonment of 
atomism as an active philosophy. One conjecture had been toppled or seriously 

shaken by others, and so the situation remained for nearly 2000 years. 

Surely it is correct to say that the logical basis for belief in the existence of 
atoms was supplied by Dalton, Gay-Lussac, and Avogadro, in work published 

in the early 1800’s. What is it, though, that distinguishes the contributions of 

these men from the ineffectual speculations of the preceding 2000 years? Why 
is it that Dalton is called the father of the atomic theory, when for a century 

and a half previous to his work such distinguished men as Boyle and Newton 
had used the particulate description of matter? The quality which Dalton 

held in common with Gay-Lussac and Avogadro was a concern for the testing 

of an idea by performance of a quantitative experiment, and the success he 
shared with them was the demonstration that divers experimental data can be 

summarized by a limited set of generalizations on the behavior of matter. 
Dalton’s contribution was not that he proposed an idea of astounding origi¬ 

nality, but that he clearly formulated a set of postulates concerning the nature 

of atoms; a set of postulates which emphasized weight as a most fundamental 

atomic property. 
On the basis of the crude experimental data available to him, Dalton sug¬ 

gested that there are indivisible atoms; the atoms of different elements have 
different weights; and atoms combine in a variety of simple whole number 

ratios to form compounds. We recognize today that these postulates are not 

all exactly correct, but they were the first rationalization of the quantitative 
laws of chemical combination. Inasmuch as the combining laws comprised the 

first convincing experimental demonstration that Dalton’s ideas were essentially 
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correct, they form the experimental basis for the atomic theory. Let us examine 
each of these laws, with respect to both its role in the development of the 
atomic theory, and the extent to which it is held valid today. 

Questions. Do you feel that any of the following phenomena constitute qualitative 
evidence for the existence of atoms: sharp edges on crystals; dissolution of solids in 
liquids; high compressibility of gases but not of liquids and solids; the suspension of 
small particles in liquids and gases; the occurrence of chemical change? Can you think 
of other models that will explain any or all of them? 

The Law of Definite Proportions 

In a given compound, the constituent elements are always combined in the same 

proportions by weight, regardless of the origin or mode of preparation of the com¬ 
pound. To those familiar with the atomic theory this law is in obvious agreement 
with the principle that each molecule of a given compound contains the same 

number of atoms of each constituent element. Since the atoms of each element 
can be assigned a definite average weight, the composition by weight of a given 

compound is some definite value fixed by the atomic weights and the molecular 
formula. The law of definite proportions had been established experimentally 

before Dalton published his atomic theory in 1807, and the consistency of the 
theory with existing experiments was clearly in its favor and hastened its 

acceptance. However, the law of definite proportions is by no means a proof of 
the validity of the atomic theory. Our argument demonstrating the consistency 

of the atomic theory and the law of definite proportions might be more critically 
stated by saying that if there are atoms, and if compound formation involves 

interaction of these atoms in some specific way, then we might expect that all 
molecules of a given compound contain the same numbers of atoms. Then, 
if all atoms of a given element have the same weight, a compound must have 

a definite composition by weight. It was Dalton’s position that each of these 

conditional statements was true; but proof of this requires more than just the 
fact that the consequence of all of them together is consistent with experiment. 

We can say, however, that it is difficult to imagine any theory not based on the 
atomic concept which could explain the law of definite proportions without 

even more serious conjecture. 

Considering the importance of the law of definite proportions to the develop¬ 
ment of the atomic theory, it is surprising to find that this “law” is in many 

cases only a rough approximation to observed behavior. In the first place, the 
composition by weight of any compound depends on the atomic weights of its 

constituent elements. For elements having more than one isotope, the atomic 
weight is an average number whose value depends on the isotopic composition, 

and this may vary noticeably, depending on the source of the element. There¬ 

fore the atomic weight of an element and the weight composition of its com¬ 
pounds are necessarily subject to variations, and consequently the law of 

definite proportions is not strictly followed. One of the most serious offenders 

1.1 | ORIGINS OF THE ATOMIC THEORY 3 



is boron, whose atomic weight may range from 10.82 to 10.84 as a result of 
natural variation in the ratio of abundance of the B11 and B10 isotopes. Fortu¬ 

nately, the variations of natural isotopic composition associated with most 
elements are smaller than this, and become troublesome only in the most 

precise work. 
There is, however, another source of more serious violations of the law of 

definite proportions. While it is true that compounds composed of simple dis¬ 
crete molecules display a definite atomic and weight composition, it is also an 

experimental fact that there is an obvious variation in the relative numbers of 

atoms in ionic solids such as zinc oxide, cuprous sulfide, and ferrous oxide. 
For example, the composition of cuprous sulfide can range from CU1.7S to 

Cu2S. Materials in which the atomic composition is variable are called 
nonstoichiometric compounds, and the most extreme examples of this behavior 

are found among the sulfides and oxides of the transition metals. 

Let us see how the atomic theory accommodates the existence both of stoichio¬ 

metric and nonstoichiometric compounds. First consider a compound which 

consists of simple, discrete molecules, like nitric oxide, NO. Now it is clear that 
in order to make the atomic composition of nitric oxide depart from a 1/1 ratio, 

we must in some way change the atomic composition of each nitric oxide mole¬ 
cule. But the smallest possible change which we can make in a nitric oxide 

molecule is to add to it either one atom of nitrogen or one atom of oxygen. 

This results in the formation of N20 or N02, both of which we recognize as 

compounds whose chemical properties are quite distinct from those of nitric 
oxide. Accordingly, we conclude that no change in the atomic composition of 

nitric oxide is possible without creating a new chemical species. The atomic and 

weight compositions of nitric oxide are therefore constant, and this and other 

molecular compounds obey the law of definite proportions. 
Solid compounds that contain no discrete molecules present an entirely dif¬ 

ferent situation. It is possible to prepare crystals of TiO with an atomic ratio 
of 1/1, yet if the conditions of preparation are varied, crystals of composition 

ranging from Ti0.75O to TiO0.69 can be obtained. All these crystals have the 
same spatial arrangement of ions, as x-ray studies show. Depending on the 
preparation of the crystal, varying fractions of the titanium (II) and oxide 

ions are absent from sites in the crystal lattice that could be occupied, and 
titanium (II) oxide does not obey the law of definite composition. Such varia¬ 
tion in atomic composition can occur without affecting the chemical properties, 

because titanium (II) oxide contains no discrete molecules, and the change in 

the ratio of atoms in the crystal as a whole does not cause a change in its crystal 
structure. In contrast, the electrical and optical properties of the crystal are 
sensitive to its atomic composition, for the resistivity and color of nonstoichio¬ 

metric compounds change markedly as the atomic ratio varies. 
Figure 1.1 indicates schematically how nonstoichiometry can occur through 

lattice vacancies (as in TiO) or through extra interstitial atoms (as in Z11O). 

Note that the ability of an atom to assume more than one oxidation state 
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A schematic representation of nonstoichiometry in ionic solids. In (a) one Ti + + is missing, 
and electrical neutrality is maintained by the presence of two Ti+3 ions. In (b), a neutral 
zinc atom occupies an interstitial position in the crystal structure. 

FIG. 1.1 

provides a mechanism for creating charge neutrality in the crystal, even though 
some ions of one charge are missing. This is the reason why nonstoichiometry 
is so common in transition metal compounds. 

We should note that some of the compounds used by the early nineteenth- 
century chemists to “prove” the law of definite proportions were in fact non- 
stoichiometric! The variations in composition fell within the rather large 
experimental uncertainty of the early chemical analyses. Thus this “law” which 
was so important to the development of the atomic theory, and which is today 
the basis for virtually every stoichiometric calculation, is only an approximation, 
originally “proved” by data inadequate to disclose its failures. This is a common 
situation in physical science: laws are derived from experiments, and have a 
validity determined by the accuracy of the experiment and the number of 
cases investigated. As more accurate experiments are done in more varied 
situations laws may need refinement, or may have to be discarded in favor of a 
more general concept. It has been useful to retain the idea of definite propor¬ 
tions, with a realization of its limitations. 

Questions. A compound is frequently defined as a substance which has a definite ele¬ 
mental composition by weight. Apparently this definition cannot include nonstoichiometric 
“compounds.” Can you think of some other properties which can be used to identify and 
define compounds? Is a precise definition really necessary? 

The Law of Multiple Proportions 

If two elements form more than one compound, then the different weights of one 
which combine with the same weight of the other are in the ratio .of small whole 
numbers. The oxides of nitrogen provide a very satisfactory demonstration of 
this principle: the weights of nitrogen which combine with 16 grams (gm) of 
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oxygen in N20, NO, and N02 are respectively 28, 14, and 7 gm, which stand in 

the ratio 4:2:1. The law was demonstrated experimentally only after Dalton 
had advanced his hypothesis that compound formation involved combination 

of atoms in whole number ratios. This idea, taken together with the postulate 

that the atoms of each element had a characteristic weight, constitutes a 
prediction of the law of multiple proportions. Little time elapsed between the 

prediction and its experimental verification, and this timely success strengthened 

the scientific position of Dalton’s ideas. 

The Law of Equivalent Proportions 

Consider two substances A and B, either elements or compounds, which can 

react with each other and with a third substance C. Now a constant weight of C 

will react with different weights of A and B, and the ratio of the reacting weight 
of A to that of B is some number, generally not an integer; let us call this 

ratio R. When A reacts directly with B, the law of equivalent proportions says 

the ratio r of the reacting weight of A to that of B either is equal to R, or is a 
simple multiple or fraction of R. That is, r = nR, where n is an integer or a 

ratio of integers. An illustration of this law will make its meaning considerably 

clearer. Nitrogen (A) and oxygen (B) react with hydrogen (C) to form ammonia 
(NH3) and water (H20) respectively. One gram of hydrogen will react with 

4.66 gm of nitrogen to form ammonia, and with 8.0 gm of oxygen to form water. 

Therefore R is 4.66/8.00 = 0.583. Now nitrogen and oxygen can form any 

one of five compounds; let us consider the reaction 

N2 + 02 -> 2NO, 

in which r, the ratio of the reacting weight of nitrogen to that of oxygen, is 

§§ = 0.875. According to the law of equivalent proportions, 

0.875 = 0.583n, 

where n is an integer or integer ratio. Solving for n we find 

0.875 _ 3 
71 ~ 0.583 _ 2 ' 

For other compounds of nitrogen and oxygen, n has different values, but each 

is the ratio of integers. 
While it is difficult to state the law of equivalent proportions concisely, an 

analysis of it supplies significant support for the atomic theory. If we have a 

fixed weight of substance C, the atomic theory tells us that we have a fixed, 

though unknown, number of particles. If we allow C to react with substance A, 
we have in effect counted out a number of particles of A which is related by 

integers to the number of particles of C, if compound formation involves com- 

6 STOICHIOMETRY AND THE BASIS OF ATOMIC THEORY | 1.1 



bination of atoms in simple whole number ratios. Again, combination of our 

fixed weight of C with B “counts out” a number of particles of B which is again 

some simple multiple of the number of C-particles. Thus, the number of A- and 
R-particles “selected” in this way must stand in the ratio of integers. 

A little reflection shows that the ratio R is merely the ratio of selected 

A-particles to R-particles, multiplied by the ratio of the weights of these par¬ 
ticles. The direct reaction of A with B also “selects” A- and R-particles in an 

integer ratio, which when multiplied by the ratio of weights of A- and R-particles 
becomes the ratio r. Since both R and r are related by the same factor to integer 

ratios, they must be related to each other by a multiplier which is the ratio of 
whole numbers. This multiplier is equal to the factor n used in the previous 

paragraph. Once again the assumption of characteristic atomic weights and of 
compounds involving atoms in small whole number ratios allows us to advance 

an argument, tedious but not elaborate, which rationalizes a general observa¬ 
tion of chemical behavior. 

Compounds have a definite composition by weight; the different weights of 
one element which combine with a fixed weight of another stand in integer 

ratios; the weights of two chemicals which combine with each other and with a 
third are related by integers. Does any one of these laws of chemical com¬ 

position prove the atomic theory? Not at all. By itself, each stands as a narrow 
observation, only hinting of its probable cause. Taken together they are gen¬ 

eralizations of three apparently independent aspects of natural behavior which 
find a unified explanation in the atomic theory. Rather than any one piece of 

evidence, it was the ability to relate and explain an accumulation of observa¬ 
tions which led to acceptance of the atomic theory. 

Question. The equivalent weight of an element is that weight which combines with 8 gm 
of oxygen. Is the following an accurate restatement of the law of equivalent proportions: 
Elements combine with each other in proportion to their equivalent weights, or in small 
integer multiples thereof? 

1.2 DETERMINATION OF ATOMIC WEIGHTS AND MOLECULAR FORMULAS 

Given the existence of atoms of characteristic weight, and given their tendency 

to combine in the ratio of small whole numbers, we consider the problem of 
determining both atomic weights and molecular formulas. Now it is clear that 

if one of these were known, the other could be determined. For example, if it 

were known that in cupric oxide there is exactly one oxygen atom for every 
copper atom, then the experimental fact that in CuO there are G3.5 gm of 

copper for every 16 gm of oxygen would mean that the average relative weights 
of a copper atom and an oxygen atom were in the ratio of 63.5 to 16. In other 

words, the atomic weight of copper would be 63.5 on a scale which took the 

atomic weight of oxygen as 16. So it is simple to see how atomic weights can 
be determined if formulas are known, and of course the process is easily re¬ 

versed; if atomic weights are known, formulas can be determined readily. The 
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problem confronting the chemists of the early nineteenth century was how to 
determine atomic weights and formulas simultaneously, since both were unknown. 

The approach taken by Dalton is one often used in scientific investigation: 
if there is no information to the contrary, make the simplest possible assump¬ 

tion and pursue its consequences. Thus, Dalton’s “rule of greatest simplicity”: 

if two elements form only one compound with each other, a molecule of this 
compound contains only one atom of each element. In 1805, water was the 
only known compound of hydrogen and oxygen, so its formula was taken as 

HO. This assumption, together with the fact that water contains 8 gm of 

oxygen for each gram of hydrogen, forced the conclusion that the atomic weight 

of oxygen was 8 on a scale which took the atomic weight of hydrogen as unity. 
A risky supposition had led to a false conclusion, but Dalton could offer no 

better solution to the problem of atomic weights and molecular formulas. 

Work of Gay-Lussac, published in 1808, supplied what became the eventual 
basis for the establishment of molecular formulas. An investigation of gaseous 

reactions showed that the combining volumes, measured under conditions of 

constant temperature and pressure, stood approximately in the ratios of small 

integers. The cases examined by Gay-Lussac included the reaction of ammonia 
with carbonic acid, where he found two different reactions which we would 

write: 

NH3(g) + H2C03(aq) - NH4HC03(aq), 

2NH3(g) + H2C03(aq) = (NH4)2C03(aq). 

The volumes of ammonia consumed in these two reactions are in a 1/2 ratio; 

thus the law of multiple proportions finds its analog in the volume relationships 

of reacting gases. Pursuing the idea that reacting volumes were always related 

by integers, Gay-Lussac interpreted the measurements of others to show that 
ammonia is composed of three volumes of hydrogen to one of nitrogen, and that 

in nitrous oxide, nitric oxide, and nitrogen dioxide (N20, NO, and N02) there 

were respectively 2, 1, and ^ volumes of nitrogen for each volume of oxygen. 

The apparently relentless appearance of integer relationships seemed to Gay- 

Lussac and others to support the atomic theory, but these results found least 
favor with the man who, we might have expected, should have welcomed 

them most. 
Dalton saw that Gay-Lussac’s observations, if correct, implied that the 

numbers of particles contained in equal volumes of gases were either equal or 

integral multiples of one another. Dalton could find two serious objections to 

this conclusion. First, it was known that the density of the water vapor which 

resulted from the reaction of hydrogen with oxygen was less than the original 
density of oxygen. With the correct molecular formulas at hand, this result is 

not difficult to explain. We merely recognize that since the formula of water is 

H20, and that of oxygen is 02, the weight of an oxygen molecule is greater 
than the weight of a water molecule. Then, if one liter of each of these gases 

contains equal numbers of molecules, the density or the weight per liter of 
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oxygen should be greater than the density of water vapor. The difference in 

density is entirely explained by the fact that elemental oxygen contains two 
oxygen atoms per molecule, and the water molecule but one. However, to 
someone conditioned to think of a chemical reaction only as an addition of one 

atom to another, to someone who pictured the formation of water as 

H + 0 = HO, 

there appeared only one way for water vapor to be less dense than oxygen: 

feiver molecules of water than of oxygen had to be contained in equal volumes. 
Dalton’s second objection was based on the following argument. It was 

observed that from equal volumes of nitrogen and oxygen, two volumes of nitric 
oxide would be produced. If equal volumes of different gases contained equal 

numbers of particles, and if, as Dalton felt, each particle of an elemental gas 

was an indivisible atom, we would be forced to write 

nitrogen -j- oxygen —■» nitric oxide, 

1 volume + 1 volume —* 2 volumes, 

n atoms + n atoms —> 2 n molecules. 

The first two lines represent experimental facts, the last, Dalton pointed out, 
is an impossibility. The reaction of n indivisible atoms can never produce 

more than n new particles. This reasoning is based on a most arbitrary as¬ 
sumption: the “particles” of elements are individual atoms. Dalton chose not 

to question the validity of this assumption, but instead rejected the “equal 

volumes-equal numbers” idea and the data on which it was based. 
An argument in favor of the “equal volumes-equal numbers” hypothesis 

was advanced by Amadeo Avogadro in 1811. By combining this idea with his 

novel suggestion that gaseous elements could consist of polyatomic molecules, 

Avogadro successfully reconciled the combining volume data with the concept 
of the indivisible atom. He pointed out that once it is admitted that nitrogen 

and oxygen can be polyatomic, the volume relations accompanying the forma¬ 

tion of nitric oxide can be explained by saying 

1. nitrogen + oxygen —» nitric oxide; 

2. 1 volume + 1 volume —* 2 volumes; 

3. n molecules + n molecules —» 2n molecules; 

4. N2 -|- O2 —♦ 21NO; 

5. N4 -(- O4 —* 2N202. 

Lines 1 and 2 are experimental facts. Line 3 combines the “equal volumes- 

equal numbers” hypothesis with the idea that elemental gases can be poly¬ 

atomic; it avoids the necessity of splitting atoms by offering the opportunity 
to divide polyatomic molecules. Lines 4 and 5 contain two suggestions (there 
are many others) of molecular formulas which are consistent with the com- 
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billing volume data. Avogadro’s work answers Dalton’s objections to the 

“equal volumes-equal numbers” principle, but only at the cost of introducing 
another hypothesis: the existence of polyatomic elements. Moreover, as shown 

by line 5 above, the formulas of these polyatomic elements are left undeter¬ 
mined; consequently we are still without a scheme for the unequivocal deter¬ 
mination of atomic weights and molecular formulas. 

In the years between 1811 and 1858 the problem of determining the atomic 

weight scale became more and more vexing. Solutions were proposed, only to 
be abandoned when they failed to account for all of a growing body of experi¬ 

mental facts. Eventually there were those who felt that it was impossible ever 
to determine atomic weights and molecular formulas. The permanent solution 

required only a slight extension of Avogadro’s reasoning, and this Stanislao 
Cannizzaro supplied in 1858. 

Cannizzaro’s Analysis 

Cannizzaro based his method of atomic weight determination on the idea that 

a molecule must contain a whole number of atoms of each of its constituent 
elements. Given this, it is clear that in one gram molecular weight of a com¬ 

pound there must be at least one gram atomic weight of a given element, or 

otherwise some integral multiple of this weight. Therefore, if a series of the 

compounds of this element are analyzed, and the weights of the element con¬ 
tained in one gram molecular weight of the various compounds compared, it 

should eventually become obvious that all these weights are integral multiples of 
some number which is very probably the gram atomic weight. To use this method, 

there must be a way to find the molecular weights of the compounds. For this, 

Cannizzaro turned to Avogadro’s principle: since under the same conditions 
equal volumes of gases contain equal numbers of molecules, the weights of these 

equal volumes must stand in the same ratio as the weights of their molecules, 
or as their molecular weights. With such a set of relative molecular weights 

available, Cannizzaro defined the molecular weight of hydrogen gas to be 2, and 

thus fixed the absolute values of all others. 

Table 1.1 Atomic Weight of Oxygen 

Compound 
Molecular weight 
relative to H2 = 2 

Weight of oxygen 
in one gram 

molecular weight 

Water 18 16 
Nitric oxide 30 16 
Nitrous oxide 44 16 
Nitrogen dioxide 46 32 
Sulfur dioxide 64 32 
Carbon dioxide 44 32 
Oxygen 32 32 
Ozone 48 48 
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Let us illustrate Cannizzaro’s procedure by outlining the determination of 

the atomic weight of oxygen. First, the molecular weights of a number of 
gaseous compounds of oxygen are determined by measuring their densities rela¬ 

tive to hydrogen gas at the same temperature and pressure. For example, the 
density of nitric oxide gas is almost exactly fifteen times that of hydrogen; 

therefore the molecular weight of nitric oxide is 30 on a scale in which hydrogen 
gas is defined to be 2. Similar experiments on the other oxygen containing gases 

provide the molecular weight data in Table 1.1. 
The second step is the determination of the weight of oxygen contained in 

one gram molecular weight of each compound. This follows easily from a 

chemical analysis, which gives the composition of the compound in percent or 
fraction by weight. The weight fraction of oxygen multiplied by the molecular 

weight gives the desired quantity. To pursue our example, when one gram of 

nitric oxide is decomposed to the elements, 0.533 gm of oxygen is recovered. 
Consequently in 30 gm of nitric oxide there are 30 X 0.533/1 = 16 gm of 
oxygen. Repetition of this procedure gives the weight of oxygen contained in 

one gram molecular weight of each of the gases in Table 1.1. 

The third and final step is to examine these data for integral relationships. 
The smallest weight of oxygen found in one gram molecular weight of a com¬ 
pound is 16 gm, and all others are its integral multiples; so we might hastily 

conclude that 16 is the atomic weight of oxygen. Flowever, all numbers in the 

table are also multiples of 8, and we might argue that 8 is the atomic weight of 
oxygen. But to adopt 8 as the atomic weight would force us to the very unlikely 
conclusion that all compounds of oxygen available to us contain even numbers 

of oxygen atoms, since the odd multiples of 8 (8, 24, 40) are absent from the 

table. It seems, then, that the proof that the atomic weight of oxygen is 16 lies 
in the repeated failure to find a compound which contains 8, 24, or 40 gm of 

oxygen in one gram molecular weight. 
It is apparent that analogous procedures will yield the atomic weights of 

other elements each of which forms a series of gaseous compounds. Thus by 
clever combination of the law of multiple proportions and the “equal volumes- 

equal numbers” principle, Cannizzaro removed the dilemma associated with 
the atomic weight-molecular formula and supplied a lasting chemical basis for 

the atomic theory. 
Let us review the arguments which led to a quantitative atomic theory. We 

have first the proposals of Dalton: there are indivisible atoms; those of a given 
element are alike in weight; the atoms of different elements have different 

weights; atoms combine in a variety of simple whole number ratios to form 
compounds. These proposals find strong support in the laws of chemical com¬ 

bination. Then come Gay-Lussac’s observations of combining gaseous volumes; 

these suggest only that a fixed volume f different gases contains numbers of 
molecules which are in the ratio of int ; rs. Avogadro’s statement that these 
numbers are equal is an assumption, an 1 this assumption is at the heart of 

Cannizzaro’s procedure for finding atomic weights. Thus the original argu- 
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ments which led to the definition of the chemical atomic weight scale were not 

free from conjecture, but involved hypotheses which have since been justified 
by a wealth of experimental data. 

Other Guides to the Atomic Weights 

Cannizzaro’s method was initially limited to determining the atomic weights of 

elements which formed gaseous compounds. We turn now to two other principles 
which helped to establish a complete atomic weight scale: the Dulong and 
Petit law of atomic heat capacity and Mendeleev’s law of chemical periodicity. 

In 1819, Dulong and Petit measured the specific heats* of a number of metals, 

and found that the values for the various materials differed considerably. They 
then sought to calculate the heat required to raise not a fixed weight, but a fixed 

number of atoms one degree. One gram atomic weight of the different elements 
contains the same number of atoms; thus multiplication of the specific heat of 

each element by its gram atomic weight gives the heat required to raise a fixed 

number of atoms of all substances one degree Celsius. Naturally this procedure 

requires an accurate table of atomic weights, and the best available to Dulong 
and Petit contained several entries which, because of the atomic weight-molec¬ 

ular formula confusion, differed from the true values by simple numerical 

factors. However, the product of the specific heat and some of the atomic 
weights was a constant which on our present scale has the approximate value 6. 

Dulong and Petit assumed that this was a universal relation, and that failure to 
obey this law indicated an incorrect atomic weight. Furthermore, they found 

that it was possible to “correct” the offending atomic weights by multiplying 

them by integer ratios, and once this was done all elements obeyed the relation 

specific heat (cal/gm-deg) X atomic weight (gm/gm atom) 

= 6 (cal/deg-gm atom). 

The “correction” applied to some of the atomic weights was not so arbitrary 

as might first appear, for at the time it was generally accepted that molecular 
formulas were uncertain, and that atomic weights could be in error by factors 

which involved small integers. Thus Dulong and Petit found a relationship 

which today we still accept as correct, within certain well-understood limits: 

the heat capacity of one mole of atoms in the solid state is approximately 6 
calories per degree Celsius. Table 1.2 shows that a variety of solid elements 

obey this law, and that the deviations characteristically fall among solids which 
contain the very light elements. 

* The specific heat is the number of calories (cal) required to raise one gram of material 
one degree Celsius. The term heat capacity generally refers to the heat required to raise 
one mole of material one degree Celsius. 
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Table 1.2 Heat Capacities of Some Solid Elements 

Element 
Atomic 
weight 

Specific heat 
(cal/deg-gm) 

Heat capacity 
(cal/deg-mole) 

Lithium 6.9 0.92 6.3 
Beryllium 9.0 0.39 3.5 
Magnesium 24.3 0.25 6.1 
Carbon (diamond) 12.0 0.12 1.4 
Aluminum 27.0 0.21 5.7 
Iron 55.8 0.11 6.1 
Silver 107.9 0.056 6.0 
Lead 207.2 0.031 6.4 
Mercury 200.6 0.033 6.6 

The following example illustrates how, despite its approximate nature, the 
law of Dulong and Petit can lead to an accurate atomic weight. A careful chem¬ 

ical analysis shows that in a compound of copper and chlorine there are 0.3286 gm 
of chlorine and 0.5888 gm of copper. Given that the atomic weight of chlorine 

is 35.46, what is the atomic weight of copper? Our data allow us to calculate 
that one gram atomic weight of chlorine will combine with 0.5888 X 35.46/ 

0.3286 = 63.54 gm of copper. If the empirical formula of the compound is 
CuCl, the atomic weight of copper is 63.54. But if the formula is Cu2Cl or 

CuCl2 the atomic weight of copper is either 31.77 or 127.08. Clearly, a rough 
value of the atomic weight will allow us to choose between the more precise 

alternatives. The measured specific heat of copper is 0.093 cal/deg-gm. Apply¬ 
ing the law of Dulong and Petit we find 

0 

atomic weight = q!)93 = 

which allows us to choose 63.54 as the correct atomic weight, and CuCl as the 

formula of the chloride. 
The periodic table also served as a guide to the rough values of the atomic 

weights. The table published by Mendeleev in 1869 ordered the elements 

according to the atomic weights determined largely by the method of Can¬ 
nizzaro. The table contained gaps which corresponded to undiscovered elements, 

or to those whose atomic weights were unknown or miscalculated. These gaps 
(or their absence) aided subsequent atomic weight assignments. The atomic 

weight of uranium had first been taken as 120 on the basis of chemical analysis 
and an assumed formula of its oxide. Mendeleev saw that there was no place 

in this table for an element with atomic weight between that of tin (119) and 
antimony (122), and so suggested that the correct atomic weight of uranium 

was nearer 2 X 120 = 240, as in fact it is. Similarly, he corrected the value 
initially assigned to indium from 76, which would have forced it between 

arsenic and selenium, to 76 X 3/2 = 114, which is quite close to the presently 

accepted value. 
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Precise Atomic Weights 

Our discussion has emphasized the principles involved in the construction of the 

atomic weight scale; there remains the problem of how to establish the best 

values of the atomic weights. There are three important methods: accurate 
determination of reacting or combining weights, accurate determination of gas 

densities, and mass spectrometry. The first two are refinements of the classical 
methods already discussed, while the third is a totally different approach. 

Table 1.3 Relations between atomic weight scales* 

Old 
physical scale 

Old 
chemical scale 

New 
unified scale 

o16 16 exactly 15.99560 15.99491 
0 16 exactly 15.9994 
c12 12.00382 12.00052 12 exactly 
c 12.011 12.0115 

♦After E. A. Guggenheim, J. Chem. Ed., 38, 86 (1961). 

Before taking up these methods of atomic weight determination in detail, 

we should discuss the basis of the numerical values in the atomic weight scale. 

The atomic weights are a set of relative numbers whose absolute value depends 
on some defined standard. In the past, physicists have defined the mass of the 

most abundant isotope of oxygen, O16, as 16 exactly, while chemists defined the 
average atomic weight of the naturally occurring mixture of oxygen isotopes 

(O16, O17, O18) as exactly 16. These two definitions led to two different atomic 

weight scales. According to the physicists’ scale, the atomic weight of the 
mixture of oxygen isotopes was not 16, but 16.0044. Thus to convert a physicist’s 

atomic weight to a chemist’s atomic weight it was necessary to multiply by 
16.0000/16.0044 = 1/1.000275. In 1961 both scales were abandoned and 

replaced by a unified scale based on a new standard. The atomic weight of the 

most abundant isotope of carbon, C12, is now defined to be 12 exactly. The very 

small changes caused by this new definition are summarized in Table 1.3. 
The combining weight method has given us most of the accepted atomic 

weights. The principle is simple: some reaction involving the element of un¬ 

known atomic weight and another element whose atomic weight is known is 
carried out quantitatively. This establishes a combining or reacting weight 

ratio between the two elements. Since atoms combine in the ratio of small 
integers, the combining weight ratio is either exactly equal to, or is an integral 

multiple of, the ratio of atomic weights. For example, it is found that 1.292 gm 

of pure silver react with 0.9570 gm of bromine to form silver bromide. The 

ratio of reacting weights, 1.292/0.9570 = 1.350, is equal to the ratio of atomic 
weights, since the formula of silver bromide is AgBr. Thus, taking Ag = 

107.87, we find Br = 107.87/1.350 = 79.90. A variety of chemical reactions 

are used to establish atomic weights, and in each case greatest care must be 
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taken to see that the reagents are of highest purity, and that the reactions 

proceed quantitatively to give compounds of definite, known composition. 
To obtain accurate atomic and molecular weights from gas density measure¬ 

ments it is first necessary to realize that Avogadro’s principle is not strictly true 
for gases near atmospheric pressure. Because of forces between molecules, 

which are different in different gases, equal volumes of various gases do not 
contain exactly equal numbers of molecules. Avogadro’s principle becomes 
exact only in the limit of very low pressure, and gas densities measured under 

these conditions do stand in the ratio of the molecular weights of the gases. 
How can we find the density a gas would have if no forces acted between the 

molecules? Experiments and the kinetic theory of gases cause us to be confident 

that in the limit of zero pressure, that is, when the molecules are far apart and 
the forces between them are negligible, the gas density 5 should be exactly 
proportional to the pressure P: 

8 = aP (no intermolecular forces). 

Here it is helpful to think of the proportionality constant a as the density that 

a gas would have at 1 atm pressure (P = 1) if there were no forces between the 

molecules. Thus, it is just the quantity we want. When gases are at finite 
pressure, and intermolecular forces are important, there must be a correction 
term added to the equation which shows that the density is no longer strictly 

proportional to the first power of the pressure. The simplest type of correction 
term would be of the form PP2, where p is a positive or negative constant that 

depends on the existence of intermolecular forces. The equation for the density 
now is 

8 = aP + pP2, 
which we can rewrite as 

8/P = a -f- pP. 

Now we see that in order to find a, we need only plot the measured ratio of the 
density to pressure as a function of pressure, and find the intercept of the 

resulting straight line. Such plot is shown in Fig. 1.2. From it we can find that 

the ideal density of C02 gas at 1 atm and 273.1°K is 1.9635 gm/liter. 

Such ideal densities can be used to compute molecular weights. For example, 
the ideal density of neon gas is found to be 0.9004 gm/liter, while that of oxygen 
is 1.428 gm/liter, both at 1 atm and 273.l°Iv. Since equal volumes of gas con¬ 

tain equal numbers of molecules, the ratio of gas densities must be the ratio 
of molecular weights. Taking the molecular weight of oxygen to be 31.999, 

we find 

0 9004 
X 31.999 = 20.18 

1.428 

for the atomic weight of neon. 
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FIG. 1.2 Determination of the ideal density of 
carbon dioxide gas at 273.1°K. 

Questions. The ideal density of CO2 found from Fig. 1.2 is 1.9635 gm/liter at 1 atm and 
273.1°K. What is the molecular weight of CO2? What is the atomic weight of carbon? 

The mass spectrographic method is capable of giving the most precise atomic 
weights. Once again the principle of the method is simple; its execution requires 

the greatest care to be successful. As shown in Fig. 1.3, the mass spectrograph 

consists of three major parts: a source of gaseous ions, an evacuated dispersing 
region in which ions of different charge-to-mass ratio are forced to travel dif¬ 

ferent paths, and a detector which locates the trajectories followed by the 

different ions. The ion source is most often a small chamber in which gaseous 
atoms or molecules are bombarded with a beam of energetic electrons obtained 

from a heated filament. The collision of the electrons with the molecules pro¬ 

duces positive ions, some of which are only fragments of the original molecule. 
For instance, the bombardment of water vapor gives not only H20+, but OH+, 

0+, and H+. Some of the positive ions are accelerated by an electric field, pass 

Electron 
beam 

Filament Collimating slits 

Magnetic field 

Ion 
accelerating 

voltage 
+ 

Photographic 
plate 

FIG. 1.3 Schematic drawing of a mass spectrograph. 
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through a slit, and enter a highly evacuated flight tube in which they are subject 

to a magnetic field. This field causes the ions to follow circular trajectories 
whose radii are given by 1/r2 = {B2/2V)(e/m), where B is the value of the 

magnetic field, V is the voltage difference through which the ions were accel¬ 
erated, and e/m is the ratio of the ionic charge to the ionic mass. Those ions 
having the same ratio of charge to mass follow the same path; the paths of 

greatest radius are taken by ions whose charge-to-mass ratio is smallest. 

The detector, which is a photographic plate, intercepts the ion trajectories 
and records the position and intensity of each ion beam. For each image found 
on the plate, the radius of curvature of the corresponding ion path can be 

found, and in turn, the charge-to-mass ratio of the ion computed. The most 
accurate comparisons can be made between the masses of fragments which fall 

close to each other on the photographic plate. For instance, the ions 160+, 
12CHt, 12CDH^, 12CDj, 14NHt, and 14ND + all have a mass of 16, approxi¬ 

mately. As Fig. 1.4 shows, the mass spectrograph is capable of resolving the 
small mass differences which exist among these fragments. This mass spectro¬ 

gram permits accurate calculation of the mass of the deuterium atom in terms 
of the mass of the hydrogen atom, and if the mass of hydrogen is known, the 

masses of O16 and N14 can be calculated in terms of the mass of C12. 

cdh2 
cd2 ch4 

O16 ND NH2\ / 

I V If 

Mass spectrum of some ions of approxi- FIG. 1.4 

mate mass 16. 
Increasing mass -*- 

We see that the mass spectrograph permits the accurate determination of 
the masses of the isotopes of a given element. But as we noted in Section 1.1, 

for elements having more than one isotope, the atomic weight is an average 
number whose value depends on the relative amounts of each isotope. Thus, 

accurate determination of the relative abundances of the isotopes of an element 

is necessary before its chemical atomic weight can be calculated. This isotopic 
abundance determination is also done with the mass spectrograph, but instead 
of recording the ions photographically, the intensity of each ion beam is mea¬ 

sured electrically. For example, carbon is found to consist of 98.892% C12, and 

1.108% C13. On the unified atomic weight scale, C12 has a mass of 12 exactly, 
and C13 has a mass of 13.00335. Thus, the atomic weight of the isotopic 

mixture is 
12.0000 X 0.98892 = 11.8670 

13.0033 X 0.01108 = 0.1441 

12.0111 
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Considering the great precision which mass spectrometry offers in the deter¬ 

mination of both isotopic mass and abundance, one might ask why many of 

our atomic weights are listed only to four significant figures. Often the limita¬ 
tion is set not by the accuracy with which the determination can be done, but 

by natural variations in the isotopic content of the elements themselves. There 
is no point to listing the atomic weight of an element to five significant figures 
when the natural variations in isotopic composition cause variation in the 

fourth significant figure. 

Question. Can you think of any reasons why the isotopic composition of elements should 
differ in different sources? 

1.3 THE MOLE CONCEPT 

The fundamental unit of chemical thought is the atom or molecule; it is 

therefore no surprise that the ability to measure and express the number of 
molecules present in any chemical system is of foremost importance. The 

number of molecules present in a system occupies a central position in all 
chemical reasoning, and virtually all the equations of theoretical chemistry 

contain the number of molecules as an important factor. While it is possible 
today to detect the presence of single atoms, any direct attempt to count the 

enormous number of atoms in even the smallest chemical system would occupy 
the total population of the world for many centuries. The practical solution 

to counting large numbers of atoms is much less imposing; we need only use 
the most fundamental of laboratory operations, weighing. 

Our discussion of the development of the atomic theory led to the conclusion 

that equal numbers of atoms are contained in one gram atomic weight of each 
element, and that the same number of molecules is found in one gram molecular 

weight of any compound. The terms “gram atomic weight ” and “gram molec¬ 

ular weight” are awkward and tend to conceal the fact that the reason they 
are used is to refer to a fixed number (Avogadro’s number,* 6.022 X 1023) of 

particles. It is more convenient to use the term mole to stand for the amount 
of material which contains this number of particles. As formal definitions 
we have 

The number of carbon atoms in exactly 12 gm of C12 is called Avogadro's number, N. 
One mole is the amount of material which contains Avogadro’s number of particles. 

These definitions emphasize that the mole refers to a fixed number of any type 
of particles. Thus it is correct to refer to a mole of helium, a mole of electrons, or 

a mole of Na+, meaning respectively Avogadro’s number of atoms, electrons, 
or ions. On the other hand, phrases like “one mole of hydrogen” can be am¬ 

biguous, and should be restated as “one mole of hydrogen atoms” or “one mole 

* Avogadro’s number has been determined by a variety of techniques some of which 
are described in Appendix A. 

18 STOICHIOMETRY AND THE BASIS OF ATOMIC THEORY 1.3 



of hydrogen molecules.” It is a matter of common practice among chemists, 

however, to let the name of the element stand for its most common form. Thus 
one mole of 02 is frequently referred to as one mole of oxygen, whereas one 
mole of 0 is called one mole of oxygen atoms. 

From the definitions we see that the weight of one mole of material is always 

equal to its atomic (or molecular) weight in grams. Thus, to measure out some 
multiple or fraction of Avogadro’s number of particles we have only to weigh 
out the appropriate multiple or fraction of the atomic or molecular weight. 

That is, 

number of moles 
_weight (gm)_ 
weight of one mole (gm/mole) 

_weight_ 

atomic (molecular) weight 

Despite the fact that the number of moles is often measured by weighing, it is 
more profitable to think of one mole as a fixed number of particles rather than 

a fixed weight. One mole is always Avogadro’s number of particles, but the 

weight which contains one mole differs for various substances. 

Question. We make frequent use of "conversion factors” to change from one set of units 
to another. The atomic mass unit (amu) is defined as ^ the mass of a C12 atom. Do you 
think the statement that Avogadro’s number is the conversion factor changing atomic 
mass units to grams is correct? 

Some confusion can arise concerning the “molecular weights” of substances 

in which no discrete molecules exist. For example, in solid sodium chloride 
there are no identifiable NaCl molecules, only ions of sodium and chlorine. 

Nevertheless, it is common to use the term “molecular weight of sodium chloride ” 
as if this substance were composed of NaCl molecules. In this context the words 

“molecular weight of NaCl” mean only the weight of material that contains 
6.02 X 1023 ions of each type, and carry no implication about the existence of 

molecules in the crystal. Strictly we should refer to the formula weight of a 

substance like NaCl, and write 

number of moles 
weight 

formula weight 

However, the words “molecular weight” are frequently substituted for “formula 

weight. ” 

1.4 THE CHEMICAL EQUATION 

A chemical reaction is a mechanical process in the same sense as is raising a 
weight, for in a chemical reaction, a mechanical system of atoms is converted 

from one state to another. For example, the reactants in the transformation 

2Ag+(aq) + H2S(aq) = Ag2S(s) -f 2H + (aq) 

1.4 | THE CHEMICAL EQUATION 19 



are atoms of silver, hydrogen, and sulfur in a particular mechanical arrange¬ 

ment or grouping which we describe as an aqueous solution of silver ions and 
an aqueous solution of hydrogen sulfide molecules. The products are just the 

same atoms in different arrangement—the silver and sulfur atoms are grouped 

together as ions in a solid substance which is precipitated from the solution, 
and the hydrogen atoms are present as ions in the aqueous solution. The role 

of the chemical equation is to describe the chemical process both qualitatively 
and quantitatively in a way which is at once accurate and brief. 

To describe a reaction qualitatively, we want the symbols to describe the 
state or condition of the reactants and products as they occur under the con¬ 

ditions of the reaction. In the example above, the solution of hydrogen sulfide 
contains H+, HS~, and S= ions, as well as H2S molecules. However, for most 

purposes it would needlessly complicate our description if we listed each of these 

species as a reactant. Investigations of aqueous solutions of hydrogen sulfide 
show that most of the sulfur-containing material is present as undissociated 

hydrogen sulfide molecules, and therefore this solution is most conveniently 
represented by the symbol H2S(aq). In contrast, in a solution prepared by 

mixing sodium hydroxide and hydrogen sulfide, the sulfur species in greatest 
concentration might be HS~; if so, this symbol would be the best description 

of the solution. In general, when one of the reacting atoms is present in more 

than one form, the species in highest concentration is used in writing the 

chemical reaction. The point is simply to describe the system as accurately as 
possible without sacrificing brevity. 

Another qualitative principle used in writing chemical equations is that 

chemical species which are not used or produced by the reaction are not in¬ 
cluded in the equation, even though they may be present in the reacting system. 

In our example, the silver ion may have been obtained as an aqueous solution 

of silver nitrate, but the nitrate ion is left unchanged by the reaction; so includ¬ 
ing it in the equation would serve no purpose. 

The stoichiometric coefficients which appear in a chemical equation express 
the quantatitive aspect of a chemical reaction. In many cases these coefficients 

represent only the relative numbers of molecules which participate in a chemical 

reaction. Thus in this context it is quite correct to write 

iN2 + |H2 = NH3. 

The equation says only that in the synthesis of ammonia, the number of am¬ 

monia molecules produced is twice the number of nitrogen molecules, and 
two-thirds the number of hydrogen molecules used. 

In other instances, chemical equations are used to describe the behavior of 

individual molecules. For example, the recombination of oxygen atoms to form 
molecules occurs in the presence of 02 by two successive chemical transforma¬ 

tions. In the first step, one oxygen atom reacts with one oxygen molecule to 

give ozone: 

O + 02 —> O3. 
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The second step is the reaction of another oxygen atom with O3 to give two 
oxygen molecules: 

0 -j- O3 —> 2O2. 

Since in writing these equations we are using chemical symbols to stand for 
individual atoms and molecules, it is not proper to divide the last equation by 
2 to give 

2O "T 5O3 ~^ O2. 

In the context used, this would imply the existence of “half-molecules,” which 
is nonsense. It is always clear from context whether the chemical symbols 
stand for individual molecules or a collection of molecules. 

The chemical equation is an example of a conservation equation, since it 
expresses the fact that in a chemical reaction the number of atoms of each 

element is constant, or is conserved. This is, of course, the principle used to 
“balance” the equation. Furthermore, the equation represents the fact that 
net electrical charge is neither created nor destroyed by chemical reactions. 

In the equation describing the reaction between silver ion and hydrogen sulfide 

we see that the net charge on the reactants and the products is the same: +2. 
We shall find in Chapter 7 that the principle of charge conservation is very 
helpful in balancing oxidation-reduction equations. 

1.5 STOICHIOMETRIC CALCULATIONS 

Now let us draw on the definition of the mole and the principle of atom con¬ 

servation to attack the problem of weight relations in chemical reactions. To 
illustrate the procedure which we shall find can cope with the most difficult 

problems, let us choose a simple example. The chemical equation 

2CO + 02 = 2C02 

states that 2n molecules of carbon monoxide and n molecules of oxygen are 
used to form 2n molecules of carbon dioxide, where n is any number. If n is 
taken as 6.022 X 1023, then the equation says that two moles of carbon mon¬ 

oxide plus one mole of oxygen can be converted to two moles of carbon dioxide. 

This argument illustrates the supremely important fact that since a mole con¬ 
tains a definite number of particles, anything that can be said about relative 

numbers of molecules or atoms may be said about relative numbers of moles. This 

statement is the basis for all stoichiometric calculations. 
Now let us solve the elementary problem of finding the weight of carbon 

dioxide which can be obtained from the combustion of 12.0 gm of carbon 

monoxide with excess oxygen. The general method of attack on this and similar 
problems involves use of the most valuable piece of information about the 

reaction, the chemical equation. In this example the chemical equation tells us 

directly that: 

2 moles of carbon monoxide yield 2 moles of carbon dioxide; 
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so we can say that, in general, 

moles of carbon monoxide used = moles of carbon dioxide produced. 

Since there is one mole of carbon atoms in both one mole of carbon monoxide 
and one mole of carbon dioxide, these word equations are simply statements 

that carbon atoms are conserved in the chemical reaction. To effect the desired 
calculation, we need only apply the expression for the number of moles in an 

arbitrary weight: 

moles of CO 
weight of CO _ 12.0 

molecular weight 28.0 
0.429 = moles of C02, 

weight of C02 = number of moles of C02 X weight of one mole of C02 

=x 440 = 18-9 gm of c°2. 

Note the equivalence of this procedure (the “mole method”) to the so-called 
“proportion method.” Following the latter we would write 

2CO + 02 = 2C02, 

12.0 weight of C02 

2 X 28.0 - 2 X 44.0 ’ 

weight of C02 = X 44.0 = 18.9 gm 
Jo.U 

for no apparent reason other than that it produces the correct answer. The 

“mole method” is preferable because in its algebraic statements it uses informa¬ 
tion derived directly from the principle of atom conservation (i.e., the moles of 

CO equal the moles of C02 because both contain the same number of carbon 

atoms). This advantage becomes more apparent as the problems become more 
difficult. 

Another advantage of solving stoichiometric problems in terms of moles is 

found if we ask for the weight of oxygen consumed in the above reaction. 

Reference to the chemical equation shows that the number of moles of oxygen 

consumed is just one-half the number of moles of carbon monoxide used. 

Therefore 

moles of 02 = \ X moles of CO 

- ^(0.429) = 0.214 moles, 

weight of oxygen = 32.0 gm/mole X 0.214 moles = 6.85 gm. 

This procedure is more efficient than setting up a new proportion involving, 

this time, oxygen and carbon monoxide. Since the stoichiometric coefficients 
in a chemical equation are generally small integers (in this case 1 and 2), the 

number of moles of one substance can be found from the number of moles of 
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another by a simple multiplication involving the ratio of small integers. The 

number of moles of any substance can, at any time, be converted to the cor¬ 
responding weight by multiplication by the weight of one mole. 

The utility of the mole concept is further illustrated by the problem of deter¬ 

mining the empirical formulas of compounds. The empirical formula expresses 
only the relative numbers of atoms of each element, and implies nothing about 

how many atoms are actually in one mole of compound. Empirical formulas 
are found experimentally by measuring the weights of the elements necessary 

to synthesize a certain amount of the compound, or alternatively by analyzing 
a sample of the material for the weights of its constituents. The results of such 

determinations are often expressed as composition in percent by weight. For 

example, a certain sulfide of iron contains 46.5% iron and 53.5% sulfur by 
weight. The problem of converting these data to an empirical formula is easily 
solved if we remember two things: empirical formulas represent relative num¬ 

bers of atoms of the elements, and anything we can say about relative numbers 

of atoms may be said for relative numbers of moles of atoms. A calculation of 
the relative number of moles of iron and sulfur will therefore lead us to the 
empirical formula. 

The relative numbers of moles of atoms can be found if we imagine we have 
one gram of the iron sulfide. Then we have 

1.00 X 0.465 = 0.465 gm of iron, 

1.00 X 0.535 = 0.535 gm of sulfur, 

which is just 

and 

0.465 gm 
55.8 gm/mole 

moles of iron = 0.00833 moles 

0.535 gm 
32.1 gm/mole 

moles of sulfur = 0.0166 moles. 

The relative number of moles, and of atoms, is just 

moles Fe _ 0.00833 _ atoms Fe _ 1 

moles S 0.0166 atoms S 2 

The empirical formula of the sulfide is FeS2- 
In the foregoing we have emphasized the relationship between the weight of 

a substance and the corresponding number of moles. Weighing is not the only 

method by which we can count molecules. Avogadro’s law states that under 
conditions of constant temperature and pressure, equal volumes of gases con¬ 

tain equal numbers of particles. Experimental investigations show that at one 

atmosphere pressure and a temperature of 273.1°K (conditions known as 
standard temperature and pressure, STP), one mole of any gas occupies a 
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volume which is very close to 22.4 liters. Therefore, the number of moles in any 

gas sample can be found by comparing its volume under standard temperature 
and pressure conditions with 22.4 liters. We have then 

moles of gas 
volume under STP conditions 

volume of one mole under STP conditions 

F(STP) liters 

22.4 liters/mole 

To illustrate the use of the standard molar volume in stoichiometric calcula¬ 
tions let us consider the thermal decomposition of potassium chlorate, KCIO3, 

according to the equation 

KC103(s) = KCl(s) + |02(g). 

A certain sample of KCIO3 when decomposed yielded 637 cubic centimeters 

(cc) of oxygen gas, measured at 273°K and one atmosphere pressure. Our 
object is to find the original weight of the KC103 and the weight of the KC1 

produced. Remembering that there are 1000 cc in 1 liter, we can immediately 

calculate that the number of moles of oxygen produced is 

moles of 02 
0.637 liter 

22.4 liters/mole 
0.0284 mole. 

From the number of moles of oxygen we can calculate the number of moles 
of potassium chlorate by means of an equation of atom conservation. By 

recognizing that the numbers of oxygen atoms in the KCIO3 consumed and the 

02 produced are the same we can write 

oxygen atoms in reactant = oxygen atoms in product, 

3 X moles of KC103 — 2 X moles of 02, 

since IvC103 and 02 contain, respectively, 3 and 2 atoms per chemical unit. 
We can reach the same expression by a different path. The chemical equation 

tells us that for each mole of potassium chlorate decomposed, f moles of oxygen 

are produced. Therefore the number of moles of potassium chlorate multiplied 

by § must equal the number of moles of oxygen. Thus 

§ X moles of KCIO3 = moles 02, 

which is, apart from the transposition of the 2, the same as the equation derived 

from the atom conservation principle. Proceeding, we write 

moles of KCIO3 = § X moles of 02 

= § X 0.0284 = 0.0189. 
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Since the formula weight of IvC103 is 122.5, we find 

weight of IvC103 = moles of KC103 X formula weight 

= 0.0189 X 122.5 

= 2.32 gm. 

Furthermore, since the numbers of moles of KC103 and KC1 are equal, 

weight of KC1 = 0.0189 X 74.55 

= 1.41 gm, 

where 74.55 is the formula weight of KC1. 

The procedure used for solving nearly every stoichiometric problem is to 

set up an equation based on atom conservation (or mole balance) and apply 
to it the expression which relates the number of moles to the weight and molec¬ 

ular weight of the substances involved. However, an appreciation of this 
procedure and the ability to use it come only from experience. Therefore we 

will end our discussion with a series of examples typical of problems encountered 
in chemical practice. 

Example 1.1 A sample of pure calcium metal weighing 1.35 gm was quantitatively 
converted to 1.88 gm of pure CaO. If the atomic weight of oxygen is taken to be 16.0, 
what is the atomic weight of calcium? 

The formula of calcium oxide tells us immediately that 

moles 0 

1.88 - 1.35 
16.0 

0.033 

atomic weight of Ca 

moles Ca, 

moles 0 = 0.033, 

moles Ca a^om;c weight of Ca 

- 40.9. 
0.033 

Example 1.2 In the gravimetric determination of phosphorus, an aqueous solution of 
dihydrogenphosphate ion, H2PO7, is treated with a mixture of ammonium and mag¬ 
nesium ions to precipitate magnesium ammonium phosphate, MgNH4P04 • 6H2O. 
This is heated and decomposed to magnesium pyrophosphate, Mg2P207, which is 
weighed. The reactions are 

H2PO7 + Mg++ + NH^ + 6H20 = MgNH4P04 • 6H20 + 2H+, 

2MgNH4P04 • 6H20 = Mg2P207 + 2NH3 + 13H20. 

A solution of H2PO7 yielded 1.054 gm of Mg2P2C>7. What weight of NaH2PC>4 was 
present originally? 
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The answer comes immediately if we apply the principle that the number of phos¬ 
phorus atoms (or the number of moles of phosphorus) is conserved. Thus 

moles of P = moles of NaH2P04 = 2 X moles of Mg2P2C>7, 

1 054 
moles of Mg2P2O7 = ' = 0.004737. 

111. o 

Therefore, 

moles of NaH2P04 = 2 X 0.004737 = 0.009474, 

weight of NaH2P04 = 0.009474 X 119.9 = 1.136 gm. 

Regardless of the number of reactions which lead from reactant to product, 

the reacting weights of the reagents are related by the principle of atom con¬ 
servation. It is not even necessary to know the sequence of reactions, as we 

demonstrate in the next example. 

Example 1.3 A sample of K2CO3 weighing 27.6 gm was treated by a series of reagents 
so as to convert all of its carbon to K2Zn3[Fe(CN)e]2- How many grams of this 
product were obtained? 

Since all the carbon in the reactant is found in the product, the number of moles of 
carbon is conserved. Moreover, each mole of K2Zn3[Fe(CN)6]2 contains 2X6 = 12 
moles of carbon atoms, so we can write 

Thus 

moles of carbon = 12 X moles of K2Zn3[Fe(CN)e]2 

27.6 
= moles of K2CO3 = 

138 

moles of K2CO3 = 12 X moles of K2Zn3[Fe(CN)e]2, 

27.6 weight of K2Zn3[Fe(CN)e]2 

138 “ X 698 

weight of K2Zn3[Fe(CN)6]2 = 11.6 gm. 

The empirical formulas of compounds of hydrogen and carbon are found by 
combustion analysis, as we illustrate next. 

Example 1.4 One gram of a gaseous compound of carbon and hydrogen gives upon 
combustion 3.30 gm of carbon dioxide and 0.899 gm of water. What is the empirical 
formula of the compound? 

The empirical formula is the simplest set of whole numbers which expresses the 
relative numbers of atoms in the compound. The relative numbers of atoms are the 
same as the relative numbers of moles of each element, and hence we can proceed as 
follows: The formula of carbon dioxide is CO2, so the number of moles of carbon 
dioxide is equal to the number of moles of carbon in the sample of the compound. 
The formula of water is H2O; thus two times the number of moles of water is equal 
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to the number of moles of hydrogen atoms in the sample. The algebraic expressions 
of these facts are 

3 30 
moles of C = moles of CO2 = -7— = 0.0750, 

44.0 
0 899 

moles of H = 2 X moles of H2O = 2 X 7777 = 0 099, 
18.0 

atoms of C _ moles of C _ 0.075 _ 3 
atoms of H moles of H 0.099 4 

The empirical formula of the compound is C3H4. One molecule of the compound 
might have the formula C3H4 or CeHs or some higher multiple. The molecular weight 
of the compound must be found before its molecular formula can be determined. 

In a separate experiment, the density of a gaseous sample of the compound is 
found to be 1.78 gm/liter under conditions of standard temperature and pressure. 
The volume of one mole of any gas is, under these conditions, 22.4 liters, so we find 
that the molecular weight of the unknown is 

1.78 gm/liter X 22.4 liters/mole = 39.9 gm/mole. 

Since the molecular weight is 40, the molecular formula must be C3H4. This gas is 
methyl acetylene, usually written CH3CCH. 

Example 1.5 One volume of a gaseous compound of hydrogen, carbon, and nitrogen 
gave upon combustion 2 volumes of CO2, 3.5 volumes of H2O, and 0.5 volume of X2, 
all measured at the same temperature and pressure. What is the empirical formula of 
the compound? Can the molecular formula be found from these data? 

This problem requires a direct application of Avogadro’s principle: under the same 
conditions of temperature and pressure, equal volumes of gases contain the same 
number of molecules. Noting that each nitrogen molecule contains two nitrogen 
atoms, and each water molecule two hydrogen atoms, we find that the relative num¬ 
bers of carbon, hydrogen, and nitrogen atoms in the unknown are 

C: H : N = volume of CO2 : 2 X volume of H2O : 2 X volume of N2 = 2:7:1 

The empirical formula is C2H7N. This is also the molecular formula, since the data 
tell us that in one volume (or x moles) of compound, there are enough carbon atoms 
to make 2 volumes (or 2x moles) of CO2. Thus each mole of unknown contains two 
moles of carbon, and no more. The compound referred to is ethyl amine, more com¬ 
monly written CH3CH2NH2. 

Example 1.6 A carefully purified sample of potassium chlorate, KCIO3, weighing 
4.008 gm, was quantitatively decomposed to 2.438 gm of potassium chloride, KC1, 
and oxygen. The potassium chloride was dissolved in water and treated with a silver 
nitrate solution. The result was a precipitate of silver chloride, AgCl, weighing 
4.687 gm. Under further treatment the silver chloride was found to contain 3.531 gm 
of silver. What are the atomic weights of silver, chlorine, and potassium relative to 
O = 15.999* 
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This problem will require several steps, so it is advisable to plan our procedure. 
Examination of the equations 

KC103 = KC1 + §02, Cl- + Ag + = AgCl 

shows that if we knew how many moles of KC1 were produced, we would in turn know 
the number of moles of silver chloride and silver involved. Knowing the number of 
moles of silver and its weight, we can calculate its atomic weight. This is our first 
objective. Then, from the atomic weight of silver, the weight, and the number of 
moles of silver chloride, we can find the atomic weight of chlorine. Finally, the number 
of moles of potassium chloride, its weight, and the atomic weight of chlorine suffice 
to calculate the atomic weight of potassium. This whole plan is based on the expres¬ 
sion moles = weight/molecular weight, and the realization that two of these quantities 
are required to calculate the third. 

Let us put the plan into effect. Since oxygen is the only element whose atomic 
weight is known, we must use a relation involving it to find the number of moles of 
KC1. From the first chemical equation we see that 

moles of O2 = f X moles of KC1, 

_weight 02_ 
molecular weight of O2 

4.008 - 2.438 
31.998 

= 0.04907 = -X moles of KC1, 

moles of KC1 = 0.03271. 

By the second equation, 

Also 

moles of KC1 = moles Ag, 

3.531 
0.03271 = 

atomic weight of Ag 

atomic weight of Ag = 107.9. 

moles of KC1 = moles AgCl, 

4.687 
0.03271 = 

formula weight of AgCl 

formula weight of AgCl = 143.3 

The atomic weight of chlorine can now be found from the formula weight of silver 
chloride and the atomic weight of silver: 

Finally 
atomic weight of Cl = 143.3 — 107.9 = 

moles KC1 = 

formula weight of KC1 = 

atomic weight of K = 

2.438 

formula weight of KC1 

74.53, 

74.53 - 35.4 = 39.1. 

35.4. 

= 0.03271, 

This problem, though lengthy, required no new principles. The ability to 

proceed in an orderly fashion through an involved problem follows from a 
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thorough understanding of the relation between number of moles, weight, and 

molecular weight. 

A rather tricky type of problem, easily solved by the atom conservation 

principle, involves the reaction of a mixture of substances to give a single 

product. 

Example 1.7 A 1.000-gm mixture of cuprous oxide, CU2O, and cupric oxide, CuO, 

was quantitatively reduced to 0.839 gm of metallic copper. What was the weight of 
CuO in the original sample? 

The key to this problem is to make use of the fact that copper atoms are conserved. 

Letting the weight of CuO equal w, and the weight of CU2O equal 1.000 — w, we have 

moles of Cu in oxides = moles of metallic Cu, 

moles of CuO + 2 X moles of CU2O = moles of Cu, 

_»__ 2 x 1.000 — w 
formula weight of CuO formula weight of CU2O 

0.839 

atomic weight of Cu 
w = 0.55 gm of CuO. 

A very similar problem involves the reaction of a mixture of metals with 

hydrogen ion, as in the next example. 

Example 1.8 A mixture of aluminum and zinc weighing 1.67 gm was completely dis¬ 

solved in acid and evolved 1.69 liters of hydrogen, measured at 273°K and 1 atm 

pressure. What was the weight of aluminum in the original mixture? 

From the equations 

Zn+ 2H+ = Zn+++ H2, 

A1+ 3H+ = Al+3 + fH2, 

we see that from one mole of zinc we get one mole of hydrogen gas, while one mole of 

aluminum gives \ moles of hydrogen. Thus, for the moles of hydrogen formed we 

can write 

moles of Zn + f moles A1 = moles of H2. 

Then, if w equals the weight of Al, 

1.67 — w . 3 w 1.69 

65.4 r 2 27d) “ 22A’ 
w = 1.24 gm of Al. 

1.6 

In this chapter we have exposed the chemical basis for our belief in the atomic 

theory of matter, and shown how to use the relation between weight and 

number of atoms to do stoichiometric calculations. We have stressed the con¬ 

cept of the mole, for this is the fundamental unit used in dealing with all prop- 
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erties of collections of molecules. A thorough understanding of the mole 
concept is absolutely essential to the study of chemistry, and the stoichiometric 
calculations we have discussed, together with the problems at the end of this 
chapter, provide an immediate opportunity to test one’s understanding of this 
important idea. 

Apart from the factual and mathematical aspects of atomic weights and the 
atomic theory, there are a number of illustrations of important scientific prin¬ 
ciples in this chapter. The story of how the atomic weight scale was developed 
shows how scientific ideas are generated. Many experiments are done, and com¬ 
parison of the results allows formulation of empirical laws which have a validity 
limited by the accuracy of the experiments and the variety of situations in¬ 
vestigated. An attempt to find a unified explanation of a number of experi¬ 
mental laws leads to a theory. In the development of a theory there may be 
ideas advanced that are incorrect and which must be modified or removed as 
more experiments are done. It is at this stage that a dispassionate evaluation 
of existing experimental data and the execution of decisive experiments is most 
important. It is a rare event when the results of only one experiment are enough 
to bring the acceptance or rejection of a theory as a whole. Therefore, our 
firm acceptance of scientific ideas of great scope, such as the atomic theory, is 
generally based on the existence of an overwhelming collection of experimental 
results that individually do not prove, but are consistent with, the theory. We 
shall find further illustrations of these points in subsequent chapters. 
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PROBLEMS 

1.1 An oxide of antimony is found to contain 24.73% oxygen. What is its empirical 
formula? 

1.2 When 0.210 gm of a compound containing only hydrogen and carbon was burned, 
0.660 gm of CO2 was recovered. What is the empirical formula of the compound? 
A determination of the density of this hydrocarbon gave a value of 1.87 gm/liter at 
273.1°K and 1 atm. What is the molecular formula of the compound? 
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1.3 A sample of europium dichloride, EuCb, weighing 1.00 gm is treated with excess 

aqueous silver nitrate, and all the chloride is recovered as 1.29 gm of AgCl. What is the 

atomic weight of europium? 

1.4 A sample of an oxide of iron weighing 1.60 gm was heated in a stream of hydrogen 

gas until it was completely converted to 1.12 gm of metallic iron. What is the empirical 
formula of the iron oxide? 

1.5 When barium bromide, BaBr2, is heated in a stream of chlorine gas, it is completely 

converted to barium chloride, BaCb. From 1.50 gm of BaBr2 just 1.05 gm of BaCb 

is obtained. Calculate the atomic weight of barium from these data. 

1.6 A 0.578-gm sample of pure tin is treated with gaseous fluorine until the weight 

of the resulting compound is constant at a value of 0.944 gm. What is the empirical 

formula of the tin fluoride formed? Write an equation for its synthesis. 

1.7 A certain metal forms two chlorides which contain 85.2% and 65.8% of the metal. 

(a) Show that these compounds are consistent with the law of multiple proportions. 

(b) What are the simplest formulas of the compounds, and what is the corresponding 

atomic weight of the metal? (c) Considering the other possible formulas, what other 

atomic weights are possible? (d) Refer to the periodic table and determine the atomic 
weight of the metal. 

1.8 From the following isotopic masses and abundances calculate the atomic weight 
of magnesium. 

Isotope Abundance Mass 

24 78.60% 23.993 
25 10.11% 24.994 
26 11.29% 25.991 

1.9 A sample of a metal oxide weighing 7.380 gm is decomposed quantitatively to 

give 6.840 gm of the pure metal. The specific heat of the metal is found to be 

0.0332 cal/gm. Calculate the accurate atomic weight of the metal, and the empirical 

formula of the oxide. 

1.10 By measuring the density of a certain elemental gas at several pressures, the val¬ 

ue of 1.787 gm/liter was found for the ideal density at 1-atm pressure and 273.1°K. 

The ideal density of oxygen gas under the same conditions is 1.428 gm/liter. What is 

the molecular weight of the unknown gas? Consult the periodic table for “gaps” at 

appropriate fractions of this molecular weight, and construct an argument that this 

element does not exist as a diatomic or polyatomic molecule. Is this molecular weight 

an atomic weight? 

1.11 Equal weights of zinc metal and iodine are mixed together and the iodine is 

completely converted to Znl2. What fraction by weight of the original zinc remains 

unreacted? 

1.12 A 4.22-gm sample of a mixture of CaCl2 and NaCl was treated to precipitate 

all the calcium as CaC03, which was then heated and converted to pure CaO. The 

final weight of the CaO was 0.959 gm. What was the percentage by weight of CaCl2 

in the original mixture? 

1.13 An alloy of aluminum and copper was treated with aqueous HC1. The aluminum 

dissolved according to the reaction A1 3H+ —» Al+3 + §H2, but the copper re¬ 

mained as the pure metal. A 0.350-gm sample of the alloy gave 415 cc of H2 measured 

at 273.1°K and 1-atm pressure. What is the weight percentage of A1 in the alloy? 
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1.14 A sample of pure lead weighing 2.07 gm is dissolved in nitric acid to give a 

solution of lead nitrate. This solution is treated with hydrochloric acid, chlorine gas, 

and ammonium chloride. The result is a precipitate of ammonium hexachloroplumbate, 

(NH^PbCle- What is the maximum weight of this product that could be obtained 

from the lead sample? 

1.15 A 0.596-gm sample of a gaseous compound containing only boron and hydrogen 

occupies 484 cc at 273.1°K and 1-atm pressure. When the compound was ignited in 

excess oxygen all its hydrogen was recovered as 1.17 gm of H2O, and all the boron 

was present as B2O3. What is the empirical formula, the molecular formula, and the 

molecular weight of the boron-hydrogen compound? What weight of B2O3 was 

produced by the combustion? 

1.16 A sample of an unknown oxide of barium gave upon exhaustive heating 5.00 gm 

of pure BaO and 366 cc of oxygen gas measured at 273.1°K and 1-atm pressure. What 

is the empirical formula of the unknown oxide? What weight of oxide was present 

initially? 

1.17 A mixture of KBr and NaBr weighing 0.560 gm was treated with aqueous Ag + 

and all the bromide ion was recovered as 0.970 gm of pure AgBr. What was the 

fraction by weight of KBr in the original sample? 
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CHAPTER 2 

THE PROPERTIES 
OF GASES 

Our discussion in Chapter 1 showed how important the study of gases was to 
the development of the atomic theory. An understanding of gaseous behavior 
is a fundamental part of modern chemistry as well. According to Avogadro’s 
principle, measuring the volume of a gas is equivalent to counting the number 
of molecules in that volume, and the importance of this type of measurement 
cannot be overemphasized. Moreover, many industrially important elements 
and compounds are gases under the conditions of use. But quite aside from the 
historical or practical importance of gases, there is another reason for studying 
them. The business of the chemist is to relate the properties of matter in bulk 
to the properties of individual molecules. The kinetic theory of gases is a most 
satisfactory example of the successful explanation of macroscopic phenomena 
in terms of molecular behavior. By pursuing the mathematical consequence of 
the fact that a gas consists of a large number of particles that collide with the 
walls of a containing vessel, it is possible to derive Boyle’s law, and to gain a 
more thorough understanding of the concept of temperature. By trying to 
account for the failure of gases to obey Boyle’s law exactly, we can learn about 
the sizes of molecules and the forces which they exert on each other. Thus the 
study of this simplest state of matter can introduce us to some of the most 
universally useful concepts of physical science. 
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2.1 THE GAS LAWS 

FIG. 2.1 

In general, the volume of any material, solid, liquid, or gas, is determined by 

the temperature and the pressure to which it is subjected. A mathematical 
relationship exists between the volume of a given amount of material and the 

values of the pressure and temperature; this mathematical relation is called an 
equation of state and can be written symbolically as 

V = V(T, P, n). 

This equation is read: V is some function of temperature, pressure, and the 

number of moles of material. In the case of liquids or solids, equations of state 

may be algebraically very complicated, and may differ considerably in algebraic 
form from one substance to another. Gases are unique, however, in that the 

equations of state of all gases are very nearly the same. We shall see later that 

this simplification is due to the fact that in the gaseous state molecules are 
essentially independent of one another, and that consequently the detailed 

nature of individual molecules does not strongly affect the behavior of the gas 
as a whole. For the present, however, we will address ourselves to the problem 

of the determination and expression of the gaseous equation of state. 

Inevitably the determination of an equation of state for gases involves a 

measurement of pressure, or the force per unit area, which a gas exerts on the 
walls of the containing vessel. Commonly the pressure of gases is expressed in 

units of atmospheres or millimeters of mercury, rather than in units which are 
more obviously related to force and area. In order to establish the relation 

between the atmosphere or millimeter as pressure units and the more funda¬ 

mental idea of force per unit area, we need only examine how pressure is 

measured experimentally. 

r* 

A mercury barometer. The atmospheric pressure 
is proportional to the height h. 
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The force per unit area exerted by the earth’s atmosphere is commonly 

measured by the device called a barometer, shown in Fig. 2.1. The vertical 
tube containing mercury is completely evacuated of all gases, except for a very 
small amount of mercury vapor. The height of the column of mercury above 

the lower mercury surface is determined by the requirement that the force per 

unit area due to mercury in the column be equal to the force per unit area 
exerted by the surrounding atmosphere on the mercury surface. Under ordinary 

atmospheric conditions at sea level this height is in the neighborhood of 
760 millimeters (mm). Therefore, the arbitrary definition is made that one 

standard atmosphere corresponds to 760 mm of mercury, when the mercury 
is at 0°C. 

Let us now calculate what one atmosphere is when expressed in terms of 
force per unit area. Consider a barometer tube whose cross-sectional area is 

1 cm2. Then the force exerted by the mercury column on this area is equal to 
the mass of the mercury in the tube times the acceleration due to gravity. In 

turn, the mass of mercury in the tube is the volume of mercury times the density 

of mercury at 0°C. We have then 

force = mass X acceleration 

= density of Hg X height X area X acceleration 

= 13.59 gm/cm3 X 76.00 cm X 1.000 cm2 X 980.7 cm/sec2 

= 1.013 X 106 gm-cm/sec2 = 10.13 kgm m/sec2 

= 1.013 X 106 dynes = 10.13 newtons. 

This is the force exerted by a column of mercury 760 mm high and of 1-cm2 

cross sectional area. Therefore, it is also the force per unit area (one square 

centimeter) that corresponds to one atmosphere pressure. We have, then, that 

1 atm = 760.0 mm of mercury 

= 1.013 X 106 dynes/cm2 = 1.013 X 10° newtons/m2 

Increasingly, the awkward unit “mm Hg” is being replaced by its equivalent, 

the torr (after Torricelli, inventor of the barometer). Thus in practical laboratory 

work, pressure is most often measured and expressed in torr or millimeters of 

mercury, but for calculational purposes it is frequently convenient to use units 

of atmospheres. Recently, SI (System Internationale) units have come into 

frequent use, particularly in Europe. In this system, the unit of pressure is 

the newton per square meter, and one newton per square meter is called a Pascal 

(abr. Pa). Thus we see that 

1 atm = 1.013 X 105 N/m2 

= 1.013 X 105 Pa. 
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FIG. 2.2 

Boyle’s Law 

Although we shall not make extensive use of SI units in this book, it is important 

to become familiar with them, since they will be found with increasing frequency 

in the scientific literature as time passes. 

A U-tube employed in demonstrating Boyle’s law. 

The mathematical relation that exists between the pressure and volume of a 

fixed amount of gas at a fixed temperature was discovered by Robert Boyle in 

1662. Boyle trapped a quantity of air in the closed end of a U-tube, using 

mercury as the containing fluid, as shown in Fig. 2.2. In this type of experiment, 

the pressure that exists in the closed tube is equal to the pressure of the atmo¬ 

sphere plus the pressure exerted by the column of mercury of height h. By 

pouring mercury into the longer tube the pressure on the gas can be increased, 

and the corresponding decrease in the gas volume noted. Boyle discovered that 

the product of the pressure and the volume of a fixed amount of gas was of 

approximately constant value. He also noted that warming a gas increased its 

volume when the pressure was kept constant. However, he did not investigate 

this phenomenon further, possibly because the idea of temperature was not well 

defined at the time. Nevertheless, Boyle’s observation of the qualitative effect 

of warming a gas was important, because it showed that in order to make 

meaningful determinations of the relation between pressure and volume, the 

temperature of the surroundings had to be kept constant during the experiment. 

Very often in experimental investigations data are obtained as sets of numbers 

(such as simultaneous values of P and V) which depend on each other in some 

unknown way. A very useful and convenient technique for discovering the 

relationship between a series of simultaneous values of pressure and volume is 

to plot the data on a rectangular coordinate system having pressure and volume 

as coordinate axes. A smooth curve that passes through the experimentally 

determined points may then indicate the mathematical connection between the 
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two variables. Figure 2.3 shows some experimental data plotted in this manner. 

The curve generated by the data appears to be a rectangular hyperbola with the 
coordinate axes as asymptotes. Since the algebraic equation which corresponds 

to a hyperbola is known to have the form xy — constant, we can deduce that 
for a fixed amount of gas at a constant temperature, PV = constant, which is 
in fact Boyle’s law. Repeating the experiment at a series of different tempera¬ 

tures generates a family of hyperbolas, each characteristic of a particular value 

of the temperature. Since the temperature is a constant along each line, these 
curves are called isotherms. 

Pressure-volume isotherms for an ideal gas. FIG. 2.3 

Pressure of an ideal gas as a function fig. 2.4 

of reciprocal volume. 

Plotting the pressure as a function of the volume is often a useful way of 
representing the behavior of a gas, but it has the disadvantage that it is difficult 

to tell by using the eye how close to a perfect hyperbola each experimental 
curve is. Consequently, it is difficult to tell whether a gas obeys Boyle’s law 
exactly or just approximately. This problem can be solved by plotting pressure 

as a function of the reciprocal of the volume, as shown in Fig. 2.4. Since Boyle’s 

law can be written as 

P = 
hm,t 

y 
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where km,t is a constant whose value depends on temperature and the amount 

of gas, a gas that obeys Boyle’s law should give a straight line when pressure 

is plotted as a function of the reciprocal of the volume. Since deviations from 

a straight line are readily detected by eye, it is easy to tell how closely a gas 

follows Boyle’s law, by plotting the data in this manner. 

fig. 2.5 Pressure-volume product as a func 
tion of pressure for an ideal gas. 

Another even more useful way of treating such experimental data is to plot 

the product of pressure and volume as a function either of pressure or the recip¬ 

rocal of volume. Figure 2.5 shows that the result of this plot should be a straight 

line of zero slope for a gas that follows Boyle’s law exactly. The experimental 

data show that gases do in fact obey Boyle’s lawr quite closely over the range of 

pressures investigated. Any deviations are due to the forces which molecules 

exert on each other, and tend to vanish as the density of the gas becomes small. 

In the limit of very low pressure, all gases obey Boyle’s law exactly. 

The Law of Charles and Gay-Lussac 

When the dependence on temperature of the volume of a gas at fixed pressure 

is investigated experimentally it is found that the volume increases linearly 

with increasing temperature. This relation is known as the law of Charles and 

Gay-Lussac, and can be expressed algebraically as 

V = F0(l + at). 

Here V is the volume of a fixed amount of gas at constant pressure, F0 is the 

volume it occupies at the temperature of zero degrees on the Celsius scale, a is 

a constant that has the value of approximately 373 f°r all gases, and t is the 

temperature on the Celsius scale. This equation states that the volume of a gas 

increases linearly with its temperature. That this statement can be made as an 

experimental fact implies that we have some previous knowledge of how to 

measure temperature. 

Common experience provides us with a qualitative concept of temperature. 

To create a quantitative temperature scale wre must select some easily measur¬ 

able property of matter that depends on what we recognize as “hotness,” and 

define temperature in terms of the value of this property. The most familiar 

thermometric property is the length of the column of mercury that extends 

into a capillary tube from an otherwise closed bulb. The position of the mercury 

meniscus can be marked when the bulb of this thermometer is immersed in an 
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ice-water mixture, and when it is surrounded by the vapor of boiling water at 

one atmosphere pressure. These two positions can be arbitrarily defined as 

0- and 100-degree points respectively. The distance between these two marks 

can then be divided by 99 equally spaced lines and a working temperature 

scale created. 

The division of the scale into equal units is very significant, for by so doing 

we say that temperature is something that increases linearly with the length of 

the mercury column. The same procedure could be followed using some other 

working liquid, such as alcohol, to make a second thermometer. If these two 

different thermometers were both placed in the same water-ice bath, they would 

both read zero degrees. If both were placed in the vapor of boiling water, they 

would read 100 degrees. However, if they were both placed in the same room 

where the mercury thermometer read exactly 25 degrees, the alcohol thermom¬ 

eter would indicate a temperature slightly different from 25 degrees. This 

behavior would, in general, be repeated at any other temperature on the scale 

except for the calibrating points of 0 and 100 degrees, since in order for the 

two thermometers to read the same at all temperatures, the equations of state 

of mercury and alcohol would have to be exactly the same. Due to the intrinsic 

differences in the molecular structure of the two liquids, these or any other pair 

of liquids do not expand by exactly the same amount for a given change in 

temperature. Consequently, if we wish to use a liquid to define our temperature 

scale, we must be careful to specify which liquid is being used. 

For gases, the temperature dependence of volume is considerably simpler 

than for liquids. Even without a temperature scale it is possible to determine 

that the volume of any gas at the temperature of boiling water is 1.366 times 

its volume at the temperature of an ice-water mixture. The important fact 

here is that the proportionality constant is the same for all gases. A similar 

measurement can be carried out in which the ratio of the volume of a gas at 

the boiling point of water to its volume at the boiling point of ether is measured. 

In this case the volume ratio is 1.295 for all gases. The fact that all gases behave 

the same when subjected to a given change in temperature suggests that the 

properties of gases should be used to define a temperature scale. That is just 

what is done. The equation previously given as expressing the law of Charles 

and Gay-Lussac, V = Fo(l + at), can be rewritten in the following way: 

The second equation can be interpreted as saying that there is such a thing as 

the temperature, t, which is a quantity that increases linearly with the volume 

of a gas, by definition. That is, the “law” of Charles and Gay-Lussac really is 

not a law, but is actually a definition of temperature. 

Actually, not all gases behave in exactly the same way when their temperature 

is changed, but the differences diminish as the pressure is lowered, and are 

generally so slight as to be negligible in most instances. While gas thermometers 
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Table 2.1 Comparison of thermometers 

Constant- 
volume 

hydrogen 
thermometer, 

t(P) 

Constant- 
volume 

air 
thermometer, 

t(P) 

Platinum 
resistance 

thermometer, 

m 
Thermocouple, 

f(emf) 

Mercury 
thermometer, 

t(0 

0 0 0 0 0 
20 20.008 20.240 20.150 20.091 
40 40.001 40.360 40.297 40.111 
60 59.990 60.360 60.293 60.086 
80 79.987 80.240 80.147 80.041 

100 100 100 100 100 

*After M. W. Zemansky, Heat and Thermodynamics. New York: McGraw-Hill, 1951. 

can be used to define a temperature scale, other devices which are more con¬ 

venient to use are employed in practical temperature measurements. The 

resistance of a platinum wire under a constant tension, and the voltage produced 

by a platinum-rhodium thermocouple are useful thermometric properties. In 

Table 2.1 these thermometers are compared with two gas thermometers and a 

mercury thermometer. The hydrogen gas thermometer is considered to define 

the scale, and the readings each of the thermometers would show if immersed 

in various temperature baths are given. These are the readings that would 

result in each case from using a scale obtained by dividing the change of the 

property being measured into 100 equal units between the freezing point and 

boiling point of water. The fact that all the thermometers do not read the same 

as the hydrogen gas thermometer merely indicates that resistance, voltage, and 

liquid density do not change in a way which is strictly linearly related to 

temperature as defined by the hydrogen gas scale. 

The Absolute Temperature Scale 

The relation between temperature and gaseous volume can be simplified by 

defining a new temperature scale. Starting from Charles’ law we can write 

V=V0(l + cd) = To 
l/a 

For the ratio Vi/V2 of the volume of gas at two different temperatures 11 and 

<2 we get 

Vi _ l/a + ti _ 

V 2 1/a + t2 

Since by direct experiment it is found that 1/a = 273.15 when t is expressed 

in Celsius degrees, 

V\ 273.15 + h 
V2 ~ 273.15 + t2 ' 
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The form of this equation suggests that it would be very convenient to define 

a new temperature scale by the equation 

T = 273.15 + t. (2.1) 

The temperature T is called absolute temperature or the temperature on the 

kelvin scale, and is denoted by °K. Using the kelvin scale, the relation between 

the temperature and volume for a fixed amount of gas at constant pressure 

assumes the very simple form 

Vi T, 
V2 T2 

or 

V 
~ = constant. (2.2) 

The implication of this last statement is that the volume of a gas decreases 

as T, the absolute temperature, decreases and would become zero when T — 0. 

This suggests that T = 0°K or, by Eq. (2.1), t = —273.15°C is the lowest pos¬ 

sible temperature, since any lower temperature would correspond to a negative 

volume of gas. Actually at very low temperatures Eq. (2.2) cannot be tested 

experimentally, since all gases condense to liquids as the temperature approaches 

zero on the kelvin scale. Nevertheless, much more detailed arguments show 

that —273.15°C or 0°K is the lowest conceivable temperature, and that in 

practical experiments this lowest temperature cannot be reached, but only 

approached very closely. The lowest temperature which has been reached is 

generally acknowledged to be 0.0014°K, although 0.0001°K may have been 

attained in other less well-controlled experiments. 

The ideal Gas Equation 

Experimental measurements have shown that at constant temperature, PV is 

a constant, and at constant pressure, V is proportional to T. We now wish to 

combine these relationships into one equation which expresses the behavior of 

gases. According to Boyle’s law 

PV = C\T, n), 

where C'{T, ri) is a constant that depends on temperature and the number of 

moles of gas. From Charles’ law we know that at constant pressure, the volume 

of a fixed amount of gas is directly proportional to the absolute temperature. 

Therefore, the dependence of C'(T, n) on temperature must be 

C'(T, n) = C(ri)T, 

where C(n) is a parameter that depends only on the number of moles of gas n. 

This must be true, since we can now write 

PV = C{n)T, (2.3) 
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which is consistent with both the laws of Boyle and of Charles. By a slight 

rearrangement of Eq. (2.3), we can write 

A gas that obeys this equation of state, which incorporates the laws of Boyle 

and of Charles and Gay-Lussac, is called an ideal gas. This result may also 

be written 

PjY\ P2V2 
Tl T2 

(2.4) 

Equation (2.4) is a symmetric form of the gas laws that is easy to remember. 

It can be used to calculate the volume V2 of a gas under the arbitrary conditions 

P2 and T2 from a knowledge of its volume V\ at pressure Pi and temperature T 

Example 2.1 A certain sample of gas has a volume of 0.452 liter measured at 87°C 

and 0.620 atm. What is its volume at 1 atm and 0°C? 

Letting Vi = 0.452 liter, Pi = 0.62 atm, T\ = 273+ 87 = 360°K, P2 = 1 atm 

and T2 = 273°K, we find from Eq. (2.4) 

7'-7lX£xS-MM><Ix 
0.620 

1.00 

- 0.213 liter. 

Rather than remember or refer to Eq. (2.4) it is often safer and simpler to proceed 

by an intuitive method. We know that since the final temperature is less than the 

initial temperature, we must multiply Vi by a ratio of temperatures less than unity 

to obtain V2: 

V2 « TiX 
273 

360 

Also, the final pressure is higher than the initial pressure. This must act to decrease 

the final volume, and we must multiply Vi by a ratio of pressures less than unity to 

find V2- Thus 

273 
f2 = f,x-x 

0.620 

1.00 ’ 

wrhich is exactly the expression obtained by a mechanical use of Eq. (2.4). 

Earlier we remarked that measuring the volume of a gas at a known pres¬ 

sure and temperature is equivalent to counting molecules. Under conditions 

of constant temperature and pressure, the volume is proportional to the num¬ 

ber of moles of gas. Consequently, comparison of the volume of any sample of 

gas with the volume occupied by one mole under the same conditions tells us 

the number of moles or molecules in the sample. As we noted in Chapter 1, 
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it is found experimentally that one mole of any ideal gas occupies 22.414 liters, 

measured at 1-atm pressure and 273.15°K. This volume is called the standard 

molar volume, and 273.15°Iv and 1-atm pressure are called standard tempera¬ 

ture and pressure conditions (abbreviated STP). Therefore, to calculate the 

number of moles of gas in an arbitrary sample we write 

, e e volume of gas 
number of moles of gas = —^---r- 

volume of one mole 

F(STP) 

22.4 ’ 

where V(STP) is the volume in liters that the gas sample would occupy under 

standard pressure and temperature conditions. This volume, F(STP) can be 

calculated from the volume measured under any conditions of temperature and 

pressure by using Eq. (2.4). 

There is a somewhat more convenient method for calculating the number of 

moles of a gas in a sample having the volume F at the arbitrary pressure P 

and temperature T. By Eq. (2.3) 

PV 
= C(n), 

where C[n) is a constant that depends only on the amount of gas in the sample. 

We have already remarked that at constant pressure and temperature, volume 

is proportional to the number of moles of gas. Therefore, we can rewrite C{n) 

in terms of a new constant R and the number of moles of gas n: 

C(n) = nR. 

Consequently 

PV = nRT. (2.5) 

The constant R is known as the universal gas constant, and is independent 

of pressure, temperature, or the number of moles in the sample. If the numerical 

value of R were known, measurements of P, V, and T could be used to cal¬ 

culate n, the number of moles of gas in any sample. 

We can evaluate R from information already available to us. Since one 

mole of gas occupies a volume of 22.41 liters at 1-atm pressure and 273.15°K, 

we can write 

(1 atm) (22.414 liters) liter-atm 

(1 mole) (273.15 deg) U-U8^U0 mole-deg ‘ 

Note that the numerical value of R depends on the units used to measure 

pressure, volume, and temperature. The expression PV = nRT is obeyed by 
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all gases in the limit of low densities and high temperatures—“ideal” conditions 

under which the forces between molecules are of minimum importance. Con¬ 

sequently, Eq. (2.5) is known as the perfect gas law, or the ideal gas equation 

of state. 

Example 2.2 Calculate the number of moles in a sample of an ideal gas whose volume 

is 0.452 liter at 87°C and 0.620 atm. 

In Eq. (2.5) we set P = 0.620 atm, V = 0.452 liter, and T = 360°K: 

PV _ (0.620) (0.452) 

n ~ RT~ (0.0821) (360) 

= 0.00948 mole. 

In Example 2.1 we found that the volume of this same sample of gas under conditions 

of standard temperature and pressure was 0.213 liter. Therefore we can also compute 

the number of moles by 

7(STP) _ 0.213 

22.4 ~ 22.4 
0.0095 mole. 

The use of the ideal gas equation of state is an alternative to the procedure of finding 

the gaseous volume under standard conditions and dividing by the standard volume 

of one mole. 

Dalton’s Law 

Suppose a mixture of two ideal gases, A and B, is contained in a volume V at 

a temperature T. Then, since each gas is ideal, we can write 

Pa = nA 
RT 

T' P B = 
RT 

V ' 

That is, in the mixture each gas exerts a pressure that is the same as it would 

exert if it were present alone, and this pressure is proportional to the number 

of moles of the gas present. The quantities PA and Pb are called the partial 

pressures of A and B respectively. According to Dalton’s law of partial pres¬ 

sures, the total pressure, Pt, exerted on the walls of the vessel is the sum of the 

partial pressures of the two gases: 

Pt = Pa + Pb = (nA + nB) (jP) • 

The expression can be generalized so as to apply to a mixture of any number 

of gases. The result is 

Pt = Z Pi = 
RT Z »* (2.6) 
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where i is an index that identifies each component in the mixture and the 

symbol Hi stands for the operation of adding all the indexed quantities to¬ 

gether. Another useful expression of the law of partial pressures is obtained 

by writing 

> 

Pa = nA 
RT 

V ’ 

Pt 

Pa 

Pt 

RT sr 

T~ ? ni’ 

nA 

Hi ni ’ 

Pa = Pt 
(2.7) 

The quantity nA/Hi^i is called the mole fraction of component A, and Eq. 

(2.7) says that the partial pressure of any component, such as component A, 

is the total pressure of the mixture multiplied by nA/HinU the fraction of the 

total moles which are component A. 

Use of the Gas Laws 

It is essential for every chemist to have a thorough understanding of the gas 

laws and to be able to apply them to a variety of problems. The following 

examples are chosen to illustrate the ways in which the gas laws are used in 

chemical practice. 

Example 2.3 An ideal gas at 1-atm pressure was contained in a bulb of unknown 

volume V. A stopcock was opened which allowed the gas to expand into a previously 

evacuated bulb whose volume was known to be exactly 0.500 liter. When equilibrium 

between the bulbs had been established, it was noted that the temperature had not 

changed, and that the gas pressure was 530 mm. What is the unknown volume, V, 
of the first bulb? 

Since the gas is ideal and the temperature constant, we can use Boyle’s law: 

PiV i = P2V2, 

760IT = 530(0.5 + Vi), 

Vi = 1.15 liter. 

The ideal gas equation can be used to help calculate molecular weights from 

gas density measurements, which we illustrate next. 

Example 2.4 It is found that 0.896 gm of a gaseous compound containing only 

nitrogen and oxygen occupies 524 cc at a pressure of 730 mm and a temperature of 

28.0°C. What is the molecular weight and molecular formula of the gas? 

The molecular weight can always be calculated from a knowledge of the number 

of moles which correspond to a given weight of material. In this problem, the number 
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of moles of the gas can be found by using the ideal gas equation of state: 

PV (T. 3 Q-') (Jl2£_) 
1 v _ v7 6 0/ vl OOOl 

RT (0.0821)(301) 
0.0204 mole. 

Since the units of the gas constant are liter-atmospheres per mole-degree, care has 

been taken to express the measured pressure, volume, and temperature in units of 

atmospheres, liters, and degrees kelvin, respectively. The molecular weight of the gas 

can now be found to be 

0.896 

0.0204 
43.9 gm/mole. 

The only combination of the atomic weights of nitrogen and oxygen which adds to 

44 is 2 X 14 + 16, which means the molecular formula of the gas is N2O. 

The following is a simple illustration of the use of Dalton’s law of partial 

pressures. 

Example 2.5 The valve between a 5-liter tank in which the gas pressure is 9 atm 

and a 10-liter tank containing gas at 6 atm is opened, and pressure equilibration 

ensues at a constant temperature. What is the final pressure in the two tanks? 

Let us imagine the gases in the two tanks to be distinguishable, and call them 

components a and b. Then, when the connecting valve is opened, each expands to 

fill a total volume of 15 liters. The partial pressures of the two components after the 

expansion are 

n 5X9 „ A „ 10 X 6 „ 
Pa = -■ ■■ = 3 atm, Pb = ——— = 4 atm. 

15 15 

According to the law of partial pressures, the total pressure is 

P — Pa + Pb — S + 4 = 7 atm. 

Our final example combines the use of Dalton’s law and the ideal gas equation 

of state. 

Example 2.6 A sample of PCI5 weighing 2.69 gm was placed in a 1.00-liter flask and 

completely vaporized at a temperature of 250°C. The pressure observed at this 

temperature was 1.00 atm. The possibility exists that some of the PCI5 may have 

dissociated according to the equation 

PCls(g) = PCl3(g) + Cl2(g). 

What are the partial pressures of PCI5, PCI3, and Cl2 under these experimental 

conditions? 

The solution to this problem involves several steps. In order to decide whether 

the PCI5 has dissociated at all, let us first calculate the pressure which would have 

been observed if no PCI5 had dissociated. This can be calculated from the number 

46 THE PROPERTIES OF GASES 2.1 



of moles of PCI5 used, together with the volume and temperature of the flask. Since 

the molecular weight of PCI5 is 208, the number of moles of PCI5 initially in the 
flask is 

n 
2.69 

208 
0.0129. 

The pressure corresponding to this number of moles would be 

P = 
nRT 

V 

(0.0129) (0.082) (523) 

1 
0.553 atm. 

Since the observed pressure is higher than this, some dissociation of PCI5 must have 
occurred. 

Using the law of partial pressures we can write 

Ppci5 PPCI3 T- Pci2 = Pt — 1-00 atm. 

We now notice that 

Pci2 = Ppci3, Ppci5 = 0.553 — P ci2, 

since one mole of PCI3 and one mole of CI2 are produced every time one mole of PCI5 

dissociates. Therefore we can write Dalton’s law as 

and 

0.553 - PCi2 + Pci2 + Pci2 = 1.00, 

Pci2 = 0.447 atm, 

Ppci3 = 0.447 atm, Ppci5 = 0.106 atm. 

2.2 THE KINETIC THEORY OF GASES 

In the introduction to this chapter we stated that one of the occupations of a 

chemist is to relate the properties of bulk matter to the properties of individual 

atoms. In this section we shall see that simple assumptions about the structure 

and behavior of atoms in the gas phase lead to a molecular theory of gases that 

is consistent with several observed macroscopic properties. 

In order to develop a molecular theory of gases we must first assume that we 

can represent a gas by a simple “model. ” A model is some imaginary construct 

or picture which incorporates only those features that are thought to be impor¬ 

tant in determining the behavior of the real physical system. These features 

are often selected intuitively, or sometimes on the basis of mathematical con¬ 

venience. The validity of any model can be determined only by comparing 

predictions based on it with actual experimental facts. 

A most important feature of our model is that the gaseous particles, whether 

atoms or molecules, behave like point centers of mass, which most of the time 

exert no force on one another. This assumption is suggested by measurements 

of the densities of solids, which show that the actual volume displaced by a 
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single molecule is only about 10-23 cc, while for a gas at 1-atrn pressure, the 

volume per molecule is (22.4 X 103)/(6 X 1023) = 4 X 10-20 cc. Since the 
actual volume of a molecule is so much smaller than the volume per molecule 
in the gaseous state, we can justifiably assume that molecules are point particles 

that behave independently except for brief moments when they collide with 

each other. Furthermore, since gas molecules exert force on each other only 
during the brief instants when they collide, all the obvious macroscopic prop¬ 

erties of a gas must be consequences primarily of the independent motion of the 

molecule. This is the reason that the idea we are about to develop is called 
the kinetic theory of gases. 

Derivation of Boyle’s Law 

In the following pages we shall present three derivations of Boyle’s law. The 
first derivation is very straightforward, and gives the correct result, but is 

perhaps unconvincing because of some obvious oversimplifications. The second 
derivation is similar to the first, but avoids a major simplification, and is there¬ 

fore more elaborate. The third derivation employs a totally different point of 

view, avoids all objectionable oversimplifications, and is, therefore, much more 
convincing. It has the drawback that it is less pictorial and mechanical than 

the other derivations, but in addition to its rigor, it has the advantage that it 
can be extended to deal with nonideal gases. The purpose of presenting three 

derivations of Boyle’s law is to demonstrate that it is the methods and thought 
processes which are employed, as well as the final result of a derivation, that are 
useful and revealing. 

The imaginary cylinder of base area A and 
altitude ct which contains the molecules 
which will collide with A in time t. 

FIG. 2.6 

Consider N molecules, all of the same mass m, contained in a cubical vessel 
of volume V. We want to compute the pressure, or force per unit area, on the 

walls due to molecular impacts. To do this, we first make a major assumption: 

all molecules in the vessel move along the three cartesian coordinates perpen¬ 
dicular to the walls of the box and have the same speed c. Now we center our 
attention on an imaginary cylinder which extends perpendicularly from one of 

the walls, as shown in Fig. 2.6. The base of this cylinder has the arbitrary 

area A. We choose the altitude to be ct, where c is the molecular speed, and t 
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is an arbitrary but short length of time. The cylinder has the following impor¬ 

tant property: it contains all the molecules which will strike the wall in a time t, 
since the molecules located at the top of the cylinder and moving toward the 
wall will just travel the distance ct in time t. Those closer to the wall will reach 
it in less time. 

The force experienced by a molecule in a wall collision is given by Newton’s 
second law, 

/ = ma, 

where a is the acceleration experienced by the molecule. Since acceleration is 

defined as the change in velocity per unit time, we can use Newton’s second 
law in the form 

/ = ma, 

, _ Ac A (me) 
/= mAi = ~KT 

force = change in momentum per unit time. 

Rather than calculate A(mc)/At, the change in momentum per unit time, we 

shall compute the change in momentum of the molecule per collision and mul¬ 
tiply this times the number of wall collisions per unit time. That Is, 

force = change in momentum per impact X impacts per unit time 

The change in momentum that occurs in one impact can be obtained by 

subtracting the momentum a molecule has after a wall collision from its momen¬ 
tum before the collision. Initially a molecule traveling toward a wall has 
momentum me; after the collision its velocity Is assumed to be exactly reversed 

in direction but unchanged in magnitude. The final momentum is therefore 
— me, and the change in momentum, the final value minus the initial value, is 

A (me) = —me — me = —2 me. 

This is the change in momentum of the molecule, and the change in momentum 

imparted to the wall is the negative of this, or 2me, since momentum is con¬ 

served in any collision. 
The number of collisions with the area A in time t can now be calculated 

very simply. The volume of the cylinder is Act, and since the number of mole¬ 
cules per unit volume is N/V, the total number of molecules in the collision 

cylinder Is KAct/V. Of these, however, only one-sixth are moving toward the 
wall since only one-third move along any one of the three coordinate axes, and 

only one-half of these move in the correct direction. Accordingly, the number 

of molecules hitting A per unit time is 

1 *V Act 1 NAc 

6 V ~T ~ 6 V 
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Thus for the force on A we get 

f = 2 me X 
1 NAc 

6 V 

1 N Amc2 

3 V~ 

The pressure is the force per unit area f/A, so 

/ 1 Nmc2 

1 = A - 3 V 
or PV = %Nmc2 = %N(mc2 /2). 

We can patch up our incorrect assumption that all molecules have the same 

speed c by replacing c2 in the above expression by the average value c2. Thus 

we get 

PV = %N(m?/ 2). (2.8) 

This looks very much like Boyle’s law. In fact, if it is true that \mc2, the aver¬ 

age kinetic energy of gas molecules, is constant at constant temperature, then 

Eq. (2.8) does express Boyle’s law exactly: the product of the pressure and the 

volume for an ideal gas is a constant which depends on the number of molecules 

in the sample. 

The foregoing derivation actually does give the correct result, but the 

assumption that all molecules move only parallel to the coordinate axes or 

perpendicular to the walls is not correct and tends to shake our confidence in 

the result. Fortunately this assumption can be eliminated, and doing so gives 

us the opportunity to use calculus in the derivation. 

FIG. 2.7 An oblique collision cylinder of slant height ct 
and base area A. All molecules in it moving 
toward the wall with directions specified by 6 
and 0 will collide with the wall during the time f. 

Consider the cylinder shown in Fig. 2.7. The area of its base is A, and its 

slant height is ct, where c is the molecular speed, and t is a short arbitrary 

time. The axis of the cylinder is located by the angle 6 from the direction per¬ 

pendicular to the wall, and the angle </>. Molecules in it that are moving parallel 

to its axis with speed c have a component of velocity perpendicular to the wall 

of c cos 0, and upon striking the wall acquire a new perpendicular component 

—c cos 0. The momentum imparted to the wall in one such collision is therefore 

2me cos 0. 
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Now we must find the number of molecules in the cylinder which move 

parallel to its axis. This is simply the volume of the cylinder Act cos 6, times 

the number of molecules per unit volume N/V, times the fraction of molecules 

moving in the direction specified by the small range of angles d, d + dd, and 

<t>, 4> + d<{>. This fraction is 

d<t> sin d dd 

47r 

which is found by dividing r~ sin 6 dd d<J>, the area on the surface of a sphere of 

radius r corresponding to the differential angles d<p and dd, by the total area of 

the sphere 4tv2. Consequently, the momentum change per unit area and time 

(that is, the pressure) due to the molecules in this cylinder is 

or 

(Act cos d) 
/d4> sin d dd\ 

V ) 

Nmc2 

2vrV 
cos2 d sin d dd d<t>. 

To get the total pressure due to all possible orientations of the cylinder, we 

must add (by integration) the values of the trigonometric terms for all allowed 

values of d and </>. The angle d can range from 0 to 7t/2 before the imaginary 

cylinder hits the wall, whereas <t> can run from 0 to 27t. We must evaluate 

/ d<j> cos2 d sin d dd. 
27rV Jo Jo 

The integral over </> simply gives 27t. The integral over d can be evaluated by 

noting that d(cos d) = —sin d dd, so if we let x = cos d, we get 

-x/2 

cos2 d sin d dd — 
r° 3 

I x2 dx — — -- 
1 
3 

Our expression for the total pressure is then 

Nmc2 
P 

2irV (2ir)(i) 

or, rearranging and replacing c2 by c2, we get 

PV = 
2 Nmc2 

3 2 

which is the result obtained by the more elementary method. 

We can use the technique just employed to calculate the rate at which 

molecules strike a unit area of a wall from all directions. The contribution from 
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a cylinder with orientation 4>, 6 is the volume of the cylinder Act cos d, multiplied 

by the number of molecules per unit volume N/V and the fraction moving 

along 6, 4> toward the wall, sin 6 eld d<f>/4ir, divided by the time t and area A: 

if - •) (£) ' 
To get the total rate at which molecules hit a unit area of the wall, we integrate 

over allowed angles: 

wall collision rate 
Nc 

47tV 

• 2t fir 12 

d<f> cos 6 sin d dd 

Nc 

47' 
(2.9) 

We can replace c by the average speed c, and by so doing obtain an exact expres¬ 

sion for the wall collision rate. Note that the elementary method first employed 

to derive Boyle’s law would give Nc/67 for the wall collision rate, which is too 

small. Its success in the Boyle’s law derivation came from compensating errors. 

We will now derive the equation of state for a gas by a third, much more 

rigorous, but somewhat simpler method. This last technique, which involves 

use of the virial theorem, exposes most clearly the minimum necessary assump¬ 

tions involved in deriving Boyle’s law, and has the very important feature that 

it provides a basis for rigorously treating nonideal gases. Before we derive the 

equation of state, we must prove the virial theorem. 

Consider Sx, the product of the x-component of momentum px times the 

coordinate x: 
Sx - xpx. 

The derivative with respect to time of Sx is 

dSx 

dt 

dx 

Ttp‘ + Z (2.10) 

Now we ask for the average value of dSx/dt over a long time period r. This can 

be obtained by adding up all the values of dSx/dt during this time, and dividing 

by r. Since the values of dSx/dt can be considered continuous, we can perform 

the addition (and the averaging) by integration. The average we want is 

sx(t) - SM 

T 

For mechanical systems in which the motion of the particles is confined, the 

quantity Sx has some finite upper limit. For a gaseous molecule confined to a 
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finite volume, the coordinates have obvious upper limits set by the vessel walls. 

Also, the momentum has a finite upper limit set by the finite total kinetic 

energy. Consequently the quantity Sx(t) — Sx(0) must also be finite and, in 

fact, may be quite small. Since the period of time over which the averaging is 

performed can be made arbitrarily long, the quantity [Sx(t) — £*(0)]/t can be 

made to vanish. Thus the long time average of dSx/dt vanishes, and from 

Eq. (2.10) we get 

Now since, by definition, 

vx — dx/dt, px = mvx, 

and the force Fx is dpx/dt, we can substitute to get 

(■mvx) = —(xFx). 

This argument has been carried out for the x-component of one particle, and is 

the same for all three components and all other particles in a gas. Thus we can 

add the terms for the other components and N particles to get 

(J2 (mvx + mi'l + mvl)^ — — (J2 (xFx + yFv + zFz)^>, 

where Xa' stands for the operation of adding up the quantities for the N par¬ 

ticles. The left-hand side is just twice the average kinetic energy of the collection 

of particles, so we have 

(KE) = 0vFx + yFy + »fS) • (2.11) 

The left-hand side is the average kinetic energy of all the particles, and the 

right-hand side is called the virial. Equation (2.11) is a statement of the 

virial theorem. 

Now that we have the virial theorem, it is a simple matter to derive the 

equation of state for an ideal gas. In such a system the only forces on the 

molecules are those due to the walls of the container. For the cubical box shown 

in Fig. 2.8 we must evaluate the product of the force and coordinate for each of 

the six faces. Taking the quantity xFx as an example, we see that it vanishes 

for all faces except those perpendicular to the x-axis, since a wall parallel to the 

x-axis cannot exert a net force in the x-direction if the gas is at rest. The con¬ 

tribution to the virial of the wall at x = 0 is zero, while the wall at x = L 
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FIG. 2.8 A cubical gas container with faces at x = 0, L, 
y = 0, L, and z = 0, L. y 

z 

X 

contributes LFX = —L(L2P), where P is the gas pressure. A similar argument 

holds for the other walls, with the result that 

(KE) = —%L{FX + Fy + F„) = \ (L2P + L2P + L2P) = fPL3 = %PV. 

Therefore we get 

PV = S(KE> = iN ■ 

which is exactly the result obtained earlier. Note that the important assump¬ 

tion made in this derivation is that the only forces that contribute to the virial 

are those that the molecules exert on the walls. This appears then to be the 

necessary condition for a gas to behave exactly according to Boyle’s law: the 

forces between the molecules must be negligible. Since molecules always exert 

forces on each other when they are close, Boyle’s law is obeyed exactly only in 

the limit of zero pressure. 

Temperature, Energy, and the Gas Constant 

Our theory cannot provide a way to evaluate the constant \mc2\ this must be 

done by comparing the theory to the results of some experiment. To see how 

this is accomplished, let us return to Eq. (2.8) and write the number of molecules 

N as the product of Avogadro’s number N0 and n, the number of moles of gas 

in the sample: 

N = nN0, 

PV = m No Hfb 

But by experiment we know that PV = nRT, and therefore 

RT = %N o^- 
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Now the quantity mc2/2 is the average translational kinetic energy of a single 
molecule, so N0(mc2/2) is the total kinetic energy of one mole of gas. We have 
the remarkably simple result that 

No 
me2 
~2~ 

3 
2 

RT, 

translational kinetic energy of a mole of gas = \RT. (2.12) 

From this we see that temperature is a parameter related to the total kinetic 
energy of translation of the gas particle. If we divide both sides of Eq. (2.12) 
by Avogadro’s number, we get 

me2 _ 3 ft „ 3 
~2~ ~ 2 W0 1 ~ 2 

(2.13) 

where k = R/N0, the gas constant per molecule, is called Boltzmann’s constant. 
This equation tells us that temperature is a measure of the average kinetic 
energy of a single molecule. 

According to Eq. (2.12) the quantity nRT and consequently PV must have 
the units of energy. We have been expressing both of these factors in units of 
liter-atmospheres, which is an uncommon and perhaps unrecognizable energy 
unit. To assure ourselves that pressure times volume indeed has the units of 
energy, we need only write 

pressure X volume = (force/area) (area X length) 

= force X length. 

Since work or energy is defined as the product of force and distance, we see 
that PV actually does have the units of energy. Let us calculate the value of 
1 liter-atm of energy in more common units. Since 1 atm is 1.013 X 10° dynes/ 
cm2, and 1 liter is 103 cc, 

1 liter-atm = (1.013 X 106 dynes/cm2) X 103 cm3 

= 1.013 X 109 dyne-cm 

= 1.013 X 109 ergs. 

Noting that 1 joule = 107 ergs, we find that 1 liter-atm is equal to 1.013 X 
102 joules, or to 24.4 cal. We can use these conversion factors to calculate the 
value of R in more familiar energy units. The value of R in ergs per mole- 
degree is 

0.08206 x 1.013 X 103 = 8.313 X 10' -5®- . 
mole-deg liter-atm mole-deg 

Other values for R in different units are given in Table 2.2. 
Now we are in a position to evaluate Boltzmann’s constant k, and to cal¬ 

culate the average speed of gaseous molecules. We know that the value of the 
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Table 2.2 The gas constant R 

0.08206 liter-atm/mole-deg 
1.987 cal/mole-deg 
8.3J.3 joules/mole-deg 
8.313 X 107 ergs/mole-deg 

gas constant R is 8.313 X 107 ergs/deg-mole, so for k we find 

C qio y 1 o7 

k — —-— = 1.380 X 10“16 ergs/molecule-deg. 
6.022 X 1023 

We have chosen to express Boltzmann’s constant in cgs units so as to be able 

to compute molecular speeds in cm/sec. Let us calculate Vc^ for a nitrogen 

molecule at room temperature. We write 

±mc2 = %kT, 

\/p = y/SkT/m 

3 X 1.38 X 10“16 X 298\1/2 
4.65 X 10~23 

= 5.1 X 104 cm/sec. 

y 
(2.14) 

The quantity a/c2 is called the root-mean-square speed of a molecule, crm8, 

and is not the same as the average speed c. The difference between the two, 
however, is so small that for most purposes they can be equated to each other. 

Equation (2.14) shows that the root-mean-square speed depends on the mass 

of the molecule, and repetition of our calculation gives the root-mean-square 

speed of a hydrogen molecule at 25°C as 19.3 X 104 cm/sec. Table 2.3 gives 

Crms for some other molecules. 
Equation (2.13) shows that if two gases are at the same temperature, their 

molecules have the same average kinetic energy, so we can write 

2miC? = £m2c!, 

Cl 

c£ 

m 2 
m j 

(2.15) 

Table 2.3 Root-mean-square speeds of molecules at 298°K 

Argon 4.31 X 104 cm/sec Hydrogen 1.93 X 105 cm/sec 
Carbon dioxide 4.11 X 104 Oxygen 4.82 X 104 
Chlorine 3.23 X 104 Water 6.42 X 104 
Helium 1.36 X 105 Xenon 2.38 X 104 
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When taken at the same temperature, lighter molecules move faster, on the 

average, than heavier molecules, and the ratio of the average molecular speeds 
is very nearly equal to the square root of the inverse ratio of molecular masses. 

In the derivation of Boyle’s law we showed that the frequency of wall col¬ 

lisions is proportional to molecular speed, and hence inversely proportional to 
the square root of molecular mass. Consequently, lighter molecules collide 

with the walls of their container more frequently than do heavier molecules at 
the same temperature. On the other hand, the change in momentum per wall 
collision is proportional to me, and by taking account of Eq. (2.15) we see 

that me increases proportionally to the square root of the molecular mass. 
Thus, while lighter molecules collide more frequently with the vessel walls, 

heavier molecules experience a greater change in momentum per collision. 
These two factors exactly cancel each other, and gas pressure is independent 
of the nature of the molecules. 

A schematic representation of a molec¬ 
ular effusion apparatus. The diameter of 
the hole is smallerthan the distance that 
molecules travel between collisions. 
Consequently molecules pass indepen¬ 
dently, not collectively, through the hole. 

FIG. 2.9 

Effusion and Diffusion 

There are two simple experiments which make the mass dependence of the 
average molecular speed directly observable. Consider first the apparatus 

shown in Fig. 2.9. A gas is separated from a vacuum chamber by a wall which 
has a very small hole in it. If the hole is small enough, there will be no “pouring” 

or collective mass flow of gas into the vacuum. Instead, individual molecules 

will pass through the hole independently only if their trajectories cause them 
to approach the wall area where the hole is. The rate of passage of molecules 

through the hole, which is the effusion rate, is just the rate at which molecules 

strike a unit area of the wall times the area A of the hole. From Eq. (2.9) we get 

effusion rate = rate of wall collisions per cm2 X hole area 

1 N 
4 V 

IX A. 

Since c, the average molecular speed, is inversely proportional to the square 

root of molecular mass, we should have 

effusion rate « m~112. 
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This is observed experimentally. In particular, if an equimolar mixture of H2 

and N2 is allowed to effuse through a hole, we can expect 

rate of effusion of H2 ch2 Un2 

rate of effusion of N2 cn2 \ wh2 

= VtF = 3.7. 

Thus the gas which passes through the hole should be richer in H2, and the gas 

remaining in the vessel should be richer in N2. This result is indeed found 

experimentally. 

The second type of experiment which demonstrates the difference in molecular 
speeds is gaseous diffusion. Figure 2.10 shows an apparatus in which hydrogen 

and nitrogen gas, initially at the same pressure and temperature, are separated 

by a porous wall. The porous wall prevents a mass flow of gas, but does allow 

molecules to pass from one chamber to the other. It is observed that the initial 
diffusive flow of hydrogen from left to right is more rapid than the flow of 

nitrogen from right to left. 
The explanation of the diffusive flow rate is more complicated than the 

explanation of molecular effusion, since diffusion involves the effects of collisions 

between molecules, whereas effusion does not. However, the dependence of 

diffusion rate on molecular mass can be deduced as follows. As each gas starts 
to diffuse through the porous plug, it transfers momentum to the plug. Initially, 

the pressures of the gases on each side of the plug are equal, and this means that 

the momentum imparted by each gas to the plug must be the same. Since the 
gases are flowing, the momentum imparted per unit time by each to the plug 

is the product of the flux of molecules J through the plug and the average 
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momentum carried by the molecules, me. Thus 

momentum transferred/sec by H2 = Jn2mu2^\i2, 

momentum transferred/sec by X2 = ■fs2rns2^S2- 

These momenta are equal, since the pressures are equal, so 

J h2wh25h2 = J n2Wn2Zn2, 

•/h2 _ (md)n2 

J n2 (wc)h2 

Now we make use of the fact that c * m-1'2, and get 

rate of diffusion of H2 

rate of diffusion of N2 

The result is that the ratio of rates of diffusion is inversely proportional to 

the square root of the mass ratio, just as was true for effusion. Note, however, 

that the inverse mass dependence of effusion and diffusion arises in two different 
ways. In effusion, the molecular flux is directly proportional to molecular speed, 

and hence inversely proportional to the square root of molecular mass. In 

diffusion, the molecular flux is inversely proportional to the molecular momentum 
mS, and hence inversely proportional to the square root of molecular mass. 

The fact that the rate of diffusion is greater for lighter gases can be made 
the basis of a purification procedure. If we had an equimolar mixture of hydro¬ 

gen and nitrogen, and allowed it to diffuse through a porous wall into a vacuum, 
the gas which initially diffused through the barrier would be enriched in hydro¬ 

gen. The enrichment factor would be the ratio of the rates of diffusion of the 

two gases, or as Eq. (2.16) shows, a factor of 3.7. If the enriched sample were 
collected and allowed to diffuse through another porous barrier, further enrich¬ 

ment could be achieved. It is by an elaboration of this process that the U235 
isotope is separated from U238. Gaseous UFS diffuses through thousands of 

porous barriers until an acceptable enrichment of U °I'6 occurs. The enrich¬ 

ment factor at each barrier is only 

and consequently many barriers and careful collection and recycling of the gas 

are required to achieve a useful isotopic separation. 

_ ’[h2 _ fmn2 
</n2 

(2.16) 

2.3 THE DISTRIBUTION OF MOLECULAR SPEEDS 

As we implied in our kinetic derivation of Boyle’s law, not all gaseous molecules 

travel at the same speed. To obtain a more detailed picture of gaseous behavior, 
it might seem desirable to know the speed of each molecule. However, this is 
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definitely impossible. Just to write down the 6 X 1023 values of the molecular 
speeds that occur in a mole of gas at one particular instant would require a 

stack of paper reaching past the moon. It is even more discouraging to realize 

that these data would be valid for less than 10-9 seconds. Because of collisions, 

the speed of each gaseous molecule changes billions of times every second. 

Consequently, we must abandon the idea of ever knowing the speed of each 
molecule in even a modest-sized sample of gas. 

There is still a useful approach to the problem, however. We can take ad¬ 

vantage of the large numbers of molecules present in any gas sample and make 

a statistical prediction of how many of them have a particular speed. This 

approach is similar to that used in actuarial problems. Without detailed infor¬ 
mation, it is impossible to say who will die in a given week, but the number of 

people who will die in the same period is statistically predictable. In a gas, 

despite the constant collisional “exchange” of speeds, the number of molecules 

with any particular speed, for instance in the small range between c and c + Ac, 

is a constant. Consequently, it is possible to specify the distribution of molecular 

speeds: the fraction AN/N of the molecules which have speeds between each 

value of c and c + Ac. 

fig. 2.11 Molecular speed distribution for oxygen 
at 273°K. 

Molecular speed (cm/sec) 

The molecular speed distribution, derived by statistical considerations and 
confirmed by experiment, is represented graphically in Fig. 2.11. The value of 

the ordinate is proportional to the fraction of molecules which have speeds in a 

narrow range Ac centered about each value of c. Note that there are relatively 
few molecules with very high or very low speeds. The value of c for which 

AN/N is a maximum is called the most probable speed, cmp. The distribution 

curve is not symmetrical about its maximum, and as a result the average speed 

c is slightly larger than cmp, and the root-mean-square speed crms = a/c2 is 

larger still. However, exact calculation shows that these speeds are related by 
crap:c:crms = 1:1.13:1.22, and for many purposes can be considered identical. 
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Very often it is useful to know the fraction of molecules that have speeds be¬ 

tween two different values and c2; this number is equal to the area under 
the distribution curve between C\ and c2. With this in mind, we can see from 

Fig. 2.11 that most gaseous molecules have speeds that are near the average 
speed Z. 

Figure 2.12 shows how the distribution of speeds changes as the gas tempera¬ 

ture is raised. The values of cmp, c, and crms all increase, and the distribution 

curve becomes broader. In other words, at higher temperatures there are more 
molecules with greater speeds than at low temperatures. The temperature 

dependence of the distribution curve is helpful in explaining the effect of tem¬ 

perature on chemical reaction rates. Consider the possibility that in order to 

react, a molecule must have a speed greater than ca, shown in Fig. 2.12. The 
area under the distribution curve for speeds greater than ca is very small at low 

temperatures, and thus very few molecules meet the requirement for reaction. 

As the temperature is increased the distribution curve broadens, and the area 
under the curve corresponding to speeds greater than ca increases. Thus at 

higher temperatures more molecules satisfy the criterion for reaction, and the 

reaction rate increases. 

Molecular speed distribution for oxygen FIG. 2.12 

at two temperatures. 

The Maxwell-Boltzmann Distribution Function 

The mathematical form of the speed distribution function was first derived by 

Clerk Maxwell and Ludwig Boltzmann in 1860. Their expression for AN/N is 

AN 

N 
47r 

/ m \3/2 

\27rfcTy 
—mc2/2kT 2 * e C Ac, (2.17) 

where m is the molecular mass, k is Boltzmann’s constant, T is the absolute 

temperature, and e = 2.71 ... is the base of natural logarithms. We will not 
derive this equation, for to do so requires moderately elaborate mathematics. 
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It is useful, however, to analyze the expression, and see that the dependence 
of AN/N on c is the product of two factors. One is 

e—(112)(.mc21 kT) 

and the other, apart from the constants, is c2. 
The exponential factor is a special example of Boltzmann’s factor e~tlkT, 

with e = %mc2. It is a general and very important feature of all systems that 

the fraction NJN of molecules with energy e is proportional to e~(lkT. Thus, 
at any particular temperature there tend to be fewer molecules with high 

energies than with low energies. 

Even without using detailed mathematics, it is possible to justify the ex¬ 
ponential form of the Boltzmann factor in the speed distribution law. We 

know that the kinetic energy can be expressed in terms of the squares of its 

velocity components: 

%mc2 = \mx2 + %my2 + \mz2. 

If the motion of molecules is truly random, the value of one velocity component 
is independent of the values of the others. Therefore, if we say that the speed 

distribution function depends on the energy \mc2, the function must be con¬ 

sistent with two facts: 

1. The kinetic energy of a molecule is the sum of its component kinetic energies. 

2. The probability of observing a particular magnitude of one velocity com¬ 

ponent is independent of the values of other velocity components. 

Now the probability of observing two independent events is equal to the product 

of the probabilities of observing each of them separately. Therefore our re¬ 
quirements on the speed distribution function amount to saying that the 

kinetic energies associated with the velocity components must be additive, but 

the probabilities of observing their individual values must be multiplicative. 

We can see that the Boltzmann factor satisfies these requirements, for 

^—mc2l2kT _ (ml2kT)(x2+y2+z2) _ ^—mx2l2kT^^—my2l2kT^^—mi2l2kT^ 

where the three factors on the right-hand side are the probabilities of observing 

the individual values of the velocity components. The argument we have just 
outlined can be used as a basis for a proof that the exponential function alone 

satisfies the requirements for the distribution law. 

The origin of the c2-factor in the distribution law lies in the fact that there 
are more “ways” in which a molecule can have a high speed than a low speed. 

For instance, there is only one way in which a molecule can have zero speed: 

it must not be moving along the x-, y-, or 2-axis. But if a molecule has a finite 
speed, say 100 m/sec, it may move in either direction along the x-axis at 

100 m/sec, and not along y or z, or it may move along y at 100 m/sec and not 
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along x or z, or it may move with a velocity component of 57.7 m/sec along 

each of the axes. Any combination of velocity components which satisfies the 
relation x2 + y2 + z2 — c2 = (100)2 is possible. As the speed of a molecule 

increases, the number of possible combinations of its velocity components 
which are consistent with its speed increases proportionally to c2. 

y 

Graphical representation of FIG. 2.13 

x2 + y2 4- z2 = c2. 

To see this argument more clearly, we need only plot the equation x2 + 

y2 -f z2 = c2 on a coordinate system in which x, y, z are the coordinate axes. 

Figure 2.13 shows that this equation generates a spherical surface of radius c. 
This surface contains all the values of x, y, and z which are consistent with a 

speed c. Therefore, the number of possible ways a molecule can have speed c 
should be proportional to the number of points on the surface, or to the surface 

area. Since the surface is a sphere, its area and the number of ways in which 

the speed c can occur are proportional to c2. Thus the Maxwell-Boltzmann 
distribution has in it two opposing factors. The c2-factor favors the presence 

of molecules with high speeds, and is responsible for the fact that there are few 
molecules with speeds near zero. The Boltzmann factor, e—mc2i2kT! favors low 

speeds and limits the number of molecules which can have high speeds. 

Experimental Verification of the Speed Distribution 

Figure 2.14 is a simplified diagram of an apparatus that has been used to deter¬ 
mine the form of the speed distribution. The vapor of cesium is contained in an 

oven 0 which has a very narrow horizontal slit cut in its side. Cesium atoms 
pass through the slit into the surrounding chamber, in which a vacuum is 

maintained. In the absence of gravity the only cesium atoms passing through 

the slits Si and S2 and to the detector would have horizontal trajectories. 
Because of the action of gravity, however, the atoms are deflected downward as 

they travel toward the detector D. The deflection is greatest for the atoms which 
travel with the slowest speeds. To see that this is true, recognize that the time 

that an atom with speed c takes to travel the distance l from the oven to the 
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detector is t = l/c, and the deflection s produced by the acceleration of gravity g 
during this time is s = \gt2 = \g{l/c)2. Thus, by measuring the signal reaching 

the detector when it is placed at the various positions D, D', D", etc., the 

relative number of atoms with each speed can be determined. The results found 

in this way are in excellent agreement with the mathematical form of the speed 

distribution found by statistical calculations. 

2.4 HEAT CAPACITIES 

In Chapter 1 we defined the heat capacity of a substance to be equal to 

the amount of heat in calories required to raise the temperature of one mole 
of the substance one degree centigrade. Now we shall see that the molecular 

kinetic theory leads to a very satisfactory prediction and interpretation of the 

experimental heat capacities of many gases. 

First we must remark that our definition of heat capacity is incomplete. It 

is found experimentally that the measured value of the heat capacity depends 
on how a gas is heated. In particular, if a gas is heated with its volume held 

constant, the measured heat capacity is smaller than when the gas is heated 

with the pressure fixed. Let us call these two heat capacities CV and Cp, the 
heat capacity at constant volume and at constant pressure, respectively. 

When a gas is heated, energy is added to it. This added energy must appear 
as kinetic energy of the molecules, or as work done by the gas in expanding 

against an external pressure, or as both. In order for a gas to perform work, it 

must expand, for work is always the product of a force and a displacement. If 

the volume of a gas is held constant, there is no displacement and no work done. 
Therefore, any energy we add to a gas at constant volume must appear as 

kinetic energy of the molecules. The kinetic theory tells us that for an ideal 

gas of monatomic particles, 

E = %RT. 
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Table 2.4 Heat capacity ratios, 
Cp/Cv, for some gases 

Gas Cp/Cv Gas Cp/Cv 

He 1.66 h2 1.41 
Ne 1.64 o2 1.40 
Ar 1.67 n2 1.40 
Kr 1.68 CO 1.40 
Xe 1.66 NO 1.40 
Hg 1.67 Cl2 1.36 

Therefore if we increase the energy by an amount AE, we must make a change 
in temperature AT, where 

AE = |R AT. 

But AE/AT is the increase in energy per degree per mole, or the heat capacity 
at constant volume: 

CV = |f > Cv = f R. 

Thus Cy for an ideal monatomic gas is §R, or about 3 cal/mole-deg. 

When the temperature is raised at constant pressure, the kinetic energies of 
the molecules increase and the gas does work by virtue of its increase in volume. 

If we remember that the product PV has the units of work, the amount of work 

done by the gas expansion can be calculated easily. It is simply equal to A (PV), 

the change in the pressure-volume product. But at constant pressure we can 
write 

A (PV) = P AT = P{V2 - Vi) = PV2 - PVv 

For one mole of gas, PV = RT and 

PV2 - PVi = RT2 - RTi - R AT. 

Thus, the “extra” heat capacity due to the expansion of the gas is A(PV)/AT = 
R, and so 

C p — Cv T- R 
= %R R = ■§/?, 

Cp/Cv = | = 1.67. 

The heat-capacity ratio Cp/Cv can be measured experimentally, and Table 
2.4 shows that the values found for the monatomic gases agree well with the 

predictions of the kinetic theory. It is also clear, however, that the heat-capacity 
ratios for the diatomic gases are consistently less than 1.67, and we must now 

explore the reasons for these deviations. 
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(a) (b) 

FIG. 2.15 Rotational motion of a diatomic molecule, (a) Rotation about the x-axis. (b) Rotation about 
the y-axis. 

First we note that CV, the heat capacity that is due to the translational 
motion of the molecules, is equal to fft, and that there are three independent 

velocity components associated with the translational motion. Therefore we 

can infer that each of the three independent translational motions contributes 
\R to the heat capacity. On this basis we might expect that if any other type 

of motion is available to gas molecules, there will be additional contributions 

to the heat capacity, coming in units of %R. 

Figure 2.15 shows that in addition to the three translational motions, a 
diatomic molecule can rotate about its center of mass in two mutually perpendic¬ 

ular and independent ways. Assigning \R as the heat-capacity contribution of 

each of these motions we get 

Cv = fft + Aft + Aft = fft, 

CP = Cv + ft = %R, 

Cp/Cv = 1= 1-40. 

Thus this intuitive argument accounts in large measure for the observed heat- 
capacity ratios of the diatomic gases. 

Were we to stop the analysis here, we would be guilty of overlooking the fact 

that the atoms of a diatomic molecule are not rigidly held at a fixed distance 
from each other, but vibrate about a well-defined average separation distance. 

This vibrational motion is independent of the rotations and translations, and 

apparently should contribute to the total heat capacity of the molecule. That 
it does not make an appreciable contribution for most diatomic molecules is a 

fact that can be explained only by analyzing the vibrational motion using quan¬ 

tum mechanics instead of the Newtonian laws of motion. This analysis is 
beyond our scope, but its result is the prediction that vibrational motion can 

contribute any amount to the heat capacity between 0 and ft, and the latter 
value is approached only at high temperatures for most molecules. 
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2.5 IMPERFECT GASES 

The ideal gas equation of state, PV = 71RT, while of pleasing simplicity, is 
restricted in its application. It is an accurate representation of the behavior of 

gases only when they are at pressures not much greater than one atmosphere, 

and at temperatures well above their condensation points. In other words, the 
ideal gas equation is an approximation to more accurate equations of state 

which must be used when gases are at high pressures and low temperatures. 

These more accurate equations are naturally more complicated mathematically, 
and thus more difficult to use. Nevertheless, their study is actively pursued, 
for the form of these more accurate equations of state can tell us much about 
the forces that molecules exert on each other. 

The quantity z = PV/nRT is called the compressibility factor of a gas. 

If a gas were ideal, z would be equal to unity under all conditions. Experimental 
data, some of which appear in Fig. 2.16, show clearly that z may deviate con¬ 

siderably from its ideal value, which is approached only in the range of low 

pressures. Moreover, deviations from ideal behavior may cause z to be greater 
or less than unity, depending on the temperature and the pressure. 

Compressibility factor for nitrogen as a fig. 2.16 

function of pressure. 

An empirical equation of state generated intuitively by van der Waals in 
1873 reproduces the observed behavior with moderate accuracy. For n moles 

of gas, the van der Waals equation is 

(P + y?)(F ~nb) = nRT, 

where a and b are positive constants, characteristic of a particular gas. While it 
is only one of several expressions that are used to represent the behavior of 

gases over wide ranges of pressure and temperature, it is perhaps the simplest 
to use and interpret. At low gas densities V tends to become much larger than 

nb, and n2a/V2 tends toward zero. Under such conditions it is a good approxi- 
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mation to write 

p Vl£l ~ p 
' y 2 — > 

V — nb = V, 

and so the van der Waals equation for one mole of gas reduces to PV = RT 

at low pressures. 

To analyze the van der Waals equation further, let us for simplicity specify 
71 = 1 mole, and then rearrange it to the form 

PV V a 1 
2 ~ RT ~ V - b RT V' 

Now we can see that as the volume diminishes, the terms on the right-hand 
side of the equation become large. If the temperature is high, however, the 

second term will tend to be small, and we will have 

PV V 
z = —— ^ —-— > l 

RT ~ V - b 

This reproduces the “positive” deviations from ideality observed at high tem¬ 

perature and pressure. On the other hand, at room temperatures and moderate 

densities the approximation 

^ 1 

holds, and the term proportional to a becomes important; so we have 

PF _ _o_ 1 

2 RT ~ RT V' 

Thus the compressibility factor is less than unity, as is observed for many 

gases at moderate densities and low temperatures. 

Intermolecular Forces 

Now we must find an explanation of the origin and significance of the 

van der Waals constants a and b. The constant b has the units of volume per 

mole, and according to Table 2.5 has a value of about 30 cc/mole for many 

gases. To a rough approximation, 30 cc is the volume that one mole of gas 
occupies when it is condensed to a liquid. This in turn suggests that b is some¬ 

how related to the volume of the molecules themselves. Comparison of the 
simplified van der Waals equation P(V — b) — RT with PV = RT further 

supports this view. In deriving the ideal gas equation of state we assumed that 

the molecules were mass points which had available to them the whole geomet- 
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Table 2.5 Van der Waals constants 

Gas a( liter2-atm/mole2) b(liter/mole) 

h2 0.2444 0.02661 
He 0.03412 0.02370 
n2 1.390 0.03913 
02 1.360 0.03183 
CO 1.485 0.03985 
NO 1.340 0.02789 
C02 3.592 0.04267 
H20 5.464 0.03049 

rical volume of the container. If the molecules are not points, but are of finite 
size, each must exclude a certain volume of the container from all the others. 

If we call this “excluded”” volume 6, then we might say that the “true” volume 
available for molecular motion is V — b, and that consequently the equation 

PV = RT should be written as P(V — b) = RT. Thus the effect of finite 
molecular size is to make the observed pressure greater for a given volume than 
is predicted by the ideal gas law. 

Excluded volume due to finite molecular size. fig. 2.17 

Let us assume that molecules are impenetrable spheres of diameter p, and 
ask how this diameter is related to the van der Waals 6-factor. Figure 2.17 

shows that the presence of one molecule excludes a volume of fTp* from the 
center of any other molecule. For a collection of molecules, we can regard half 

of them as excluding a certain volume from the other half, so the total excluded 
volume is 

^ (t^P3) = 3TTP3N = nb, 

where for a 1-mole sample, N equals Avogadro’s number. Thus by determining 

the van der Waals 6-factor experimentally we can obtain an estimate of the 
size of a molecule. 

To interpret the factor a/V2 in the van der Waals equation of state we note 

once again that the pressure of a gas arises from a transport of momentum to 
the walls of the container. If there are attractive forces between molecules, this 

momentum transport is somewhat impeded by the interaction of molecules 
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nearing the walls with the molecules “behind” them in the bulk of the gas. 
In effect, attractive forces cause molecules nearing the walls to transfer some 

of their momentum to other gas molecules rather than to the walls. We can 

expect the magnitude of this “negative pressure” effect to be jointly proportional 
to the densities of each of interacting pairs of molecules, or to (N/V)2. For 

one mole of gas this can be written as a/V2, where a is a proportionality constant 
greater than zero that measures the strength of the attractive intermolecular 

forces. 

Because of attractive intermolecular forces alone, the actual pressure of an 
imperfect gas is lower than that predicted by the ideal gas law. Therefore we 

should add the term a/V2 to the actual pressure P to obtain [P + {a/V2)), 
a quantity which when multiplied by volume gives the ideal pressure-volume 

product (PF)jdeai — RT. This argument rationalizes the way in which the 
term a/V2 appears in the van der Waals equation. 

We should also note that if there are attractive forces between molecules, 

two molecules can become bound to each other to form an associated molecular 
pair, or dimer. The “bond” between such molecules is very weak, so that under 

ordinary conditions only a small fraction of the gaseous molecules are present 

as dimers. For each dimer formed, the net number of free particles decreases 
by one. According to the kinetic theory, the gas pressure is proportional to 

the number of free particles, regardless of their mass. Thus, if an appreciable 

number of molecules are dimerized, the actual number of free particles will be 

smaller than the stoichiometric number of molecules, and the observed pressure 
will be less than the “ideal” value of RT/V. This is the same conclusion that 

we reached previously by using a different argument. 

A slight rearrangement of the van der Waals equation will make clear how 
the types of deviation from ideal behavior depend on temperature. For one 

mole we write 

PV V a 
RT V - b VRT 

Letting V/{V — b) = 1 + b/V, we get 

(2.18) 

This shows clearly that to a first approximation deviations from ideal behavior 

are proportional to 1/F, and that the magnitude and sign of the deviations 
depend on the size of the molecules, the strength of the attractive forces between 

them, and the temperature. At high temperatures the quantity PV/RT will 
tend to be greater than unity, while the opposite will be true at low temperature. 

Question. At the so-called Boyle temperature, the effects of the repulsive and attractive 
intermolecular forces just offset each other, and a nonideal gas behaves ideally. From 
Eq. (2.18), express the Boyle temperature in terms of the van der Waals constants a and b. 
What are the Boyle temperatures of He and N2? 
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Equation (2.18) gives an adequate representation of gas behavior only in a 

rather limited range of densities. A simple extension of this equation that can 

be fitted to experimental data over a much wider range of densities is the virial 
equation of state: 

PV= B(T) C{T) D(T) 
RT 1 V ' V2 ' V3 ' 

The quantities B(T), C(T), etc., are called the second, third, etc., virial coeffi¬ 
cients, and depend only on temperature and the properties of the gas molecules. 

The second virial coefficient B(T) represents the contributions that interactions 
between pairs of molecules make to the equation of state, while the third virial 

coefficient C(T) measures the effects due to the simultaneous interaction of 

three molecules. In the simple van der Waals model where molecules are 
pictured as rigid spheres that attract each other weakly, the second virial 
coefficient is (b — a/RT). 

Graphical representation of the Lennard-Jones 
intermolecular potential energy function. 

FIG. 2.18 

The van der Waals model for molecular interactions is admittedly very 

crude, for we cannot seriously expect that molecules are impenetrable spheres 

of well-defined diameter. Fortunately, the experimental determinations of the 
virial coefficients have led to a more detailed and satisfying picture of inter¬ 

molecular forces. All molecules attract each other when they are separated 
by distances of the order of a few angstrom units, and the strength of these 

attractive forces decreases as the intermolecular distance increases. When 
molecules are brought veryr close together they repel each other, and the mag¬ 
nitude of this repulsive force increases very rapidly as the intermolecular 

separation decreases. These phenomena are often represented by plotting the 
mutual potential energy of a pair of molecules as a function of the distance 

between their centers of mass. 
Figure 2.18 shows the general form of the potential energy used to describe 

the interaction between two uncharged spherical molecules. The force between 

the two molecules at any separation is equal to the negative slope of the potential 

energy curve at that point. We see that if the zero of potential energy is taken 
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as that of two infinitely separated molecules, the potential energy becomes 
negative as the molecules are brought together. After reaching a minimum 

value the potential energy rises abruptly as the molecules are brought still 

closer, and the force between them becomes repulsive. 
An algebraic representation of the intermolecular potential energy curve is 

and is called the Lennard-Jones potential function. In this expression, r is the 

separation of molecular centers, and the parameter e is equal to the minimum 

value of the potential energy, or to the “depth” of the potential energy “well,” 
as Fig. 2.18 shows. The distance parameter <x is equal to the minimum distance 

of approach of two molecules colliding with zero initial kinetic energy. In a 

sense it is a measure of the diameter of the molecules. Actually the true diameter 
of a molecule is an ill-defined quantity, because two molecules can approach 

each other to the distance at which their initial kinetic energy of relative motion 

is converted entirely to potential energy. If their initial kinetic energy is large, 
then their distance of closest approach can be somewhat smaller than a. 

Intermolecular 
distance (A) 

FIG. 2.19 Lennard-Jones intermolecular potential energy function for He, Ar, Kr. 

The values of the parameters e and a depend on the nature of the interacting 

molecules. In general, both parameters increase as the atomic number of the 

interacting atoms increases. Figure 2.19 shows the potential energy curves for 
three of the inert gases. Note that e is of the same order of magnitude or some¬ 

what smaller than kT at room temperature. This means that the average 

kinetic energy of gas molecules is larger than the largest possible value of the 

attractive potential energy of a molecular pair. Because molecules are generally 
far apart at ordinary pressures the average potential energy of interaction is 

much less than the average kinetic energy, and consequently it is the latter 

that is largely responsible for the observed behavior of gases. 
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2.6 TRANSPORT PHENOMENA 

Determination of the equation of state of an imperfect gas can lead to a descrip¬ 
tion of the potential energy of interaction between molecules. In this section 

we shall find that the viscosity of gases, their ability to conduct heat, and the 

rate at which they diffuse into each other all can be related to the frequency of 
molecular collisions, and thus to the forces between molecules. Therefore study 

of these phenomena can provide additional information about the nature of 
intermolecular potential energy. 

The thermal conductivity of a gas is the rate at which it transports energy 
from a surface at a higher temperature to one at a lower temperature. The 

total rate of energy transport depends on the area of the surfaces, the tempera¬ 
ture difference AT and the distance Ad between them, so the specific thermal 
conductivity k is defined by 

AT 
rate of energy transport per unit area = — k —, (ergs/cm2-sec). (2.19) 

Defined this way, k depends on the properties of the gas alone. 

Moving plate 

Stationary plate 

Gas between a moving and a 
stationary plate. 

FIG. 2.20 

The viscosity of a fluid represents an internal friction that causes the effects 
of a motion through the fluid to be transmitted in a direction perpendicular to 
that of the motion. Consider Fig. 2.20, which shows a gas confined between a 

stationary and a moving plate. The motion of the upper plate causes the 

adjacent layer of gas to move as a whole with a velocity u. Layers of gas suc¬ 
cessively farther from the moving plate also move, but with steadily diminishing 

velocity. Because this motion is transmitted through the gas, the stationary 

plate feels a force in the direction of the motion of the upper plate. Experiments 

show that this force per unit plate area is given by 

force per unit area = — y (dynes/cm2), (2.20) 

where Au/Ad is the amount by which the mass velocity u changes with distance 
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A cl from the moving plate, and y is a proportionality constant called the coefficient 

of viscosity. Its value depends only on the nature of the gas. 
There is another way of looking at the viscosity phenomenon which makes 

the physical situation clearer. The reason why the stationary plate feels a 

force is that the gas molecules at the upper moving plate acquire an extra 
momentum mu in the direction of the plate motion. If these molecules could 

proceed unhindered to the stationary plate, they could transfer their extra 

momentum to it, and thereby exert a force on it. They are, to a certain extent, 

prevented from doing this by collisions which tend to randomize the direction 

and amount of their extra momentum. The viscosity coefficient is a measure 
of how efficient momentum transport is. 

We have noted earlier that when a partition separating two different gases 

at the same pressure is removed, the gases move into each other and mix by 
diffusion. The net rate at which one gas moves across an imaginary surface 

into the other gas depends on the area of the surface, the concentration change 

per unit length, and the nature of the gases. Thus 

rate of diffusion per unit area = —D ^ (molecules/sec-cm2), (2.21) 

where An/Ad is the concentration change per unit length, and D is a propor¬ 

tionality constant, called the diffusion coefficient, which depends on the nature 

of the gases. 
Just as thermal conductivity is the transport of energy, and viscosity is 

caused by the transport of momentum, diffusion is the transport of matter. 

We should be able to use the kinetic theory of gases to express the transport 

coefficients k, 77, and D in terms of more fundamental quantities of molecular 
motion. It is clear that collisions between molecules must be important in the 

determination of the values of the transport coefficients. We know, for example, 

that even though the average speed of a molecule is roughly the speed of sound, 

it takes a long time for a malodorous substance to diffuse across a room. That 

rapid transport of material does not occur must be a consequence of inter- 

molecular collisions. 

The Mean Free Path 

Let us see how collisions affect the motion of molecules. In Fig. 2.21 a particular 
gas molecule has been singled out and its trajectory plotted. Each segment of 

its trajectory between collisions is called a free path. It is clear that since these 

free paths are of finite length, the progress of the molecule in any one direction 

is inhibited. We are interested in computing the average value of the length of 

these free paths, or the mean free path. 
To accomplish this we consult Fig. 2.22, where the motion of one “hard- 

sphere” molecule relative to its fellows is represented. The molecule of interest 
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moves through the gas and collides with any other molecule whose center-to- 

center distance is less than p, the molecular diameter. Thus the interesting 

molecule sweeps out per unit time a collision cylinder whose cross-sectional 
area is 7rp2, and whose average altitude is c, the average speed of the molecule. 

A collision will occur with any molecule whose center lies in this cylinder. 

FIG. 2.21 

Collision cylinder swept out by fig. 2.22 

a molecule. Molecules whose 
centers are within the cylinder 
would undergo collision. 

Thus, if n is the average number of molecules per cc, the average number of 
collisions per second experienced by the molecule of interest is 

collisions/sec = volume of collision cylinder X molecules/unit volume = irp2cn. 

The mean free path X is the average distance traveled by the molecule per 

unit time divided by the average number of collisions per unit time: 

X = 
c 

7rp2cn 

1 

7rp2n 
(2.22) 

For a numerical estimate of p, the molecular diameter, we can use the Lennard- 
Jones potential parameter cr, which experiments show is roughly 3 X 10-8 cm 

for many molecules. We find that at 1-atm pressure (n = 3 X 1019 mole- 

cules/cc) the mean free path is 

X = tt(3 X 10-8)2 X 3 X 10^ “ 10 Cm' 

Here we find the reason for the low rate of diffusion and the poor thermal 
conductivity of gases. Any one molecule in a gas at atmospheric pressure can 

travel only 10-5 cm before its trajectory is interrupted, perhaps reversed. 
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Now let us see how the diffusion coefficient is related to the mean free path. 

As defined by Eq. (2.21) the diffusion coefficient has the units cm2/sec, since 

the units of An/Ad are molecules/cm4. Now if we imagine that D must increase 
with the mean free path and the molecular speed, then the units of D tell 

us that 

That is, the diffusion constant is proportional to the average molecular speed Z 

and the mean free path A. 

FIG. 2.23 

An, 

n,(0) 

n,( — X) = n,( 0) — X Ad 

|c, n,(+X) 
) 
r d 

li £cn,(-X) _ 

V 

_ 

-Reference plane 

The transport of molecules across a reference plane. The quantities n,(+X) and n,(—X) 
are the concentrations of molecules at a distance of X above and below the reference plane, 
respectively. 

It is not difficult to determine the proportionality constant between D 

and Ac. We imagine a physical situation in which a gas has uniform pressure, 

but contains a radioactive isotope whose concentration n,- is a function of the 

distance d, as shown in Fig. 2.23. The rate at which this isotope diffuses is the 
difference between the rates at which its molecules pass through the median 

reference plane, from above and from below. If there are n,- isotopic molecules 

per unit volume, one-third have velocities along the d-coordinate, and half of 
these have velocities in the -fd-direction, the other half in the —d-direction. 

The rate at which molecules cross a unit area in one direction is just n/6 times 

their speed c, or nc/6. However, molecules which cross the reference plane from 
above have, on the average, experienced their last collision at a distance X, or 

one mean free path, above the plane. At this point the concentration of isotopic 

molecules is 

, . An,- 
w»(0) + X > 

where n,-(0) is the concentration of molecules in the reference plane. The number 

of molecules/cm2-sec crossing the reference plane from above is then 

1 
6* 

n,-(0) + X 
An, 
Ad 
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A similar argument applies to molecules crossing the reference plane from below, 

except that at a distance X below the reference plane, the concentration of 
molecules is 

tti(O) — X 
A m 

Ad 

Therefore the upward flux is 

1 _ 
-c 

6 
n,(0) + A ^ 

Ad 

We now take the difference between upward and downward fluxes: 

net flux = - c 
b 

x Ani 

Hi(0) X Ad. 

l . _ Am 
3 Xc Ad‘ 

1 
X P c 

D 
Wi(0) -f- X 

Am 
Ad 

By definition, 

so we get 

net flux = — D ~ > 
Ad 

D = iXc. 

Now, in addition to the functional relation between D, X, and c, we have the 

proportionality constant. Note one very important point: the mean free path X 

is determined by the total concentration of all molecules (X = l/n(7rp2), not 
just by the concentration of the diffusing isotope. 

Question. Would you expect gases to mix by diffusion more rapidly at lower than at higher 
pressure? Would the mixing rate increase or decrease with increasing temperature? 

The viscosity effect depends on the ability of the gas to transport momentum. 
Thus it is to be expected that the expression for the viscosity coefficient rj should 

involve the mass of the molecules. Dimensional analysis of Eq. (2.20), 

force/area = —rj > (2.20) 

gm-cm/sec2-cm2 = rj cm/sec-cm, 

shows that 17 has the dimension of gm/cm-sec. This can be achieved by writing 

77 « nmcX, (2.23) 

gm/sec-cm cc (molecules/cm3)(gm/molecule)(cm/sec)(cm). 

This result, obtained by dimensional analysis alone, shows how the viscosity 
coefficient of a gas depends on its mass, concentration, mean free path, and 
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Table 2.6 Lennard-Jones potential constants* 

Determined from Determined from 
viscosity virial coefficients 

Gas €/*(°K) (7(A) e/kC K) <r(A) 

He 10.2 2.58 6.03 2.63 
Ar 124 3.42 120 3.41 
Xe 229 4.06 221 4.10 
h2 33.3 2.97 29.2 2.87 
n2 91.5 3.68 95.1 3.70 
02 113 3.43 117 3.58 

*The parameter t is divided by Boltzmann's constant k 
to facilitate the comparison of the magnitude e, the 
attractive interaction between molecules, with their 
kinetic energy of motion kT. 

average speed. Note that the product of concentration and mean free path 
reduces to \/irp2, where p is the molecular diameter. 

We can obtain the numerical value of the proportionality constant in 

Eq. (2.23) by the same technique that was used to find the diffusion coefficient. 
The quantity being transported is the momentum mu. The average values of 

this momentum at distances of one mean free path above and below an arbitrary 
reference plane are respectively 

m (^u + A and 

where u is the average velocity in the reference plane. In each of these planes, 
n/6 of the molecules (per cc) are moving in one direction along d, with average 

speed c. Therefore, to get the net momentum transport through the reference 

plane, we multiply each of the above quantities by nc/6, and take the difference 
between them, thereby obtaining 

momentum transport rate per unit area = — ^ nmc\ ^ • 
3 Art 

By definition, 

so we have 

momentum transport rate per unit area — —v 
Am 
Ad ’ 

r) — %nmc\, 

which gives us a direct numerical relation between the gas viscosity coefficient 
and the molecular parameters. 

Question. If q for H2 gas is 0.93 X 10-4 g/cm-sec at 298°K, what is the approximate 
diameter of the hydrogen molecule? 
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By recognizing that thermal conductivity is energy transport by molecular 

motion, we can determine the way in which the thermal conductivity coefficient 
k depends on molecular properties. We select an arbitrary reference plane in a 

gas which has been subjected to a temperature difference. The temperature in 
this reference plane is T, and the corresponding average energy of the molecules 

is cvT, where cv is the heat capacity per molecule. At distances of one mean 
free path above and below the reference plane, the average energies of a 
molecule are 

Above the reference plane w/6 molecules/cc are proceeding downward with an 

average speed c, and below the reference plane, the same number of molecules 
is moving upward with the same speed. The net rate of energy transport is 

then the difference between the average energy at these two planes, multiplied 
by nc/6. We get 

rate of energy transport per unit area = 

Therefore 

k = %nccv\, 

which is the relation between the thermal conductivity coefficient and the 
molecular properties. 

Question. Which should have the higher thermal conductivity, He4 or He3? Given that 
D2 and He have nearly the same collision diameter, which should have the higher thermal 
conductivity? 

1 _ . AT 

3 nCCvX Ad 

— K 
AT 

Ad 

Derivation of the Virial Equation of State 

We can use the virial theorem to indicate how the virial equation of state for 

nonideal gases is derived. All that is necessary is to include in the virial the 

contributions from the forces between the molecules. From the virial theorem 

we get 

(KE) = virial from walls + virial from intermolecular forces 

= IPV (Z rE(r)>molecules. (2.24) 

Here we have assumed that the force F(r) that molecules exert on each other 

depends only on their separation r, and has its only component along r. These 
intermolecular forces can come from pairs of molecules interacting, and triplets 

of molecules, and quartets, and so on. For simplicity we will consider only the 

most important interaction which is the one between pairs. Then the quantity 

rF(r) must be summed over all molecular pairs. 
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We proceed in the following manner. If N is the total number of molecules, 
the total number of pairs of molecules is %N(N — 1) = \NThe factor \ 
compensates for the fact that N(N — 1) counts each molecular pair twice. 
To calculate the virial we need the number of pairs which are separated by a 
distance r, or more properly, lie in a spherical shell of radius r and thickness Ar. 
This number is proportional to the volume of this shell 47rr2 Ar, divided by the 
total volume V of the vessel. We also expect that the number of pairs separated 
by r will depend^on the potential energy 4>{r) of molecular interaction at r 
through a Boltzmann factor exp [—<p/kT], Thus we write 

1 
2 
( X rF(r)) = ~ 22 
'pairs ' " r 

Ifl 4?rr2 Ar rFp-*lkT 
2 y 

(2.25) 

where now we can calculate the intermolecular virial by summing over all 
values of r. This can be done by either calculus or numerical calculation, but 
is, in general, a difficult process which we will not attempt. Instead, we will 
merely introduce the symbol f/3 to stand for this calculation, and get 

1 /•st' T-,/ x\ _ 3 jV2 _ 3 n2 j, 
2 ' ' j vF(r))pairs ^ y $ = 2 y 

In the last step we have defined n2B as N20, where n is the number of moles. 
We now substitute our result in Eq. (2.24): 

q q n2 

<KE> = ~PV - B. 

Rearranging and evaluating (KE), we get 

PV = \ (KE) + y B, 

n2 
PV = nRT + yB, 

PV n B n 

nRT = 1 + V RT = 1 + VB 
(2.26) 

The right-hand side of Eq. (2.26) contains the first two terms of the virial 
equation of state. We see clearly now that the first correction term nB/V to 
the ideal gas equation does indeed arise from interaction between pairs of 
molecules. In addition, we have an explicit expression by which it is possible 
to calculate the second virial coefficient B from the intermolecular potential. 
We can also see that if we were to include the contributions of triplets of 
molecules, a term proportional to N(N — l)(iV — 2) = N* and to 1/E2 
would appear in the virial, and correspondingly, a term n2C/V2 would be added 
to Eq. (2.26). 
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Questions. Evaluate the second virial coefficient for a gas of hard spheres from Eq. (2.25). 
In this particular case, <f> = 0 for all accessible r, and F = 0 for all r axcept r — p, the 
molecular diameter, so only one value of r contributes to the sum in Eq. (2.25). The quan¬ 
tity ArF may be set equal to kT, the average energy with which molecules collide. Compare 
your result with the expression for the van der Waals constant b. 

2.7 CONCLUSION 

In this chapter we have examined the relations that describe the behavior of 
gases, and again have come upon an illustration of the origin and significance 

of scientific laws. The laws of Boyle and of Charles and Gay-Lussac, like the 
laws of chemical combination, are derived from experimental measurements, 

and are accurate only in certain restricted experimental situations. To deal 
accurately with a greater variety of situations, the ideal gas laws are amended 

or modified, again on the basis of experimental measurements, and the van der 
Waals, or virial equations of state replace PV = nRT. As a practical matter, 

however, it is often acceptable to use the ideal gas equation of state for ap¬ 
proximate calculations, providing the deviations from ideal gas behavior are 
not severe. 

The kinetic theory of gases is an example of the successful explanation of 

the behavior of a macroscopic system in terms of the properties of its micro¬ 
scopic constituents. That is, we can claim to “understand” why gases obey 

Boyle’s law, because we can show that this law is a mathematical consequence 
of picturing gaseous molecules as small bodies in incessant random motion. 

We can say, as a result of the insight provided by the kinetic theory of gases, 

that gas pressure increases as volume decreases, because molecules collide with 
the walls of a smaller container more frequently. Similarly, the reason gas 

pressure increases with increasing temperature is that raising the temperature 

increases the average speed of the molecules, and thereby increases the rate of 
wall collisions and the average momentum change upon collision. Moreover, we 

have seen how a theory relates a variety of observed phenomena to each other. 
The equation of state and the processes of diffusion, viscosity and thermal con¬ 

ductivity all are shown to be consequences of the properties of molecules by 

the kinetic theory of gases. 
Within the structure of the kinetic theory of gases, we have encountered 

several representations, or “models” of what molecules are like. As noted in 
Section 2.2, a model is a construct of the human mind, and incorporates only 

the most important features of the real entity it represents. To derive Boyle’s 
law, we used a model that pictures molecules as point masses. While clearly 

unrealistic, this model is useful because it possesses only the properties required 
to derive Boyle’s law. Indeed, it is the success of this simple model that shows 

us that mass and motion are the molecular properties responsible for Boyle’s 

law. 
To account for other macroscopic behavior, it is necessary to use a more 

refined model for molecules. Picturing molecules as spheres of finite volume 
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that attract each other leads to explanations of deviations from the ideal gas 
law, and to an understanding of viscosity, thermal conductivity, and diffusion. 

A further refinement is to introduce an algebraic form such as the Lennard- 

Jones expression to represent the potential energy of interaction between 
molecules. This most detailed model allows us to account for the subtle features 

of equations of state and transport properties. 
Which model is best? This question does not have a single answer, for the 

best model is often the one which allows us to discuss most simply the properties 

in which we are interested. To find the equation of state for a low density gas 

we need only the point mass model: the Lennard-Jones model is needlessly 
complicated for this problem. Only to discuss the finer details of equations of 

state and transport processes do we need the most refined picture of molecules. 
Throughout our study of chemistry we shall use a variety of models for mole¬ 

cules, some of them of extreme simplicity. We must be careful to recognize the 

simplifying features, the justification for introducing them, and the limitations 

they impose. 
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PROBLEMS 

2.1 An ideal gas at 650 mm pressure occupied a bulb of unknown volume. A certain 
amount of the gas was withdrawn and found to occupy 1.52 cc at 1-atrn pressure. 
The pressure of the gas remaining in the bulb was 600 mm. Assuming that all measure¬ 
ments were made at the same temperature, calculate the volume of the bulb. 

2.2 A sample of nitrogen gas is bubbled through liquid water at 25°C and then 
collected in a volume of 750 cc. The total pressure of the gas, which is saturated with 
water vapor, is found to be 740 mm at 25°C. The vapor pressure of water at this 
temperature is 24 mm. How many moles of nitrogen are in the sample? 

2.3 When 2.96 gm of mercuric chloride is vaporized in a 1.00-liter bulb at 680°K, 
the pressure is 458 mm. What is the molecular weight and molecular formula of 
mercuric chloride vapor? 

2.4 Gaseous ethylene, C2H4, reacts with hydrogen gas in the presence of a platinum 
catalyst to form ethane, C2H6, according to 

C2H4(g) + H2(g) = C2Hc(g). 

A mixture of C2H4 and H2 known only to contain more H2 than C2H4 had a pressure 
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of 52 ram in an unknown volume. After the gas had been passed over a platinum 

catalyst, its pressure was 34 mm in the same volume and at the same temperature. 

What fraction of the molecules in the original mixture was ethylene? 

2.5 A gaseous compound which contains only carbon, hydrogen, and sulfur is burned 

with oxygen under such conditions that the individual volumes of the reactants and 

products can be measured at the same temperature and pressure. It is found that 

3 volumes of the compound react with oxygen to yield 3 volumes of COo, 3 volumes of 

SO2, and 6 volumes of water vapor. What volume of oxygen is required for the com¬ 

bustion? What is the formula of the compound? Is this an empirical formula or a 
molecular formula? 

2.6 A gaseous compound known to contain only carbon, hydrogen, and nitrogen is 

mixed with exactly the volume of oxygen required for the complete combustion to 

CO2, H2O, and No. Burning 9 volumes of the gaseous mixture produces 4 volumes of 

CO2, 6 volumes of water vapor, and 2 volumes of N2, all at the same temperature 

and pressure. How many volumes of oxygen are required for the combustion? What 

is the molecular formula of the compound? 

2.7 A mixture of methane, CH4, and acetylene, C2H2, occupied a certain volume at 

a total pressure of 63 mm. The sample was burned to CO2 and H2O, and the CO2 

alone was collected and its pressure found to be 96 mm in the same volume and at the 

same temperature as the original mixture. What fraction of the gas was methane? 

2.8 Scandium (Sc) metal reacts with excess aqueous hydrochloric acid to produce 

hydrogen gas. It is found that 2.41 liters of hydrogen, measured at 100°C and 722-mm 

pressure are liberated by 2.25 gm of scandium. Calculate the number of moles of H2 

liberated, the number of moles of scandium consumed, and write a balanced net 

equation for the reaction that occurred. 

2.9 A mixture of hydrogen and helium is prepared such that the number of wall 

collisions per unit time by molecules of each gas is the same. Which gas has the higher 

concentration? 

2.10 A good vacuum produced in common laboratory apparatus corresponds to 

10_6-mm pressure at 25°C. Calculate the number of molecules per cc at this pressure 

and temperature. 

2.11 By assuming that the molecular diameter is given by the a of the Lennard-Jones 

potential, and that c is equal to the root-mean-square speed, calculate the number of 

collisions experienced per second by a nitrogen molecule in a gas at 25°C and at pres¬ 

sures of 1 atm, 0.76 mm, and 7.6 X 10-6 mm. Repeat the calculation for He at 1 atm. 

2.12 A balloon made of rubber permeable to hydrogen in all its isotopic forms is filled 

with pure deuterium gas (D2 or Hf) and then placed in a box that contains pure H2. 

Will the balloon expand or contract? 

2.13 Calculate the root-mean-square speed, in cm/sec and at 25°C, of a free electron 

and of a molecule of UFq. 

2.14 By using the a of the Lennard-Jones potential as an estimate of molecular 

diameter, calculate the mean free path of a nitrogen molecule at 25°C and at the 

following pressures: 1 atm, 1 mm, 10-6 mm. 

2.15 In the derivation of Boyle’s law by the kinetic theory, we assumed that the 

molecules collide only with the walls of the vessel, and not with each other. How 
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must the mean free path and the distance between the walls compare in order for this 

assumption to be valid? At what gas pressure is this relation satisfied for molecules 

of 3-A diameter and at 25°C in a 10-cm cubical vessel? 

2.16 It is a matter of common experience that liquids become more viscous as their 

temperature is lowered. Assuming the concentration of molecules to be fixed, would 

you expect this to be true in general for gases? Why? 

2.17 Explain why gaseous helium is a better heat conductor than is xenon. If H2 

and D2 (Hi) both have the same molecular diameter, which should be a better con¬ 

ductor of heat? 

2.18 One of the first triumphs of the kinetic theory of gases was the correct prediction 

that the coefficient of viscosity 77 should be independent of gas pressure at a fixed 

temperature. On the other hand, the expression for 77 derived in this chapter contains n, 

the concentration of molecules, as an explicit factor. Why is it then that 77 is indepen¬ 

dent of pressure or concentration? 

2.19 The first evidence that the noble gases are monatomic elements involved inter¬ 

pretation of their measured heat capacities. Explain how such data can lead to such 

a conclusion. 

2.20 Equation (2.18) is an approximate equation of state for real gases. Examine 

this equation and then give a condition which, if satisfied by the temperature, leads 

to the prediction that PV/RT = 1, despite gas imperfection. The temperature which 

satisfies this condition is called the Boyle point. By using data given in Table 2.5, 

calculate the Boyle temperature for nitrogen. 

2.21 The Maxwell-Boltzmann distribution function can be written 

AN 2 ^ mc2\ —mc^/2kT 

1 

>
 

C
i 

to
 1 

* “ Vx \2kTJ 
£ 

. 2kT . 

Plot mc2/2kT as a function of mc2/2kT, and by consulting a table of the exponential 

function plot e~mc2/2kT as a function of vic2/2kT. By examining these two curves, 

sketch the product of the two functions. 

2.22 Real gases follow the equation of state PV = RT only when their pressure 

is very low. Using the data given for CO2 and O2 below, show graphically that for a 

constant temperature of 0°C, PV is not a constant as predicted by the ideal gas law. 

This is best done by plotting PV as a function of P on a scale sufficiently expanded 

to show variations in PV. From your graph determine the value that RT should have 

for all ideal gases at 0°C. Determine from your graph the constants in the empirical 

equation of state PV = A -f- BP for CO2. 

O2, P(atm) PP(liter-atm) CO2, P(atm) PP(liter-atm) 

1.0000 22.3939 1.00000 22.2643 
0.7500 22.3987 0.66667 22.3148 
0.5000 22.4045 0.50000 22.3397 
0.2500 22.4096 0.33333 22.3654 

0.25000 22.3775 
0.16667 22.3897 
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What percent error in the volume of one mole of CO2 at 1-atm pressure would be 

made by using the ideal value of PV and ignoring ga- imperfections? 

2.23 By a procedure -imilar to the one used in Problem 2.22, the value of PV for 

an ideal ga- at 100°C ha.- been found to be 30.6194. If the empirical relation PV — 
j — kt, where t 1- the temperature in degrees Celsius, is assumed to hold, determine 

the values of j and k for an ideal gas from the information you have. From these 

values of j and k determine R. and the value of T, the absolute temperature at 0°C. 
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CHAPTER 3 

THE PROPERTIES 
OF SOLIRS 

The outstanding macroscopic properties of gases are compressibility and fluidity. 
We have seen that the kinetic molecular theory accounts for this macroscopic 
behavior in terms of a microscopic picture whose central feature is the chaotic 
motion of independent molecules—molecules which rarely exert appreciable 
forces on each other. In contrast, the most noticeable macroscopic features of 
crystalline solids are rigidity, incompressibility, and characteristic geometry. 
We shall find that the explanation of these macroscopic properties in terms of 
the atomic theory involves the idea of a lattice: a permanent ordered arrange¬ 
ment of atoms held together by forces of considerable magnitude. Thus the 
extremes of molecular behavior occur in gases and solids. In the former we have 
molecular chaos and vanishing intermolecular forces, and in the latter we have 
an ordered arrangement in which the interatomic forces are large. 

3.1 MACROSCOPIC PROPERTIES OF SOLIDS 

There are substances such as sodium chloride, sugar, and elementary sulfur 
that not only possess the properties of rigidity and incompressibility, but also 
occur naturally in characteristic geometric forms. These are the crystalline 
solids, and they are to be distinguished from the amorphous materials such as 
glass, rubber, plexiglass, or any of the other plastics. These amorphous ma- 
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FIG. 3.1 A two-dimensional lattice of spherical atoms. 
Resistance to shear is different in the indicated 
directions. 

terials possess some of the mechanical properties commonly associated with the 

word “solid,” but do not occur in regular characteristic shapes. Even more 

important, amorphous materials are isotropic; their properties, such as mechan¬ 

ical strength, refractive index, and electrical conductivity, are the same in all 

directions. This is a feature which they hold in common with liquids and gases. 

Crystalline solids are quite different, for they are anisotropic; their mechanical 

and electrical properties do depend, in general, on the direction along which 

they are measured. 

t~ .> t- - > t > 

3 ■ a t ■ -> A possible packing scheme for long molecules. fig. 3.2 

The anisotropy of crystals is important, for it, perhaps more than any other 

macroscopic property, provides a strong indication of the existence of ordered 

atomic lattices. Consider Fig. 3.1, which shows a simple two-dimensional 

lattice consisting of only two kinds of atoms. Mechanical properties such as 

the resistance to a shearing stress might be quite different in the two directions 

indicated. Deformation of the lattice along one of the directions involves dis¬ 

placing rows that are made up of alternate types of atoms, while in the other 

direction each of the displaced rows consists of one type of atom. Thus even 

though the constituents of the lattice are spherical atoms, the. crystal itself may 

be anisotropic. Contrast this with the situation found in liquids and gases, 

where the “arrangements” of the particles are random and disordered. Due to 

the molecular chaos, all directions are equivalent, and all properties of liquids 

and gases are the same in all directions. 

The properties of some crystals reflect the asymmetry of their constituent 

molecules. Figure 3.2 represents a situation in which long thin molecules are 

packed parallel to each other in the crystal lattice. It is inevitable that the 

lattice arrangement is one which will magnify this molecular anisotropy into a 

macroscopically observable property. A well-known substance in which this 

effect appears is the mineral asbestos, which has properties reflecting the long 

fiberlike structure of its individual molecules. 
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There is another macroscopic property which permits a clear distinction 

between crystalline and amorphous substances. Crystalline solids have sharp 

melting points; the mechanical properties of a crystal change only slightly up 

to a characteristic temperature at which it melts abruptly and becomes a liquid. 

Amorphous materials do not have sharp melting points. For example, as its 

temperature is raised, glass gradually and continuously softens and starts to 

flow. The absence of a sharp melting point suggests that glass and most other 

amorphous materials are best thought of as liquids at all temperatures. Indeed, 

we shall find that the atomic arrangement in amorphous substances has none 

of the order found in the crystalline lattices, but rather shows a disorder which 

is characteristic of liquids. Consequently, the word “solid” is used in the most 

restrictive scientific sense to refer to crystalline materials only. 

Crystal Sizes and Shapes 

The crystalline state is easy to recognize in many instances, particularly in the 

naturally occurring minerals. The well-defined characteristic angles and faces 

of the natural quartz crystals shown in Fig. 3.3 suggest that they arc a con¬ 

sequence of an ordered internal lattice. At other times, solid materials occur as 

powder, lumps, or agglomerates that in many ways resemble amorphous sub¬ 

stances, but when an individual particle is examined under a microscope, the 

characteristic angles of a crystal may become obvious. Therefore, we must be 

careful to distinguish between amorphous and pohjcrystalline solids. In the 

latter, individual crystals with their ordered atomic lattices exist, but arc so 

small as to be unrecognizable except under a microscope. Metals often occur in 

the polycrystalline condition. Figure 3.4 shows the etched surface of a sample 

of copper. The boundaries of the individual crystal grains are obvious, even if 

rather irregular. Since the individual crystals are randomly oriented, a metallic 

sample may appear to be isotropic, even though a single crystal is anisotropic. 

FIG. 3.3 Natural quartz crystals. 
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FIG. 3.4 Etched surface of copper showing microcrystalline structure. 

The size of the crystals of a given substance can vary enormously, and is 

profoundly influenced by the conditions under which the crystal is formed. 

In general, slow growth from a solution which is only slightly supersaturated 

favors the formation of large crystals. For this reason the natural crystals of 

minerals formed by geological processes are often very large. On the other 

hand, the crystals formed in laboratory precipitation reactions are very small, 

for they are often formed very rapidly from solutions which arc greatly super¬ 

saturated. For example, when the slightly soluble salt barium sulfate is pre¬ 

cipitated by mixing aqueous solutions of barium chloride and sulfuric acid, the 

solid barium sulfate particles are so small and ill-formed as to be virtually 

unrecognizable as crystals, even under microscopic examination. The quality of 

these crystals can be improved, however, by letting them “age” in the presence 

of their saturated solution. During the aging process, the smaller imperfect 

crystals, being relatively unstable, tend to dissolve, and the larger more stable 

crystals tend to grow. Thus, as a result of a continuous redissolving and repre¬ 

cipitation, a precipitate of virtually amorphous material can be converted to a 

polycrystalline substance. 

It appears that the sizes of crystals reflect the conditions of growth, rather 

than the internal constitution of the crystal. The shape of a crystal is more 

characteristic of the material itself, but is still subject to some influence by the 

growth conditions. For example, sodium chloride crystals that are carefully 

grown by suspending a seed crystal in a slightly supersaturated solution are 

invariably cubic in shape, as shown in Fig. 3.5(a). On the other hand, sodium 

chloride crystals grown at the bottom of a beaker are square plates whose 

thickness is never greater than half their width, as shown in Fig. 3.5(b). This 

shape is a consequence of the fact that crystals resting on a surface can use all 

four sides to grow in the horizontal directions, but can use only the top to grow 

vertically. Thus the growth rate in either of the two horizontal orientations is 

twice that in the vertical direction. 

3.1 MACROSCOPIC PROPERTIES OF SOLIDS 89 



(a) (b) (c) 

FIG. 3.5 Shapes of sodium chloride crystals grown under differing conditions. 

The influence of the environment can be even more subtle. When sodium 

chloride crystals are grown suspended in a solution which contains urea, they 

take the form of the regular octahedra shown in Fig. 3.5(c). While the appear¬ 

ance of sodium chloride crystals at one time as cubes and at another as octahedra 

may seem to suggest that crystal shape is unrelated to the internal arrangement 

of the atoms, this is not true. In the first place, the cube and the octahedron 

are related geometrically, for an octahedron can be formed from a cube by 

cutting off the corners as illustrated in Fig. 3.6. Second, the angle between the 

octahedral faces of all sodium chloride crystals is always the same, and is never 

altered by changing external conditions. The invariance of the angles between 

a given set of crystal faces is a universal property of solids. It appears, then, 

that subject to external conditions, crystals may assume a variety of shapes, 

but that the angles between two characteristic faces are always the same, and 

thus must be determined by fixed geometry of the lattice itself. 

fig. 3.6 Relation between the cubic and octahedral faces 
of a crystal. The octahedron can be obtained by 
shearing off the corners of the cube. 

3.2 TYPES OF SOLID 

We have emphasized that the existence of an ordered lattice is responsible for 

two of the characteristic macroscopic properties of crystalline solids: their 

anisotropy and their characteristic geometry. It seems inevitable that the more 

detailed features of solids should be closely related to the nature of the forces 

which hold the crystal lattice together. Accordingly, we find it useful to dis¬ 

tinguish between ionic, metallic, molecular, and covalent network solids, and 

to associate a set of characteristic properties with each of these bond types. 
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The object of this classification scheme is to provide a framework for recogniz¬ 
ing and systematizing similarities and differences in the properties of the various 

solids. If definite macroscopic properties can be associated with each bond 
type, we might eventually be able to use macroscopic behavior as a diagnostic 
tool to determine the type of bond which exists in new substances. However, 

we must remember that this classification scheme is somewhat arbitrary, and 
thus there may be substances that do not clearly fit into one of the four classes. 

ionic Crystals 

In ionic crystals the repeating units of the lattice are positively and negatively 
charged fragments arranged so that the potential energy of the ions in the 

lattice positions is lower than when the ions are infinitely separated. There are 
many types of stable ionic lattice arrangements. One of the most common, 
which occurs in sodium chloride and many other alkali halides, is shown in 

Fig. 3.7. It is important to note that each ion of a given sign occupies an equiva¬ 
lent lattice position, and that there are no discrete groups of atoms, or molecules, 

in the crystal. In effect, each ion of a given sign is bonded by the Coulomb 
force to all ions of the opposite sign in the crystal. The amount of energy 

necessary to evaporate some typical ionic crystals to their separated ions is, 

as Table 3.1 shows, of the order of 200 kcal/mole. This is a relatively large 
binding energy, and it is responsible for the fact that ionic crystals have vanish¬ 
ingly small vapor pressure at room temperature, and melt and boil only at 

relatively high temperature. 

® Cl 

#Na 

The sodium chloride structure. fig. 3.7 

Ionic crystals generally tend to be hard and brittle, and we can find an 
explanation for this in the nature of the Coulomb forces between the ions. In 

order to distort a perfect ionic crystal, two planes of ions have to be displaced 
relative to each other. Depending on the nature of the moving planes and 

their direction of motion, a displacement may bring ions of the same charge 

close to each other. When this occurs, the cohesive forces between the two 
planes are replaced with a strong Coulomb repulsion, and as a result the crystal 

fractures. 
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Table 3.1 Cohesive energy of crystals 

Ionic crystals 

Energy required to 
separate ions 
(kcal/mole) 

LiF 246.7 
NaCI 186.2 
AgCI 216 
ZnO 964 

Energy required to 
Molecular crystals separate molecules 

Ar 1.56 
Xe 3.02 

Cl2 4.88 

C02 6.03 
ch4 1.96 

Covalent network Energy required to 
crystals separate atoms 

C(diamond) 170 
Si 105 

Si02 433 

Energy required to 
Metallic crystals separate atoms 

Li 38 
Ca 42 
Al 77 
Fe 99 
W 200 

However, there are planes which can be moved relative to one another with¬ 

out bringing ions of the same sign into opposition. Examination of Fig. 3.8 

shows that there are planes in sodium chloride that are made up of “sheets” of 

sodium ions alternating with “sheets” of chloride ions. Motion of these planes 

in a direction parallel to these rows of ions does not bring ions of the same 

charge directly opposite each other. Consequently, slippage of these planes 

relative to each other is the easiest way of distorting the crystal. However, 

even along this most favored direction, distortion of the crystals requires a 

large force, for any motion of ions relative to each other is resisted by the large 

Coulomb forces which tend to hold the ions in their lattice sites. 

Another identifying characteristic of ionic crystals is that they are electrical 

insulators at low temperatures, but good electrical conductors when they are 

melted. Once again, the ionic bonding model provides a simple explanation. 
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FIG. 3.8 The sodium chloride structure. The 
planes marked consist of alternating 
sheets of sodium ions and chloride 
ions. 

In the solid state, there seems to be no obvious mechanism by which an ion can 

move under the influence of an electric field without a considerable expenditure 

of energy. In the perfect crystal, all ions occupy well-defined positions, and in 

moving from its lattice site through the crystal, an ion would follow a tortuous 

path which brings it close to ions of the same charge. In the liquid state, how¬ 

ever, the arrangement of ions is more disordered and less dense, and their 

motion under the influence of an electric field is greatly facilitated. 

Molecular Crystals 

In molecular crystals, the repeating unit is a chemically identifiable atom or 

molecule which does not carry a net charge. The cohesion of these crystals is 

a consequence of the van der Waals forces that we discussed in Chapter 2. 

Van der Waals forces are considerably weaker than the attractive Coulomb 

force between two ions, and consequently the binding energy of molecular 

crystals is relatively small, as the examples in Table 3.1 show. Since so little 

energy is required to separate the individual molecules, these crystals tend to be 

rather volatile, and have low melting and boiling points. As we discussed in 

Chapter 2, the magnitude of van der Waals forces can vary considerably, 

depending on the number of electrons and the polarity of the molecules. As a 

result, even though a solid which is volatile is very likely to be a molecular 

crystal, not all molecular crystals are volatile. 

Molecular crystals generally tend to be soft, compressible, and easily dis¬ 

torted. These properties too are consequences of the relatively weak intermo- 

lecular forces, and their nondirectional nature. That is, all nonpolar molecules 

have an attraction for each other whose magnitude is not very sensitive to 

molecular orientation. Thus two planes of a molecular crystal can be moved 

past each other without significant diminution of the attractive forces between 

them. Since the energy of the intermediate positions is not much greater than 

that of the stable positions, the distortion requires little energy expenditure. 
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Molecular crystals are, in general, good electrical insulators. The molecules 
themselves have no net electrical charge and thus cannot transport electricity. 

Moreover, the very existence of discrete molecules implies that the electrons 

tend to be localized about a specific set of nuclei. Consequently, there are no 
charged particles, either ions or electrons, that are free to move in an electric 

field and conduct electricity. 

Covalent Network Solids 

Crystals in which all the atoms are linked by a continuous system of well-defined 
electron-pair bonds are called covalent network solids. The most familiar 

example is the diamond crystal, in which each carbon atom is covalently bonded 

to four other atoms, as Fig. 3.9 demonstrates. The result is a rigid three- 
dimensional network which links each atom to all the others. In effect, the 

entire crystal is a single molecule. 

fig. 3.9 The diamond structure. Each atom is linked directly 
to four others. 

In some crystals there are two-dimensional infinite covalent networks. The 

best-known example is the graphite structure shown in Fig. 3.10. Each carbon 

atom is covalently bonded to three others in such a way that all atoms in a 
single plane are linked in a sheetlike structure. In the graphite crystal, these 

infinite sheets of atoms are packed in a layer structure in which the attractive 

forces between different layers are of the van der Waals type. 
Table 3.1 shows that the energy needed to separate typical network solids 

into their constituent atoms can be as great as 200 kcal/mole. Consequently, 

these materials, like ionic substances, are extremely involatile and have very 
high melting points. Moreover, covalent bonds have very noticeable directional 

properties. That is, a central atom forms strong covalent bonds with its 

neighbors only if they occupy certain fairly specific locations. Therefore any 
significant distortion of a covalent network solid involves the breaking of 

covalent bonds, which requires considerable amounts of energy. As a result, 

network solids are the hardest and most incompressible of all materials. 
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With respect to volatility and mechanical properties, infinite covalent net¬ 

work crystals are very similar to ionic solids. Therefore, the fact that a sub¬ 

stance is very hard and has a high melting and boiling point does not tell us 

what type of bonding exists in the crystal. However, we can use electrical 

properties to distinguish between ionic and covalent network solids. Both 

types are electrical insulators at low temperatures. Ionic substances become 

good electrical conductors only at temperatures above their melting point. 

The conductivity of a covalent network solid, if noticeable at all, is, in general, 

quite small, and while it may increase as temperature increases, the conductivity 

does not rise abruptly when the substance is melted. 

The structure of graphite. The atoms in alternate planes are directly under one another. fig. 3.10 

Metallic Crystals 

Metallic crystals are characterized by their silvery luster and reflectivity, high 

electrical and heat conductivity, and by the ease with which they can be drawn, 

hammered, and bent without fracture. Silver, gold, and platinum are substances 

in which all these properties appear most clearly. On the other hand, most 

metals are somewhat lacking in one or more of these characteristics. For 

example, tungsten has a silvery luster, but is brittle and not easily worked, and 

lead, which is soft and workable, is not a good conductor of electricity. 

The electronic structure of metals differs from other substances in that the 

valence electrons of the metallic atoms are not localized at each atom, but are 

the general property of the crystal as a whole. Thus in a simplified picture, a 

metal is thought of as a collection of positive ions immersed in a “sea” of mobile 

electrons. The qualitative features of this “free-electron” picture are consistent 

with the general metallic properties. The high electrical conductivity of metals 

is readily explained if the valence electrons are free to move in an applied elec¬ 

tric field. The high thermal conductivity of metals is also a consequence of the 
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free electrons, which can acquire large thermal kinetic energy, move rapidly 

through the crystal, and thereby transport heat. 

The idea that valence electrons are not localized but shared by all atoms in 

the crystal is consistent with the mechanical properties of metals. Since there 

are no highly directional localized bonds, one plane of atoms may be moved 

over another with relatively little expenditure of energy. Because the valence 

electrons are not localized and the metallic bonding is not strongly directional, 

bonding forces need not be completely disrupted when the crystal is distorted. 

While the free electron picture is consistent with the general properties of 

most metals, there can be no doubt that it is an oversimplification. Within 

the group of metallic elements there is a considerable variation of properties: 

mercury melts at —39°C, and tungsten at 3300°C; the alkali metals can be cut 

with a table knife, but osmium is hard enough to scratch glass; as an electrical 

conductor, copper is 65 times better than bismuth. Understanding these 

variations in metallic properties requires more elaborate bonding theories; 

certain aspects of these will be discussed in Chapter 11. 

3.3 X-RAYS AND CRYSTAL STRUCTURE 

The diffraction of x-rays by crystals is an important phenomenon because it 

can be used to tell us the relative locations of atoms in a solid. The results of 

x-ray diffraction studies thereby contribute to our general understanding of 

molecular structure, and how it is related to chemical and physical properties. 

Before we treat the details of the x-ray diffraction experiment, we shall find it 

helpful to analyze the basic aspects of electromagnetic waves. 

Electromagnetic Waves 

When an electrically charged sphere is suspended in free space, and a second 

“test” charge brought near, the test charge experiences a force from the charged 

sphere. This “action at a distance,” which is characteristic of electrical systems, 

is rationalized by imagining that each electric charge is surrounded by an 

electrical disturbance, or force field, and that this electric field is responsible for 

the ability of one charge to act on another even though they are physically 

separated, and in a vacuum. Similarly, the magnetic effects which are produced 

by an electric current are pictured as the result of a magnetic force field which 

surrounds each moving electric charge. In describing the properties of electrical 

systems, it is often more profitable to emphasize the behavior of the electric 

and magnetic fields, rather than that of the electric charges themselves. 

By the end of the nineteenth century, physicists had recognized that a number 

of optical experiments could be understood if light was pictured as electro¬ 

magnetic wave motion. According to this picture, light is to be thought of as 

being produced by the oscillating motion of an electric charge. This oscillation 

causes the electric field surrounding the charge to change periodically and also 
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Representation of an electromagnetic wave. The electric field £ and magnetic field H fig. 3.11 

oscillate in perpendicular planes. 

produces an oscillating magnetic field. These oscillating electric and magnetic 

disturbances are radiated or propagated through space—hence the name 

“electromagnetic radiation.” A test charge placed in the path of electromagnetic 

radiation experiences an oscillating force, first in one direction, then in the 

opposite direction, then back in the first direction, and so on. This suggests 

that the electric field of the light is propagated as a wave, and other experiments 

suggest that this is true also of the magnetic field. Thus at any instant, a snap¬ 

shot of the electromagnetic wave would look like Fig. 3.11. 

Instantaneous profile of a 
wave, demonstrating the def¬ 
initions of amplitude and wave¬ 
length. 

FIG. 3.12 

Consider Fig. 3.12, which shows only the electric component of an electro¬ 

magnetic wave. The maximum magnitude of the disturbance is called the 

wave amplitude, and the distance between two successive maxima is known as 

the wavelength, denoted by X. A test charge placed at a wave maximum would 

experience a maximum electrical force in one direction, and a test charge placed 

at the wave minimum would also feel the maximum force, but in the opposite 

direction. Figure 3.12 is only an instantaneous picture of a wave, and a moment 
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later the position of all the wave maxima will have changed uniformly. In 

other words, the wave maxima are propagated with a velocity which we shall 

call c. Then the number of maxima which reach a stationary point in one 

second is 

c cm/sec 

X cm/cycle 
v cycles/sec. 

The quantity v is called the frequency of the wave. Electromagnetic radiation 

includes visible, infrared, and ultraviolet light, as well as radio waves and x-rays. 

These various types of electromagnetic radiation, which have such different 

effects on matter, are all propagated through a vacuum with a velocity c = 

2.98 X 1010 cm/sec. They differ only in wavelength, or equivalently, fre¬ 

quency. While radio waves have wavelengths which range from one centimeter 

to several meters, and visible radiation lies in the range of 4 to 7 X 10-5 cm, 

x-rays have wavelengths of approximately 10-8 cm. 

fig. 3.13 Superposition of waves; (a) in phase; (b) out of phase; (c) small phase difference. 

Wave Interference 

The intensity of electromagnetic radiation is proportional to the square of its 

wave amplitude. With this in mind, let us examine what happens when two 

electromagnetic waves of the same frequency are superimposed. If the two 

waves are brought together as in Fig. 3.13(a), so that they both reach their 

maximum amplitude at the same point and at the same time, they are said to 

be in phase with each other. In this situation, the electromagnetic fields created 
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by the waves add, producing an even stronger electromagnetic field, which we 

might sense as an increase in the intensity of the radiation. This phenomenon 

is called constructive interference. 

On the other hand, if the waves are superimposed as in Fig. 3.13(b), so that 

one wave reaches its positive maximum amplitude just as the other reaches its 

negative maximum amplitude, the two waves are said to be out of phase. In 

this case, the electric and magnetic fields of the two waves cancel each other, 

and the intensity of the radiation vanishes. This is known as destructive inter¬ 

ference. When two waves are not exactly out of phase as in Fig. 3.13(c), some 

destructive interference still occurs. There is a partial cancellation of the 

electric and magnetic fields, and the radiation intensity diminishes. 

Destructive and constructive interference can be observed in the double-slit 

diffraction experiment shown in Fig. 3.14. The two slits act as separate radia¬ 

tion sources, each emitting a circular wave pattern, and the instantaneous 

position of the successive wave maxima are indicated by the two sets of con- 

intensity 
maxima 

Double-slit diffraction experiment. Constructive interference occurs along the rays fig. 3.14 

indicated and produces intensity maxima. 

Double-slit diffraction experiment. If path-length difference between ri and r2 is an integral fig. 3.15 

number of wavelengths, constructive interference occurs and the intensity is a maximum 
at P. 
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centric circles. The two patterns become superimposed, and the drawing shows 

that there are “rays” along which the wave maxima from the two slits are 

always in phase. When the radiation falls on a screen, maximum intensity is 

observed at the points where these rays intersect the screen. In the other 

regions, the radiation intensity is small or zero, since these regions lie along 

paths where the two waves are out of phase, and interfere destructively. 

A slightly different point of view may show more clearly why the double-slit 

interference phenomenon occurs. From Fig. 3.15 we can see that the waves 

which leave the two slits travel different distances to reach point P. The two 

waves are exactly in phase when they leave the slits, and in order for them to be 

exactly in phase when they reach the point P, the difference in the distance 

traveled must be exactly equal to an integral number of wavelengths. Exam¬ 

ination of Fig. 3.15 suggests that this condition can be met only at certain 

points on the screen, and these are the points at which maximum intensity in 

the diffraction pattern is observed. 

Diffraction by a row of equally spaced atoms. FIG. 3.16 

X-ray Diffraction 

Diffraction patterns are produced whenever light passes through or is reflected 

by a 'periodic structure that has a regularly repeating feature. The two-slit 

apparatus of Fig. 3.14 is the simplest of periodic structures. In order for the 

diffraction pattern to be prominent, the repeat distance of the periodic structure 

should be about equal to the wavelength of the light used. A crystal lattice is 

a three-dimensional periodic structure, in which the repeat distance is roughly 

10-8 cm, the distance between atoms. Thus we should expect, and do indeed 

find, diffraction patterns produced when x-rays of approximately 10-8 cm 

wavelength pass through crystals. 

Let us analyze what happens when x-rays of wavelength X strike a single 

plane of atoms, as in Fig. 3.16, and are diffracted at an angle /3. Just as in the 

double-slit experiment, the diffracted waves will produce a maximum intensity 

at the detector if the difference in the path of adjacent rays is an integral num¬ 

ber of wavelengths. If this condition is satisfied, the waves will arrive at the 
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detector in phase. From Fig. 3.16 we see that the difference in the paths fol¬ 

lowed by adjacent rays is ad — be, and this must equal m\, where m is an 

integer. Thus we have 

ad — be = m\, m — 0, 1, 2, ... , 

/i (cos 6 — cos /3) = mX. 

For m = 0, this gives /3 = 6. Therefore when the angle of the incident beam 

is equal to the angle of the diffracted beam, there is a maximum in the intensity 

at the detector. This tells us that because of the regular periodic repetition of 

lattice points, a plane of atoms will “reflect,” at least partially, an x-ray beam 

in much the same manner as a mirror reflects ordinary light. 

• •••••••• 
Diffraction from successive planes of atoms. Diffracted waves are in phase if nX = 2d sin 9. fig. 3.17 

However, because a single plane of atoms reflects only a fraction of the 

incident x-ray intensity, there is still another condition to be met if a diffraction 

pattern of appreciable intensity is to be observed. The waves reflected from 

successive parallel planes of atoms must reach the detector in phase in order to 

produce an intensity maximum. Figure 3.17 illustrates how the condition for 

maximum diffracted intensity can be derived. In order for the waves to reach 

the detector in phase, the difference in the distance they travel must be equal 

to a whole number of wavelengths, nX, where n is an integer. From Fig. 3.17 

we find that the path difference for the two waves is 2d sin 6, where d is the 

spacing between the planes. Thus we have 

nX = 2d sin 6, n = 1, 2, 3, ... , (3-1) 

for the condition which must be satisfied in order for a maximum in the dif¬ 

fracted intensity to occur. 
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Equation (3.1) is called the Bragg diffraction equation, after W. L. Bragg, 

who first derived it and used it to analyze the structure of crystals. The Bragg 

equation has two important applications. If the spacing d of the planes of the 

crystal lattice is known, then the wavelength of the x-rays can be calculated 

from the measured diffraction angle 0. This is the procedure that Moseley used 

to determine the characteristic x-ray wavelengths emitted by each of the ele¬ 

ments in his investigations which led to the determination of atomic numbers. 

Alternatively, if the x-ray wavelength X is known, the characteristic interplanar 

spacings of a crystal can be computed from measurements of the diffraction 

angles 0. In this way a complete picture of the lattice structure of a crystal 

can be obtained. 

Ionization 
chamber 

FIG. 3.18 Schematic representation of the Bragg x-ray diffraction apparatus. 

Note carefully that the most important factor which enters the derivation 

of the Bragg equation is the regular spacing of the lattice planes. We saw earlier 

that the reason that a single plane of atoms reflects x-rays most efficiently 

when the angle of incidence is equal to the angle of reflection is a consequence 

of the regular spacing of atoms in the plane. Our derivation of the Bragg equa¬ 

tion shows that the fact that reflections from parallel planes of the lattice 

reinforce each other is a consequence of the uniform interplanar spacing. If the 

arrangement of atoms in the planes or the spacing between parallel planes 

becomes irregular, as is the case in liquids and amorphous solids, sharp x-ray 

diffraction patterns are not observed. 

The simplest type of apparatus for observing x-ray diffraction is shown in 

Fig. 3.18. X-rays of a single wavelength impinge on a crystal which is mounted 

on a rotating platform. The diffracted radiation is detected by the ionization it 

produces in the chamber D. When the crystal is set at an arbitrary angle with 

respect to the incident x-ray beam, very little diffracted radiation reaches the 

detector, since it is likely that at this angle there is no plane of the crystal 

lattice which satisfies the Bragg equation for maximum diffracted intensity. 

However, as the crystal is rotated, eventually some set of planes becomes 
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aligned at an angle 6 that satisfies Eq. (3.1), and a strong signal appears at the 

detector. As the crystal is rotated still further this signal disappears, but at 

some other angle 6' another diffracted signal may appear when a new set of 

lattice planes satisfies the Bragg equation. As the two-dimensional lattice in 

Fig. 3.17 shows, there are many sets of parallel planes in a lattice, and so 

diffracted radiation is observed at many angles. However, only the lattice 

planes which contain large numbers of atoms will reflect the x-rays appreciably, 

so in practice, only diffraction from the most important lattice planes is observed. 

Electron density map of naph¬ 
thalene. Dashed lines corre¬ 
spond to 0.5 electron charge per 
cubic angstrom. 

FIG. 3.19 

X-rays and Electron Density 

The measurement of the diffraction angles and use of the Bragg equation leads 

to a determination of the spacing of the planes of a crystal lattice. So far we 

have assumed that the lattice planes are made up of identical structureless 

points whose only feature is the ability to scatter x-rays. In reality, the occu¬ 

pants of the lattice sites may be individual atoms, or what is more likely, may 

be molecules or groups of molecules of rather complex structure. It is the 

electrons in these molecules that are responsible for the scattering of the x-rays, 

and the efficiency of the scattering, and hence the intensity of the diffraction 

pattern, depends on the number and distribution of the electrons at the lattice 

sites. The electron distribution is, of course, determined by the structure of 

the molecules which occupy the lattice sites. Thus by studying not only the 

angles at which x-rays are diffracted, but also the intensities of the diffracted 

radiation, it is possible to determine the structure of the molecules which arc 

at the lattice sites. 

In the most elegant applications of this technique, it is possible to obtain 

contour maps of the electron density in very complicated molecules. Figure 3.19 

shows the structure of the naphthalene molecule, CioHg, as determined by 

x-ray diffraction intensity studies. The contours represent lines of constant 
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average electron density, and show conclusively that the geometric structure of 
naphthalene is 

H H 

H C C H 

".c^ ^ 

c c c 

H H 

where all the atoms lie in the same plane. The contour maps provide very 

precise values for the distances between nuclei and the angles between bonds. 
Consequently, much of our knowledge of molecular structure is obtained from 

x-ray studies. 

Chemical Analysis by X-rays 

We have seen that the interplanar spacing of a crystal lattice determines the 
angles at which strong x-ray diffraction occurs. These interplanar spacings are 

a most intimate characteristic of the crystal, for they are determined by the 

size and arrangement of its atoms. Each crystalline compound has its own set 
of interplanar spacings and thus its own characteristic set of x-ray diffraction 

angles which, like a fingerprint, can be used to identify the substance. 

One of the simplest applications of x-ray identification is to prove or dis¬ 

prove the existence of new compounds. For example, it is well known that 
cadmium forms an oxide whose formula is CdO. In this compound, cadmium 

is in the +2 oxidation state, which is consistent with all the other chemistry of 
cadmium. It is possible, however, to prepare an apparently homogeneous sub¬ 

stance that, according to chemical analysis, has the empirical formula Cd20. 

Is this substance a true compound in which cadmium is in the +1 oxidation 

state? X-ray examination provides the answer. The x-ray reflections from 
“Cd20” occur only at angles which are characteristic either of metallic cadmium 

or CdO. It would certainly be expected that “Cd20, ” if it were a true com¬ 
pound, would have different lattice spacing and hence different x-ray reflection 

angles from either cadmium metal or CdO. Therefore it must be concluded 

that “Cd20” is really not a true compound, but a physical mixture of tiny 
crystals of cadmium metal and CdO. 

Determination of Avogadro’s Number 

One of the most fundamentally important results of x-ray diffraction studies is 

the precise determination of the value of Avogadro’s number. In principle, the 

measurement is very simple. X-rays of known wavelength are used to deter- 
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mine the interplanar spacings of a crystal. From this, the volume occupied by 
one molecule (or atom) can be calculated. Then the measured volume of one 
mole of the crystal is divided by the volume of one molecule, and the result is 
Avogadro’s number. 

One of the keys to this procedure is the knowledge of the wavelength of the 
x-rays. How is this determined in the first place? The answer is surprisingly 
simple. An artificial “lattice” is created by carefully drawing closely spaced 
lines on a surface. Even though these lines are as much as 5 X 10~4 cm apart, 
much greater than the 10~8-cm wavelength of x-rays, they still can produce 
an x-ray diffraction pattern if the x-rays are directed almost parallel to the ruled 
surface. A similar diffraction effect can be seen when visible light grazes a 
phonograph record. Even though the wavelength of the light is much smaller 
than the spacing between the record grooves, diffraction is observed if the 
grazing angle is small enough. In the x-ray experiment, the wavelength can be 
calculated from the measured diffraction angles and the known spacing of the 
ruled lattice. 

In our discussion of x-ray diffraction, we emphasized that the microscopic 
characteristic that produces sharp diffraction patterns is an ordered, regularly 
repeating structure. Crystalline solids which show these sharp diffraction phe¬ 
nomena can therefore be described in terms of lattices, or three-dimensional 
arrays of points that display a regular repetition pattern. An example of such 
a lattice is shown in Fig. 3.20. The lattice is characterized by the distance 
between successive points along each of the three axes indicated, and the angles 
between these axes. 

The Unit Cell 

The lattice of points shown in Fig. 3.20 may also be discussed in terms of a 
basic, simple array of points called the unit cell. This unit cell is the smallest 
unit which, when repeated in three dimensions, will generate the entire crystal. 
A crystal can thus be thought of as composed of a combination of unit cells, 
with neighboring cells sharing faces, edges, or corners. The unit cell of the 
lattice pictured in Fig. 3.20 is shown with its outlines emphasized. 
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The unit cells of the fourteen Bravais lattices grouped into the seven crystal systems. 
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The Bravais Lattices 

By considering the possible combinations of the lattice point spacings (a, b, c) 

along each of the lattice axes and the angles (a, 0, 7) between these axes, it is 
possible to generate seven crystal systems. The geometric characteristics of 

these crystal systems are listed in Table 3.2. In 1848, Bravais showed that 
associated with these seven crystal systems, there were only fourteen crystal 

lattices. The unit cells for these fourteen Bravais lattices are shown in Fig. 3.21. 
Every naturally occurring crystal has one of these lattice structures. However, 

in a natural crystal the lattice sites may be occupied by atoms or more frequently 
by complex groups of atoms, and hence the unit cell may have a complicated 

internal molecular structure. Since even in the most complex molecular struc¬ 

tures the unit cell is the basic repeating unit of the crystal, the unit cell dimen¬ 
sions can be obtained from x-ray diffraction patterns by use of the Bragg 

relation, Eq. (3.1). The actual structure within the unit cell is a more difficult 

problem, however, and is determined from measurements of the intensities of 
the spots in the diffraction pattern. 

Table 3.2 The seven crystal systems and fourteen Bravais lattices 

Crystal system Unit cell dimensions and angles Bravais lattice 

Cubic a = b = c; a — i3 = y = 90° Simple 
Body-centered 
Face-centered 

Orthorhombic a^b^c] a = (3=y = 90° Simple 
Body-centered 
End-centered 
Face-centered 

Tetragonal a = b^c;<* = /3 = y — 90° Simple 
Body-centered 

Monoclinic a b c\ a = y — 90° ^ /3 Simple 
End-centered 

Rhombohedral a — b — c\ a — P = y 90° Simple 

Triclinic a^b^c, y 9^ 90° Simple 

Hexagonal a — b 9^ c; ct — p = 90°; y = 120° Simple 

3.5 COMMON CRYSTAL STRUCTURES 

When the sites of the various Bravais lattices are occupied or surrounded by 
polyatomic molecules, quite complex crystal structures can result. However, 

there are a few types of structures that not only have simple geometric charac¬ 
teristics but also occur quite frequently in natural crystals. In this section we 

shall examine a few of these common crystal structures. 
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Closest-Packed Structures 

FIG. 3.22 

There are many substances whose atomic arrangement can be pictured as a 

result of packing together identical spheres so as to achieve maximum density. 
In particular, almost all the metallic elements and many molecular crystals 

display these “closest-packed” structures. Let us see, then, how the closest 

packing of spheres can be achieved. 

Figure 3.22 shows the closest-packed arrangement of spheres whose centers 
lie in a single plane. Each sphere is surrounded by six others, which are called 

its nearest neighbors. For future reference, we shall label each of the sites 
occupied by the spheres with the letter a. Consideration of Fig. 3.22 suggests 

that a second layer of closest-packed spheres can be added by placing spheres 

in the depressions, or “holes,” of the first layer. All of these depressions are 

identical, but they can be divided into two groups. If we place a sphere at a 

site marked 6, we cannot place one in the adjacent sites marked c, and vice 
versa. Thus all spheres which form the second closest-packed layer must be 

placed either at the 6-sites or the c-sites. The arrangement produced by choosing 

the 6-sites is shown in Fig. 3.23. 

fig. 3.23 Two layers of closest-packed spheres. 

When we attempt to add a third layer, two possibilities confront us. There 
are once again two types of depression available to accept the third layer, but 

they are not exactly equivalent. One type of depression is labeled a in Fig. 3.23, 

for it lies directly above the center of a sphere of the first layer. The other type 
of depression, denoted by c, lies directly over a hole in the first layer—in fact, 
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directly over a c-type hole. Either of these two types of site may be used to 

accommodate atoms of the third layer, and either choice leads to a closest- 
packed crystal lattice. 

When the spheres of the third layer are placed at the a-sites and the sequence 
of the layers is continued indefinitely as abababab, etc., we obtain a hexagonal 

closest-packed structure. This designation is chosen because the atoms in the 
two a-layers occupy the sites of the unit cell of the hexagonal Bravais lattice. 

The three atoms within the cell (the 6-layer) do not occupy lattice sites. As 
Fig. 3.24 shows, when the structure is rotated about an axis perpendicular to 

the layers and passing through one sphere, the same structure is encountered 
three times in the course of a complete revolution. 

Hexagonal closest packing fig. 3.24 

of spheres: (a) normal and 
(b) exploded view. 

(a) (b) 

The second possibility is that the spheres of the third layer be located at the 

c-sites, and when the sequence abcabcabc, etc., is continued indefinitely, the 
resulting arrangement is called cubic closest packing. To see why this lattice is 

described as cubic, we must rotate the structure as in Fig. 3.25. Then it be¬ 
comes clear that the basic unit of the cubic closest-packed structure is a cube 

which contains 14 spheres. The layers which we used to build up the structure 
run through the cube parallel to diagonals that link opposite corners. Close 

study of the cubic closest-packed lattice shows that there is a sphere at the 
center of each face of the cube, and consequently this structure is also known 

as the face-centered cubic lattice. Generally it is difficult to see in a picture both 
the closest-packed layers and the face-centered cube surfaces, but a three- 

dimensional model reveals both features clearly. 
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There are a few properties that are common to both of the closest-packed 

structures. In both instances 74.0% of the available space is occupied by 

spheres. In either of the closest-packed lattices each sphere is in direct contact 
with 12 nearest neighbors—6 which lie in one layer, and 3 from each of the 

layers above and below. The number of nearest neighbors is called the coordi¬ 

nation number of the sphere, and our arguments show that 12 is the maximum 

possible coordination number, since it is found when spheres are packed with 
maximum density. 

FIG. 3.25 

(a) (b) 

Cubic closest packing of spheres: (a) generation of unit from closest-packed layers, and 
(b) rotation to show cubic symmetry. 

Solids whose molecules or atoms are essentially spherical in shape and are 

linked by nondirectional bonds are often found to have one of the closest- 

packed structures. In particular, all of the noble gases crystallize in either 

cubic or hexagonal closest-packed structures. The electron cloud in the hydrogen 
molecule H2 is nearly spherical in shape and crystals of solid hydrogen have the 

cubic closest-packed structure. The hydrogen halides HCI, HBr, and HI are also 

nearly spherical molecules, since they consist of a large spherical halogen atom 
only slightly distorted by the very small hydrogen atom. Accordingly, all 

three of these compounds crystallize in a hexagonal closest-packed structure. 

The tendency of spherical molecules to crystallize in one of the closest-packed 
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structures is apparently a consequence of the fact that, by so doing, they 

achieve the maximum coordination number, 12, thereby maximizing the 
strength of the intermolecular van der Waals forces. 

The body-centered cubic lattice. Spheres at cube FIG. 3.26 

centers are shaded to emphasize their position. 

Table 3.3 gives the crystal structures of many of the metallic elements. 
A number of these elements are polymorphic: they crystallize in more than one 

structure. Most of the metals have either the hexagonal or cubic closest-packed 
structures in which the atoms have the maximum possible coordination number 

of 12. Several metals are found in the body-centered cubic structure illustrated 

in Fig. 3.26. In this lattice there is a sphere at each corner and in the center of 

a cube, which is the repeating unit of the lattice. Because each sphere has only 
8 nearest neighbors in the body-centered cubic lattice, it is not a closest-packed 

structure. However, in the body-centered lattice, the spheres occupy 68% of 

the available space, only slightly less than the 74% characteristic of the closest- 
packed structures. We shall see in Chapter 11 that the high coordination 

numbers found in metallic lattices are related to the nature of metallic bonding. 

Table 3.3 Crystal structures of the metallic elements 

Li 
1 

Be 
II 

B 
I Body-center cubic 

II Hexagonal closest packed 
III Cubic closest packed Na 

1 
Mg 
II 

Al 
Ilf 

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn 
1 III II II 1 1 1 1 II III III II 

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd 
1 III II II 1 1 II II III III III II 

Cs Ba La Hf Ta W Re Os Ir Pt Au Hg 
1 1 II II 1 1 II II III III III — 
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FIG. 3.27 Construction of tetrahedral interstitial site in a closest-packed lattice. 

Structures Related to Closest-Packed Lattices 

The crystal structures of many of the binary compounds of the type AB, AB2, 
and A2B are related in a simple manner to the closest-packed arrangements. 

Very often atoms of one type, let us say B, can be pictured as spheres that form 

a closest-packed structure, while the A-atoms occupy the interstices or holes 

between the close-packed spheres. To pursue this idea, we must examine the 
geometry of the holes in the closest-packed structures. 

One of the basic units in either of the closest-packed structures is one sphere 
resting upon three others, as is illustrated in Fig. 3.27. The centers of the four 

spheres in this arrangement lie at the apices of a regular tetrahedron. Con¬ 

sequently, the space at the center of this tetrahedron is called a tetrahedral site. 
In any close-packed structure, each sphere is in contact with three others in the 

layer above it, and with three more in the layer below. As a result, there are 

two tetrahedral sites associated with each sphere. From these observations, 
we can see how the crystal structure of a binary compound AB might be related 

to a closest-packed arrangement. First, imagine that the B-atoms form a close- 

packed lattice. Then a compound AB could have a structure in which half of 

the tetrahedral sites were occupied by A-atoms. If the formula of the compound 
were A2B, all of the tetrahedral sites could be occupied by A-atoms. As we shall 

see, both these arrangements are found in nature. 

There is a second type of interstitial site in the closest-packed structures. 
This site is surrounded by six spheres whose centers lie at the apices of a regular 

octahedron, as illustrated by Fig. 3.28. The existence of these octahedral sites 
in the closest-packed structures is easier to recognize if we realize that each face 
of a regular octahedron is an equilateral triangle. Figure 3.28 shows, therefore, 

that an octahedral site can be generated by two sets of three spheres, each set 

forming, in parallel planes, equilateral triangles with apices pointing in opposite 

directions. These sets of equilateral triangles appear naturally in the parallel 
planes of the closest-packed structures. 
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Construction of octahedral interstitial site in a closest-packed lattice. FIG. 3.28 

To see the relation between the octahedral sites and the tetrahedral sites, 
recall that in building the second layer of a closest-packed structure, spheres 

were set into only half the depressions in the top of the first layer. The depres¬ 

sions in which spheres of the second layer rest are tetrahedral sites, while the 
depressions in which no sphere rests form the octahedral sites. 

Locations of the octahedral sites in a face- FIG. 3.29 

centered cubic lattice. 

There is another way of locating octahedral sites. Figure 3.29 shows the 
face of a face-centered cubic lattice. The center of any regular octahedron falls 

on an equatorial plane formed by the centers of four spheres; these locations 
are marked in the drawing. By using Fig. 3.29, it is easy to see that there is 

one octahedral site for every sphere in the structure, because if we follow one 
column of spheres vertically, octahedral sites and spheres alternate. This 

conclusion holds for the hexagonal closest-packed structure as well. Thus there 
are half as many octahedral sites in a closest-packed structure as there are tetra¬ 

hedral sites. Consequently a compound AB might be formed with the B-atoms 

arranged in a closest-packed structure, and A-atoms at all the octahedral sites. 
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The dimensions of the interstitial sites in closest-packed lattices are related 
to the size of the spheres used to form the structures. Figure 3.30 shows a 

cross section through an octahedral site. The radius of the small sphere that 
occupies the site can be found by simple geometry, for if we let ri and r2 be the 

radii of the small and large spheres, respectively, the theorem of Pythagoras 

tells us that 

2{r i + r2)2 = (2r2)2, 

ri + r2 = V2 r2, 

— = 0.414. 
r 2 

Thus in order to occupy the octahedral site without disturbing the closest- 

packed lattice, the radius of the small sphere should be no greater than 0.414 

times that of the large spheres. A similar calculation for the tetrahedral sites 
gives r\/r2 — 0.225 for the maximum radius ratio, so a tetrahedral site is 

noticeably smaller than an octahedral site. 

fig. 3.30 The geometry of an octahedral site in a closest-packed 
lattice. 

With the geometric properties of the closest-packed structures in mind, we 
are in a position to appreciate the relationships among the structures of many 

simple compounds. Our approach applies most clearly to compounds made up 

of monatomic ions, for these ions can be thought of as spheres with charac¬ 

teristic radii. It is true that an actual ion is not a sphere with a well-defined 
radius, but is a spherical charge “cloud” of rapidly decreasing density that, in 

principle, extends to infinity. Our procedure is to picture ions which have many 

electrons as large spheres and those with fewer electrons as smaller spheres, and 
while this is a useful model, its limitations must be remembered. 

Consider first Fig. 3.31, the sodium chloride, or rock-salt structure. The 

chloride ions considered alone form a face-centered cubic lattice, and the sodium 
ions alone also have a face-centered cubic arrangement. Neither of these inter¬ 

penetrating lattices is really closest-packed in the model, since the ions along 
the diagonal of a cube face do not touch each other. However, because the 

chloride ions are represented by the larger spheres, it is profitable to think of 

them as forming a cubic close-packed lattice that has been slightly expanded 

by the presence of the sodium ions. Study of the rock-salt structure shows us 
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The sodium chloride structure: (a) space-filling model showing relative sizes of ions; 
(b) lattice model showing the octahedral coordination about each ion. 

FIG. 3.31 

that the sodium ions occupy the octahedral sites in the chloride close-packed 

lattice. Thus each sodium ion is surrounded by six chloride ions, and Fig. 3.31 
shows that the converse is also true. As we remarked earlier, there is one octa¬ 

hedral site for each sphere in the closest-packed structure, and since there are 
equal numbers of sodium and chloride ions in sodium chloride, all the octahedral 

sites in the chloride lattice must be occupied by sodium ions. Many other 
compounds of the AB-type have the rock-salt crystal structure; this is true 

even of some in which the ions are polyatomic. A partial list of these com¬ 
pounds is contained in Table 3.4. 

Another structure common to several binary 1:1 compounds is the zinc- 
blende (ZnS) structure illustrated in Fig. 3.32. The simplest point of view in this 

case is to think of the large sulfide ions as forming a face-centered cubic lattice 
that is almost closest-packed, with the zinc ions occupying alternate tetrahedral 

sites. Only half of the tetrahedral sites are occupied because the compound has 
1:1 stoichiometry and there are two tetrahedral sites associated with each sulfide 

Table 3.4 Structures derived from cubic closest packing 

Holes used 
Fraction 

filled 
Name Examples 

Octahedral 1 Rock salt Halides of Li, Na, K, Rb; NH4CI, NH4Br, 
NH4I, AgF, AgCI, AgBr; oxides and sul¬ 
fides of Mg, Ca, Sr, Ba. 

Tetrahedral 1 
2 Zinc blende ZnS, CuCI, CuBr, Cul, Agl, BeS 

Tetrahedral 1 Fluorite CaF2, SrF2, BaF2, PbF2, Hf02, U02 

1 Antifluorite Oxides and sulfides of Li, Na, K, and Rb 
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FIG. 3.32 

ion. Because the zinc ions occupy tetrahedral sites, it is clear that they have a 
coordination number of four, and reference to Fig. 3.32 shows that the coordi¬ 

nation number of the sulfide ions is also four. Because the tetrahedral sites 

are relatively small, the zinc-blende structure is found in 1:1 compounds in 
which the cation is much smaller than the anion. Table 3.4 lists several of the 

compounds that have the zinc-blende structure. 

The zinc-blende crystal structure. Both 
the zinc and the sulfur atoms have a 
coordination number of four. 

# Zn 

Some compounds whose stoichiometry is of the type 1: 2 are found to crystal¬ 

lize in the fluorite (CaF2) structure pictured in Fig. 3.33. One way of describing 
this arrangement is to say that the calcium ions form a face-centered cubic 

lattice and the fluoride ions occupy all the tetrahedral sites. Closely related 

to this lattice is the antifluorite structure characteristic of 2:1 compounds like 
Na20. In the antifluorite structure, it is the anions that form the face-centered 

cubic lattice, and the cations that occupy all the tetrahedral sites. The anti¬ 

fluorite and the fluorite structures are both related to the zinc-blende structure, 

in which only half the tetrahedral sites in a face-centered cubic lattice are 

occupied. 
Our discussion has shown that there are four structures derived from cubic 

closest-packing that are found in a large number of common binary inorganic 

compounds. It is easy to see that a similar group of lattices can be generated 

from the hexagonal closest-packed structure, and examples of these are common 
among known compounds. Even the structures of some compounds with more 

complex stoichiometry can be related to the closest-packed lattices. Thus the 

packing of spheres provides a simple picture which seems to unify much of 

structural chemistry, and we shall make some use of this approach in our 

subsequent discussions of descriptive chemistry. 

Local Packing Arrangements 

In discussing structures derived from the closest-packed lattices, we noted that 

the sizes of octahedral and tetrahedral sites were different. In a crystal like 
ZnS, the very small Zn++ ions occupy the small tetrahedral sites in the nearly 
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The fluoride lattice. The cations form a face- 
centered cubic lattice with the anions at all 
tetrahedral interstitial sites. 

FIG. 3.33 

closest-packed sulfide lattice. In NaCl, however, the ion sizes are more nearly 
comparable, and thus the positive ions occupy the larger octahedral interstitial 

sites in the anion lattice. These and similar observations suggest that in other 
situations, not necessarily derived from the close-packed structures, the coordi¬ 

nation number of an atom or ion may be influenced or determined by the ratio 
of its radius to the radius of the atoms surrounding it. 

To explore this idea further, we consider the coordination of a cation by 

anions, and make the following postulates: 

1. Cations and anions try to be as close as their radii permit in order to maximize 

Coulomb attraction. 

2. Anions never approach each other more closely than their ionic radii permit. 

3. Each cation tends to be surrounded by the largest possible number of anions 

that is consistent with the first two postulates. 

According to these postulates, a particular coordination number will occur 
between the values of the cation-to-anion radius ratio at which the anions 

simultaneously touch each other and the central cation, and the radius ratio at 
which this condition becomes possible for the next higher coordination number. 

Thus tetrahedral coordination is stable for cation-to-anion radius ratios of 

0.225 to 0.414, at which point it becomes possible to increase the coordination 
number to six. A simple geometric calculation shows that it is possible to bring 

three anions and one cation into contact when r+/r_ = 0.155. The coordina¬ 
tion number three is stable between this radius ratio and 0.225, at which point 

tetrahedral coordination becomes possible. Table 3.5 summarizes the range of 
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radius ratios over which coordination numbers of 2, 3, 4, 6, 8, and 12 are 

expected to be stable. 

By using values of the ionic radius assigned to various cations and anions 

(see Chapter 11) it is possible to predict the cation coordination number in 
various compounds. In most cases the predicted coordination number is ob¬ 

served. Thus the consideration of radius ratios is a valuable technique which 

can be used to guess the structures of species in which the bonding is suspected 
to be electrostatic or nondirectional. 

Table 3.5 Local packing arrangements 

Cation 
coordination Radius ratio Geometry Examples 

number 

2 0-0.155 Linear 

3 0.155-0.225 Triangular 

4 0.225-0.414 Tetrahedral 

6 0.414-0.732 Octahedral 

F-— H+—F- 

8 0.732-1.0 Cubic 

Cl-i 

ci- 

Cs+ 
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3.6 DEFECTS IN SOLID STRUCTURES 

In our discussion up to this point we have tacitly assumed perfect lattice struc¬ 

tures for crystalline solids. In fact, naturally occurring crystals have substantial 

numbers of defects. These defects have an important and sometimes dominating 
influence on the mechanical, electrical, and optical properties of solids. The 

study of the ramifications of defects is by itself a major research area encom¬ 
passing chemistry, engineering, and solid state physics. Here we will indicate 
the classification, description, and major consequences of the most common 
crystal imperfections. 

Point Defects 

Lattice imperfections are classified according to their geometric characteristics. 

Point defects involve only one or two lattice sites directly. Line defects have to 
do with alterations or displacements of a row of lattice sites. Plane defects 
arise when a plane of sites is imperfect. 

Vacancy - O 

Substitutional 
impurity 

Types of point defect in a simple crystal structure. FIG. 3.34 

The four major kinds of point defects that occur in a crystal of one type of 

atom or molecule are indicated in Fig. 3.34. If an atom is missing from a lattice 
site there is a vacancy; an atom out of place is called self-interstitial. A foreign 

atom occupying a lattice site is called a substitutional impurity, whereas one 

placed off a site is an interstitial impurity. 
In ionic solids, certain special cases of these point defects occur (see Fig. 3.35). 

A vacancy at a cation site is frequently accompanied by a vacancy at a nearby 
anion site. Such paired cation-anion vacancies, called Schottky defects, preserve 
the electrical neutrality of the crystal, and their formation requires relatively 

little energy. In a Frenkel defect, an ion leaves its lattice site and enters an 

interstitial position. This process also preserves overall electrical neutrality. 
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Formation of Frenkel defects requires relatively little energy if the anions are 

large and the cation is small, as in the silver halides, or if the crystal structure 
is of an open type with large interstices, like the fluorite (CaF2) structure. 

A simple anion vacancy in an ionic crystal creates a local excess of positive 
charge. An electron can migrate to this site and be bound, in effect replacing 

the absent negative ion. The presence of a number of such defects imparts a 

color to an otherwise colorless crystal, and consequently this type of imperfec¬ 
tion is called an F-center, after Farbe, the German word for color. 

In ionic compounds, substitutional impurities can occur relatively easily. 
For example, the ions Ba++ and Sr++ have the same charge and are fairly 
similar in size. Consequently, if BaS04 is precipitated from a solution contain¬ 

ing strontium ions, some of the latter are inevitably incorporated in the newly 

formed barium sulfate crystals. Such substitutional impurities are very common 

in ionic compounds of the transition metals, since many of these elements form 

ions of the same charge and very nearly the same size. 

As mentioned in Chapter 1, vacancies and interstitial atoms are responsible 

for the occurrence of nonstoichiometric compounds. Nickel oxide, NiO, is a 

good example of a compound which has a somewhat variable stoichiometry. 

When nickel oxide is prepared at relatively low temperature (1100°K) by partial 
oxidation of excess nickel, its composition is Nii.0Oi.0, its color is pale green, and 

its electrical properties are those of an insulator, as one would expect for a 

simple ionic compound. If the same substance is treated with excess oxygen 

at 1500°K, cation vacancies occur, the composition approaches Ni0.97Oi.0, the 
color turns black, and nickel oxide becomes an electrical semiconductor. 

The deficiency of positive charge which would otherwise accompany cation 

vacancies is made up by the presence of the appropriate amount of Ni+3, and 
it is just this factor which is responsible for the electrical conductivity of non¬ 

stoichiometric NiO. If a Ni+3 ion exists at some point, an electron from else¬ 

where in the lattice may jump to it, converting it to Ni++, and simultaneously 
creating a Ni+3 ion at a new lattice point. By a series of such electron jumps, 
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charge can migrate through the crystal, and thus nonst.oichiometric NiO is not 
an insulator, but a semiconductor. 

It has been found that NiO will dissolve substantial amounts of Li20. The 
lithium ion Li+ enters the NiO lattice as a substitutional impurity at some of 
the cation sites. Since Li+ has only a single positive charge, an equal number 

of Ni+3 ions must be present in the lattice in order to preserve electrical 
neutrality. Consequently, NiO which has been “doped” with Li20 is an even 

better electrical conductor than nonstoichiometric NiO, since the doping pro¬ 
cedure permits the introduction of even greater numbers of Ni+3 ions. 

Figure 3.36 shows the two types of line defects. In an edge dislocation an 
extra half-plane of atoms is present. The rest of the lattice along the edge of 

this plane is alternatively compressed or expanded in order to accommodate it. 

Two types of line defect in a crystal lattice, (a) An edge dislocation, (b) A screw dislocation. FIG. 3.36 

In a screw dislocation, part of a set of lattice planes has been moved one or 

more lattice units relative to their neighboring lattice planes. In effect, the 
screw dislocation represents a partially successful attempt to shear the crystal 
lattice. In the region around the dislocation, the lattice is under a shear stress. 

The frequency of occurrence of edge dislocations is expressed as a number of 
dislocations per unit area. In a normally annealed metal, there may be as many 

as 10b edge dislocations per cm2. This figure should be compared with the num¬ 
ber of atoms per cm2, which is approximately 1015. In a metal which has been 
cold-worked, however, the dislocation density can rise to 10u to 1012 per cm2. 

Edge dislocations have profound influence on the mechanical properties of 

matter. If two perfect close-packed planes of atoms are to be displaced relative 
to each other, the applied shear stress must overcome the attraction of each 

atom in one plane to its nearest neighbors in the other plane. The stress neces¬ 
sary to do this can be calculated from the known interatomic forces to be on 

the order of 10r> psi. The actual required force as measured experimentally is 
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only 10 * psi or less. The discrepancy between these two numbers arises because 

of the presence of edge and screw dislocations in normal metal samples. Figure 
3.37 indicates how an edge dislocation facilitates the motion of one plane of 

atoms over another. Because only one row of atoms must move at a time, and 
because the row which moves is already in a distorted, energetically unstable 

position, less force is needed to carry out the shear. 

fig. 3.37 The motion of an edge dislocation under a shearing stress. 

Metals can be hardened and strengthened by the inclusion of foreign atoms. 

Foreign atoms whose size is different from that of the host tend to occupy 
lattice positions in or near dislocations, where they can be more easily accom¬ 

modated in the distorted lattice. This makes it more difficult to move the dis¬ 
location under an externally applied stress, since it is now energetically more 

favorable for the defect to remain where the lattice is distorted by impurity 
atoms. The efficacy of different impurities in strengthening a metal in this 

manner is directly related to their size. Thus, while addition of 10% zinc 
increases the strength of copper by 30%, the same amount of beryllium, a much 

smaller atom, nearly triples the strength. 

As pointed out in Section 3.1, solids often have a microcrystalline structure, 
and the interface between two differently oriented microcrystals is an example 

of a plane or surface defect. Since the lattice planes in two such neighboring 
microcrystals will tend to be randomly oriented, the surface atoms of the two 

crystallites will be out of register. Consequently, there will be a transition 

region between the crystallites in which the atomic spacing will be irregular. 
In these so-called grain boundary regions, the atoms are less stable and con¬ 

sequently tend to be more reactive. This is why the microcrystalline structure 
of a metal can be revealed by etching: the atoms in the grain boundaries 

are preferentially removed, and the microcrystals arc left as partially raised 

structures. 

3.7 THERMAL PROPERTIES OF SOLIDS 

According to the law of Dulong and Petit, the heat capacity of one gram atom 
of a solid element is approximately 6.3 cal/deg. We have seen that the applica¬ 

tion of this rule is not limited to elements, for experiments show that the heat 
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capacities of many solids, elemental or compound, is G cal/deg per mo/e of atoms. 

Of course, there are exceptions to this law. There are many substances whose 

heat capacities, measured at room temperature, are much smaller than predicted. 
These exceptional substances are the hard high-melting crystals that are made 
up of light atoms, such as boron, carbon, and beryllium. Moreover, the Dulong 

and Petit law fails for all substances if the heat capacity is measured at low 

temperatures. That is, the heat capacity of a solid is not constant, but depends 
on temperature in the manner illustrated in Fig. 3.38. At the absolute zero of 

temperature, the heat capacity of all substances is zero. As the temperature is 
raised, the heat capacity increases, but at different rates for different substances. 

Finally, in the limit of very high temperatures, the heat capacity of all solids 
is 6.3 cal/deg per mole of atoms. 

Heat capacity for silver at constant FIG. 3.38 

volume, Cy. 

The key to understanding the temperature dependence of the heat capacities 

of solids was supplied by Einstein in 1905. It is an important argument, for it 
was one of the first demonstrations of the validity of Planck’s hypothesis that 
atomic systems can exist with only certain discrete energies. Before reconstruct¬ 

ing the details of Einstein’s treatment, let us examine the general outline of the 

calculation. The heat capacity measured at constant volume is given by 

where AE is the change in the total energy of a mole of substance produced by 
the temperature change AT. We shall calculate AE from the expression 

AE = N Ae, 

where N is the number of atoms in the crystal, and Ae is the change in the average 
energy of an atom in the crystal produced by the temperature increase AT. 

Our first objective then is to find an expression that tells us how the average 

energy e depends on temperature. 
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Imagine, as did Einstein, that a mole of monatomic solid consists of N mass 

points that can oscillate in the three mutually perpendicular directions with a 
vibration frequency v. According to Planck’s proposal of quantized energy, an 

atom oscillating in one direction could have only one of the energies given by* 

e„ = nhv, n = 0, 1, 2, 3, ... , 

where h is a proportionality factor between frequency and energy, known as 

Planck’s constant, and n is an integer. Planck’s constant has the value 6.6 X 
10~27 erg-sec, and the frequency v is equal to 1012 sec-1 for many solids. An 

actual atom in a solid is a three-dimensional oscillator, but for simplicity we 

shall continue to treat only a one-dimensional oscillator, and correct for this 
discrepancy later. 

At thermal equilibrium, the oscillators in a crystal will be distributed among 
the various allowed energies according to the Boltzmann distribution law. This 

is analogous to the situation which exists in gases, where the molecules are 

distributed over the available translational energies according to the Maxwell- 
Boltzmann law. The Boltzmann distribution law states that the number Nn 

of atoms with energy en is related to the number N0 with energy e0 = 0, by 
the expression 

Nn = N0e~tJkT = N0e-nhvlkT. (3.2) 

The total number of particles, N, is equal to the sum of the numbers in each 
energy state: 

N = N0 + Nx + N2 + N3 + • • • 

Substitution of the Boltzmann factor, Eq. (3.2), gives 

N = N0 + N0e-hvlkT + NQe~2hvlkr-1- 

= Nofl e~nhvlkT. 
n=0 

Now let us compute the total energy due to the oscillation of the atoms in 

this one direction. We do this by multiplying each energy en by the number of 

particles which have that energy, and adding all these quantities: 

E = C0iVo + 6iNi + €2^2 + ‘ • 

= OiV0 d- hvN i -|- ‘IhvN2 d- • • • 

= 0 + hvN0e-h,,lkr + 2huN0e-2hvlkT d- 

= N0 Z nhve~nhvlkT. 

*Planck’s proposal was slightly in error. The energies allowed to an oscillator are 
given by e„ = (n-f- \)hv, where n is an integer. The omission of the ^ makes no 
difference in the problem we are treating. 
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We are now in a position to calculate e, the average energy of a one-dimen¬ 
sional oscillator. It is simply 

_ E 
e = N 

or 

e = 
hvY^ne 

-nhv/kT 

Ze 
—nhv/kT 

(3.3) 

In order to make any more progress, we must evaluate the sums of these 
infinite series. The procedure is eased considerably if we make the substitution 

y = e^lkT, which gives e nhvlkT = yn. 

Then, for the series in the denominator of Eq. (3.3), we get 

oo oo E—nhv/kT n i i A i 2 i 3 i 
e =2^y=i + y + y+yJ\- 

n = 0 n = 0 

1 

1 y 

This last step can be verified by algebraic long division of 1 by 1 — y. 

We treat the series in the numerator of Eq. (3.3) in the same manner: 

X ne nhv'kT =Y^nyn= y(l + 2y + 3y2 -) 
i i 

= y 
" (l - y)2 

Once again, this last step can be checked by algebraic division. 

Equation (3.3) now becomes 

e = 
hvy hve -hvjkT 

—hv/kT 
1 — y 1 — e 

Multiplying numerator and denominator by ehvlkr yields 

hv 
t = 

ehv/kT _ i 

This is the average energy of a one-dimensional oscillator. The average 

energy of an atom in a crystal is three times this amount, since the atom vibrates 
in three directions. Thus 

3 hv 
fatom ehvlkT _ i (3.4) 

is the average energy of the three-dimensional atomic oscillator. 
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Lot us now compute the heat capacity of the solid at high temperatures—high 
enough so that hv/kT « 1. Under these conditions, the denominator of Eq. (3.4) 

simplifies considerably. By the fundamental properties of the exponential 

function, 

But if hv/kT « 1, all terms after the second are very small and may be neglected 

in comparison with 1 + hv/kT. We have then 

ehvlkT ^ 1 + 
hv 

kf ’ 

which when substituted into Eq. (3.4) gives 

_ _ 3hv _ 3hv 
6 ~ e^lkT _ j - hv/kT 

= 3kT. 

Therefore the total energy of one mole of atoms is 

E = Ne= 3NkT = 3RT, 

and the heat capacity is 

Cv — ^ = 3R = G cal/mole-deg. 

This result is close to the value used in the Dulong and Petit law. The Dulong 

and Petit constant is usually taken to be approximately G.3 cal/mole-deg, since 
it refers to Cp, the heat capacity at constant pressure, which is slightly larger 

than Cv, the heat capacity at constant volume. 
It is more difficult to analyze the behavior of the heat capacity at low tem¬ 

peratures, since it is not possible to simplify Eq. (3.4) appreciably when T is 
very small. Moreover, a simplification of Eq. (3.4) for low-temperature situa¬ 

tions is not particularly useful, for the Einstein theory is only approximate, 

and its limitations are most serious at low temperatures. Nevertheless, the 
theory is qualitatively correct, and a certain amount can be learned from the 

graph of the expression 

= 3Nhv 

ehv,kT - 1 

as a function of temperature which is shown in Fig. 3.39. The slope of the 
curve in Fig. 3.39 is AE/AT, or exactly equal to the heat capacity. At the higher 

temperatures, the curve is a straight line of slope 3Nk = 3R, which cor- 
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responds to the limiting Dulong and Petit law. At lower temperatures, the 
curve becomes progressively flatter, A E/AT becomes smaller, and the heat 
capacity eventually vanishes at absolute zero temperature. 

The important feature of this analysis is the demonstration that when the 

condition hv/kT « 1 is not satisfied, the heat capacity falls below the limiting 
value of 6 cal/mole-deg. The quantity hv is the difference between the various 
allowed energies of an oscillator, and if this difference were vanishingly small, 

we would always have hv/kT <$C 1 for all finite temperatures, and the heat 

capacity of solids would always be 6 cal/mole-deg. The failure of the Dulong- 
Petit law is, therefore, a demonstration of the existence and importance of the 
separated allowed energies of atomic systems. 

The dependence of the vibrational fig. 3.39 

energy of a crystal on temperature. The 
slope of the line is the heat capacity, Cv- 

3.8 CONCLUSION 

The mechanical, electrical, optical, and thermal properties of a solid are deter¬ 

mined by the geometry of its crystal lattice and by the nature and strength 
of the forces that hold it together. Because of the large number of possible 

crystal lattices and the variety of cohesive forces, the properties of one solid 
can differ enormously from those of another. Nevertheless, it is possible to 

detect regularities and relationships in the behavior of solids and to classify 
them accordingly. Molecular crystals of spherical atoms and molecules tend 

to assume closest-packed structures and are volatile and mechanically weak. 

Metals, in general, have a densely packed structure—either of the closest- 
packed lattices or the body-centered cubic arrangement. The structures of a 

large number of binary ionic compounds are related to the closest-packed 
structures; ions of one charge form an expanded lattice of the hexagonal or 

cubic closest-packed type, with ions of the opposite charge occupying some or 
all of either the octahedral or tetrahedral holes. We shall find in our study of 

descriptive chemistry that the ability to recognize the similarities and dif¬ 
ferences in the crystal structures of solid compounds will help us to understand 

their chemical and physical properties 
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PROBLEMS 

3.1 Many of the features of crystal lattices can be appreciated fully only upon 

inspection of a three-dimensional model of the structure. Convenient and inexpensive 

models of crystal lattices can be constructed from gumdrops and toothpicks. Build 

models of the crystal structures shown in this chapter. 

3.2 The density of solid sodium chloride is 2.165 gm/cc, and one mole weighs 

58.448 gm. What are the dimensions of a cube that contains one mole of solid NaCl? 

If the distance between centers of adjacent Na+ and Cl- ions is 2.819 X 10-8 cm, 

how many ions of each charge lie along each edge of the cube? Calculate Avogadro’s 

number from these data. 

3.3 Consider a face-centered cubic lattice made up of identical hard spheres of 

radius R. What are the dimensions of a cubical box that will just enclose the centers 

of the 14 spheres shown in Fig. 3.25? What is the volume of this box? Calculate the 

fraction of this volume that the spheres actually occupy. 

3.4 The simple cubic lattice consists of eight identical spheres of radius R in contact, 

placed at the corners of a cube. What is the volume of the cubical box that will just 

enclose these eight spheres, and what fraction of this volume is actually occupied by 

the spheres? 

3.5 The faces of the cubic crystal of sodium chloride shown in Fig. 3.5(a) are parallel 

to the faces of the face-centered cubic lattice of Fig. 3.7. Consequently, each of the 

lattice planes parallel to the cubic faces contains equal numbers of sodium and 

chloride ions. Is the same true of a plane parallel to the octahedral faces of Fig. 3.5(c)? 

To answer, compare Figs. 3.6 and 3.7. 

3.6 A tetrahedral site in a closest-packed lattice can be generated by placing four 

spheres of radius R at alternate corners of a cube. Since the spheres are in contact, 

the length of a diagonal of a face of this cube is equal to 2R. What is the length of the 

body diagonal of this cube? The radius of the tetrahedral hole is equal to the dif¬ 

ference between half the body diagonal and R. What is the radius of the tetrahedral 

hole? 
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3.7 An atom vibrating about a point in a crystal lattice is in some ways similar to 

a mass vibrating at the end of a spring. For such systems, the vibration frequency 

increases as mass decreases. From this fact, explain why crystals of light atoms like C, 

B, and Be have heat capacities that are smaller than 6 cal/mole at room temperature. 

3.8 When the NaCl crystal is investigated with x-rays of 0.586-A wavelength, the 

first Bragg diffraction occurs at 9 = 5°58', and comes from planes of ions which are 

parallel to the face of the face-centered cubic lattice. Calculate the separation of 

these planes. What is the smallest distance between sodium and chlorine nuclei in 

the crystal? What is the smallest distance between chlorine nuclei? Consult Fig. 3.7 

for help with this problem. 

3.9 To a first approximation, Schottky and Frenkel defects occur without changing 

the volume of a crystal. Suppose a sodium chloride crystal had 10-3 atom fraction 

of (a) Frenkel defects and (b) Schottky defects. Calculate the change in density for 

these two cases from the ideal density of 2.165 gm/cc. 

3.10 A certain sample of cuprous sulfide is found to have the composition C111.92S, 

because of incorporation of Cu + + ions in the lattice. What is the ratio of Cu++ to 

Cu+ in this crystal? 

3.11 Copper has a face-centered cubic structure with a unit-cell edge length of 3.61 A. 

What is the size of the largest atom which could fit into the interstices of the copper 

lattice without distorting it? 

3.12 The heat capacity Cv is defined as the derivative of the energy with respect to 

temperature, or Cv = dE/dT. Using the expression e = E/N, and Eq. (3.4), evaluate 

Cv by differentiation. Verify the fact that Ct, goes to zero as T goes to zero. 
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CHAPTER 4 

LIQUIDS AND SOLUTIONS 

In previous chapters we have remarked that solids and gases represent the 
extreme states of behavior of collections of molecules. The liquid state can be 
thought of as an intermediate condition in which some of the properties found 
in either solids or gases are displayed. Liquids, like gases, are isotropic and flow 
readily under applied stress, but like solids, they are dense, relatively incom¬ 
pressible, and have properties that are largely determined by the nature and 
strength of intermolecular forces. We shall also find that with respect to molec¬ 
ular order, liquids are intermediate between solids and gases. The fact that 
liquids are isotropic tells us immediately that they do not have the extended 
lattice structure and long-range order of solids. Yet the density of a liquid is 
generally only 10% less than that of its solid phase; this must mean that the 
molecules in a liquid are packed together with some regularitjq and do not 
exhibit the complete chaos associated with molecules in the gas phase. 

The remarkable ability of liquids to act as solvents is one of their most 
important properties. In the first place, liquid solutions provide an extremely 
convenient means of bringing together carefully measured amounts of reagents 
and of allowing them to react in a controlled manner. Second, the nature of the 
reactions which proceed and the speed at which they occur can be greatly 
influenced by the properties of the liquid solvent medium. Finally, the physical 
properties of solutions are interesting and important, because they can be used 
to determine molecular weights of dissolved substances and to study the nature 
and strength of forces between solvent and solute molecules. 
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4.1 A KINETIC THEORY OF LIQUIDS 

In this chapter, our emphasis will be on the directly observable macroscopic 
properties of liquids and solutions, rather than on the behavior of individual 

molecules. Nevertheless, one of the most engaging and absorbing features of 

the study of chemistry is the attempt to explain the behavior of bulk matter 
in terms of molecular properties. Therefore in this section we will outline a 

molecular picture which will help us to understand and relate phenomena 
associated with the liquid state. 

We have remarked that in a liquid, molecules are close to each other, and 
that consequently the forces exerted on one molecule by its neighbors are sub¬ 
stantial. Thus the problem of analyzing the motion of a single molecule is 

exceedingly difficult, for each is constantly in “collision,” subject to the forces 

of as many as twelve nearest neighbors. What then can we say about molecular 
motion in liquids? One of the most revealing observations in this respect was 
made by the botanist Robert Brown in 1827. Brown discovered that very tiny 

particles (10—4-cm diameter) suspended in a liquid undergo incessant randomly 

directed motion. These motions occur without any apparent external cause 
such as stirring or convection, and are evidently associated with an intrinsic 
property of all liquids. A wealth of experimental observation has confirmed the 

idea that this Brownian motion is a direct manifestation of the thermal motion 

of molecules. When suspended in a liquid, a very small particle constantly 

experiences collisions with all the molecules surrounding it. If the particle is 
small enough, so few molecules will be able to collide with it that at any par¬ 

ticular instant the number striking it from one side may be different from the 
number striking it from the other sides; consequently the particle will be dis¬ 

placed. Subsequently, another unbalance of collisional forces may occur, this 

time displacing the particle in a different direction. The great majority of 
these displacements are so small that they cannot be detected individually, but 
the motion which is observed is a result of many of the smaller random dis¬ 

placements. In essence, a Brownian particle is a “molecule” large enough to be 

observable, but small enough to execute observable random thermal motion. 
Analysis of the motion of Brownian particles shows that their average kinetic 

energy is \kT. Since each particle is to be considered as one of the molecules 

of the liquid, we can conclude that the average kinetic energy of a molecule in a 
liquid is also f ArT—exactly the same as the kinetic energy of a gaseous molecule 

at the same temperature. Even more detailed considerations have led to the 
conclusion that the kinetic energies of molecules in the liquid phase are dis¬ 

tributed over a very wide range of values according to the Maxwell-Boltzmann 
distribution law, Eq. (2.17). In other words, in liquids, as in gases, molecules 
are in incessant random motion; the average kinetic energy and the fraction of 

molecules with any particular value of the kinetic energy are the same for 

either phase at the same temperature. However, a molecule in a liquid is always 
subject to the forces of its neighbors, and consequently its potential energy is 
lower, and its undeflected trajectories shorter, than if it were in the gas phase. 
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Further insight into the microscopic nature of liquids comes from the tem¬ 

perature dependence of their densities, or molar volumes. When a substance 
changes from a solid to a liquid, then, in most cases, the molar volume increases 
abruptly by about 10%, and as the liquid is warmed to even higher temperatures 

this expansion continues. This increase in volume upon melting must be a 

consequence of a general “separation” of the molecules and a slight lessening of 

intermolecular forces. 

Point where 
incident beam 

enters (20 = 180°) 

i ( a ) i 

-20 = 0° 

I ( ) I 
(a) 

(b) 

FIG. 4.1 Comparison of the x-ray diffraction patterns of (a) a powdered solid, and (b) its liquid. 
(After L. H. Van Vlack, Elements of Materials Science, 2nd ed. Reading, Mass.: Addison- 
Wesley, 1964.) 

What is the detailed nature of the melting process? X-ray studies provide 

considerable information. We noted in Chapter 3 that crystalline solids produce 
sharp x-ray diffraction patterns, and that this sharpness is a consequence of the 

extended long-range order of the crystal lattice. What, then, is the nature of 

the x-ray diffraction pattern of a liquid? If the arrangement of atoms in a liquid 
were completely random, we would expect no diffraction pattern at all, only 
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an almost uniform scattering of radiation. If the arrangement of atoms has 
some degree of order in the liquid, we might expect a diffraction pattern that 

somewhat resembles that of a solid. To see the most significant difference 
between a solid and its liquid, the x-ray pattern of a powdered, or microcrystal¬ 

line, solid must be compared with the diffraction pattern of its liquid, as in 
Fig. 4.1. In the powdered sample the crystals are small and randomly oriented, 

and consequently some crystals are oriented so as to satisfy the Bragg diffraction 
condition. The result is a sharp line-diffraction pattern shown schematically 

in Fig. 4.1. The diffraction pattern of the liquid sample also shows a definite 
structure, and the intensity maxima correspond approximately to those found 

in the polycrystalline solid. This must mean that in a liquid, a certain amount 
of regularity in the packing of the atoms exists. The most important qualitative 

feature of the diffraction pattern of the liquid, however, is that the lines are 
diffuse, not sharp like those of the solid. A diffuse diffraction pattern means 

that the diffraction angle 9 is not well defined. If we refer now to the Bragg 
diffraction equation 

nX = 2d sin 9, 

we see that if the diffraction angles 9 are not well defined, it must mean that 

the distance d between the repeating units is not always constant. In other 
words, the diffuse x-ray diffraction patterns of liquids show that at any one time, 

there are atoms separated by various values of d, and it is in this sense that the 

structure of a liquid is disordered. The uncertainty or variability of the separa¬ 
tion of atoms means that a regular lattice unit which would repeat itself in¬ 

definitely simply does not exist. 
While the separation of atoms in the liquid state has no single well-defined 

value, their diffuse x-ray patterns can be interpreted to yield the probability 

that an atom will be found at any distance r from another atom. Let p be equal 
to the number of atoms per cubic centimeter. Then the quantity 47rr2p Ar is 

the number of atoms in the spherical shell of radius r and thickness Ar. The 
probability of finding an atom at a particular distance r from the center of 

another atom is proportional to 47rr2p; this quantity is plotted in Fig. 4.2. 
We see that 47rr2p is zero when r is less than the van der Waals diameter of an 

atom, but rises very rapidly to a sharp maximum for r in the vicinity of the 

van der Waals diameter. This indicates that a large fraction of the atoms are 
in what might be described as an almost close-packed situation. At somewhat 

larger values of r, the probability of finding an atom decreases, since the pres¬ 
ence of the nearest neighbors to an atom tends to prevent there being any atoms 

located at, let us say, one and one-half the van der Waals diameter. However, 

note that the probability of finding an atom does not fall to zero at any value 
of r. This is a consequence of the imperfect packing, which allows atoms to be 

separated by any distance. The several maxima in the radial distribution curve 
show that there are most probable separation distances which are approximately 

equal to one or two times the van der Waals diameter of the atoms. 
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It is helpful to compare the broad maxima in the probable locations of atoms 
in the liquid phase with the very sharp exact locations of atoms in the cor¬ 

responding crystalline solid. The latter are shown in Fig. 4.2 as vertical lines 

whose location is set by the crystal lattice and whose height is proportional 

to the number of atoms at the particular separation distance. Thus the set of 
vertical lines represents the radial distribution function of the solid. Comparison 

of the radial distributions for the two phases supports the idea that in the liquid 
phase atoms are packed together in a disordered manner, and that liquids do 

not have the extended lattice structure of solids. 

FIG. 4.2 Atomic distribution curve for liquid 
sodium calculated from x-ray diffrac¬ 
tion data. The upper drawing explains 
the two maxima in the curve in terms of 
"shells" of atoms around the reference 
atom. The dashed curve represents a 
uniform distribution of atoms, and the 
vertical lines show the positions and 
numbers of neighboring atoms in solid 
sodium. (After G. W. Castellan, 
Physical Chemistry. Reading, Mass.: 
Addison-Wesley, 1964.) 

Distance from center 
of reference atom (A) 

Figure 4.3 is a schematic comparison of the structures of a solid and a liquid 

and illustrates the ideas we have just discussed. In the liquid, there are regions 
in which the arrangement of the atoms is nearly perfect closest packing. How¬ 

ever, there are atoms in other regions that have only five or four nearest neigh¬ 

bors, instead of six. This irregularity in packing introduces gaps or “holes” 

into what might otherwise have been a perfect closest-packed structure. Due to 
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the incessant random motion of the molecules, these “holes” are not of definite 

size or shape, and they can spontaneously appear, be distorted, and move from 

one place to another. Since the introduction of these holes increases the average 

distance between molecules, compared to what it would be in a solid, the average 

intermolecular potential energy of a liquid must be higher than that of a solid. 

It is precisely for this reason that the latent heat of fusion must be supplied to 

melt a solid. 

This picture of the destruction of the solid lattice upon melting is consistent 

with the existence of sharp melting temperatures. It is not possible to introduce 

the disordered liquid structure gradually into the solid lattice over a range of 

temperatures. Order is a property associated with the arrangement of many 

atoms, and one cannot have a structure which is at the same time ordered and 

disordered. Thus melting and freezing are cooperative phenomena which involve 

a concerted rearrangement of large numbers of atoms. Melting occurs abruptly 

when atoms acquire enough thermal energy to destroy the energetically more 

stable crystal lattice in favor of the more disordered liquid structure. 

Schematic view of structure in (a) a crystal and (b) a liquid. (After G. W. Castellan, Physical fig. 4.3 
Chemistry. Reading, Mass.: Addison-Wesley, 1964.) 

There are other properties of liquids which can be readily explained in terms 

of their disordered structure. Consider, for example, the fluidity of liquids. 

At the freezing temperature, a solid and liquid both contain the same type of 

molecule at the same temperature. Yet the solid structure is rigid, and the 

liquid yields to an applied stress. To explain this we need only recall that in 

order to deform a perfect crystal lattice, large numbers of atoms must be dis¬ 

placed relative to one another at the same time. Because so many atoms must 

move at once, deformation of a solid is opposed by strong intermolecular forces. 

However, if defects exist in the crystal lattice, the difficulty of producing a 

deformation is reduced considerably. The defects provide low-energy paths by 
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which atoms can be displaced. In a liquid, of course, these defects are present 

in profusion. That is, the intrinsically disordered structure of a liquid provides 

many paths by which groups of atoms can be moved past one another without 

a serious increase in the existing average interatomic separations. In effect, 

the irregularities or holes in the structure provide a flow' mechanism in which 

only a few molecules need move simultaneously, and the intermolecular forces 

which resist such motion are consequently relatively small. A molecule near a 

hole may move into it, and the vacated site in turn may be occupied by another 

molecule, and so on. Thus molecular displacement occurs without a serious dis¬ 

turbance of the liquid structure. The spontaneous diffusive mixing which occurs 

when two liquids are brought into contact proceeds by a similar mechanism. 

As holes appear, disappear, and change shape, the molecules of the two liquids 

can intermingle simply as a result of their ever-present thermal kinetic energy. 

Question. Can you explain why atomic size is generally not a critical factor in determining 
the solubility of substances in liquids, whereas it is very important in determining their 
solubility in solids? 

4.2 PHASE EQUILIBRIA 

A large part of this chapter is concerned with situations in which two phases 

exist together in a closed container. If no net conversion of one phase to the 

other is occurring, the two phases are said to be in equilibrium with each other. 

A thorough understanding of both the qualitative and quantitative aspects 

of physical and chemical equilibria is absolutely essential to the study of chem¬ 

istry. Fortunately, a study of phase equilibria provides a number of simple 

illustrations of the important general features of all equilibria which we will 

use repeatedly throughout this book. Before discussing phase equilibria in 

detail, we shall examine the energetic relations between the phases. 

Energetics of Phase Changes 

In order to accomplish or to describe a controlled experiment, a scientist starts 

by isolating or defining the part of the physical universe in which he is interested. 

This part of the universe under investigation is called the system; all other 

external entities which may influence the behavior of the system are known as 

the surroundings. In this section our systems will be pure materials that can 

be interconverted between the liquid, gaseous, and solid states by appropriate 

modification of their surroundings. 

Anyone who has stepped from a swimming pool into a brisk breeze knows 

that when water (the system) evaporates, it absorbs heat from its surroundings 

(the skin, in this case). The same effect may be experienced with any other 

liquid which has a low boiling temperature. Some liquids, such as ethyl chloride, 

can freeze the skin upon evaporation, and are used as local anesthetics. It is 

also well known that when a gas condenses to a liquid, it releases heat to its 
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surroundings. The absorption of heat upon evaporation and its evolution upon 

condensation are direct demonstrations that the energy of a liquid is lower than 

that of a gas at the same temperature. In order for a liquid to evaporate, work 

must be done against the attractive forces between the molecules, and this 

requires that energy be supplied as heat from the surroundings. Conversely, 

when a vapor condenses, the system goes to a state of lower energy, and thus 

energy is transferred as heat from the system to its surroundings. 

The amount of heat absorbed when one mole of liquid evaporates is of in¬ 

terest, since it is a measure of the intermolecular potential energy. For instance, 

when one mole of water is completely vaporized at 25°C, it absorbs 10,519 cal 

from its surroundings. One way of representing this is 

H20(1) + 10,519 cal —> H20(g). 

However, there is another way of describing the energetics of this process which 

has the advantage of emphasizing the change which takes place in the system. 

The amount of heat absorbed by the system in any change which takes place 

at constant •pressure is called the enthalpy change of the system, and is symbolized 

by AH. If a system absorbs heat, its enthalpy increases, and AH is a positive 

number; if the system evolves heat, its enthalpy decreases, and AH is a negative 

number. Thus enthalpy may be thought of as a sort of heat content of the 

system; indeed, the words “heat content” and “enthalpy” are sometimes used 

synonymously. With these definitions in mind, we can write 

H20(1) —* H20(g), AH = 10,519 cal/mole, 

to indicate that when one mole of water evaporates at a constant pressure, 

10,519 cal are absorbed by the system. For the condensation process we have 

H20(g) —> H20(1), AH— —10,519 cal/mole, 

where AH is negative, since the system loses heat to its surroundings. 

Now let us pursue the suggestion that the enthalpy of vaporization, which 

we symbolize by AHvap, is a measure of the potential energy of attraction be¬ 

tween molecules. Liquids in which the attractive forces between molecules are 

very strong should have large values of AHvap. In fact, there should be a general 

parallelism between A//vap and e, the minimum value of the potential energy 

of two molecules determined by gas imperfections. Table 4.1 compares e and 

AHvap for a number of gases, and a perusal of the values shows that e andAHvap 

are quite definitely related. Both factors increase as the number of electrons 

in the molecules increases. 

The direct conversion of a solid to a vapor is called sublimation. In the sub¬ 

limation process, heat must be supplied to the system in order to overcome the 

attractive forces between molecules in the solid state, and the amount of heat 

absorbed by the system when one mole of solid sublimes is known as the enthalpy 
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Table 4.1 Enthalpy of fusion and vaporization 

Substance A/-/fUS (kcal) AHvap (kcal) t* (kcal) Tb (°K) 

o2 0.106 1.63 0.225 90 
N2 0.172 1.33 0.181 77 
h2 0.028 0.216 0.073 20 
He 0.005 0.020 0.020 4 
Ar 0.265 1.56 0.236 87 
Xe 0.490 3.02 0.440 166 
ch4 0.225 1.95 0.272 112 

* The energy that corresponds to the minimum of the Lennard-Jones potential 
for the interaction of a pair of molecules, expressed in kcal/mole. 

of sublimation, A//sub- Thus for the ice-water vapor conversion we have 

H20(s) —► H20(g), AH = AHsuh = 11,955 cal. 

Closely related to the enthalpies of sublimation and of vaporization is the 

enthalpy of fusion, the heat absorbed when one mole of solid is converted to 

liquid at a constant pressure. For the ice-water transition we have 

H20(s) -» H20(1), AH = A//fUS = 1436 cal. 

Note that the direct conversion of solid to vapor is equivalent to melting the 

solid first, and then allowing the liquid to evaporate. Since the initial and final 

conditions of the system are the same, the values of AH for the two processes 

must be equal. Thus 

Af/sub = AH{us A//Vap- 

We can see that this relation holds for water, since in this case we have 1436 + 

10,519 = 11,955, and experimental data for other substances confirm its 

general validity. 

Examination of the data in Table 4.1 shows that AHfus is always considerably 

less than A//vap for a particular substance. Our picture of the solid, liquid, and 

gaseous states is entirely in accord with this fact. We have remarked that in a 

liquid the molecules are somewhat more loosely packed than in a solid. This 

small diminution in density slightly decreases the effect of the attractive forces 

between molecules, and consequently a relatively small amount of energy is 

required to convert a solid to a liquid. The evaporation of a liquid separates the 

molecules entirely, and thus reduces essentially to zero the attractive forces 

between molecules. Evaporation produces a far more profound change in 

molecular environment than does melting, and consequently AHvap is larger 

than AH(ua. 

Question. Plot AHvap as a function of t for the substances in Table 4.1. Can you interpret 
the significance of any approximate numerical relation you might find between e and 

AHvap? 
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Liquid-Vapor Equilibrium 

A liquid of relatively low boiling temperature placed in a container open to the 
atmosphere will eventually evaporate entirely. Remembering that molecules 

in the liquid are “bound” by attractive forces to their neighbors, we might ask 
why some are able to overcome these forces and leave the liquid spontaneously. 

The answer lies in a consideration of the possible magnitudes of molecular 
kinetic energies, for these, as we have already mentioned, range from very low 
to very high values, and are distributed according to the Maxwell-Boltzmann 

law. Therefore, even if the average potential energy which binds the molecules 

to the liquid is substantial, there are always some molecules which have enough 
kinetic energy to overcome the binding forces and enter the vapor. According 

to the Maxwell-Boltzmann law, the fraction of the molecules which have kinetic 
energies greater than some minimum value e, the value required for the molecules 

to leave the liquid, is proportional to the Boltzmann factor, e~tlkT. Therefore, 

as long as the temperature remains constant, the fraction of liquid molecules 
with enough kinetic energy to evaporate remains the same, and evaporation 

continues. If the vessel is open to the atmosphere, vapor molecules are swept 
away, and evaporation continues until no liquid is left. 

The time dependence of evaporation and fig. 4.4 

condensation rates for a liquid evaporating 
into a closed container. 

Now let us analyze what happens when a liquid is placed in a closed evacuated 

container. Immediately the liquid starts to evaporate at a rate which is primarily 
determined by the fraction of molecules which have enough kinetic energy to 

overcome attractive forces and leave the surface. Initially the rate of con¬ 
densation is zero, for there are no molecules in the vapor. As long as the 
temperature stays constant, evaporation continues at a constant rate, and the 

number of molecules in the vapor phase increases. Concurrently, the rate of 
condensation starts to increase, for as the pressure of the vapor grows, the 

number of gas molecules which collide with and reenter the liquid surface also 

increases. 
The time dependence of the evaporation and condensation rates is shown in 

Fig. 4.4. As the condensation rate grows, it eventually becomes equal to the 
rate of evaporation. At this time the number of molecules which enter and which 
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leave the vapor per unit time is the same, and consequently the pressure of the 
vapor stops increasing and remains constant. If the system is left undisturbed 

at a fixed temperature, evaporation and condensation continue at equal rates, 

and the pressure of the vapor remains unchanged. This, then, is a situation of 
equilibrium between the two phases. Note particularly that at equilibrium, 

evaporation and condensation do not stop, but that the constancy of the equi¬ 

librium vapor pressure is a consequence of these opposing processes proceeding 
at equal rates. Thus we say that phase equilibrium is dynamic in nature. 

Suppose now that the liquid-vapor system is at equilibrium in a cylinder 

closed by a movable piston. What will happen if we suddenly raise the piston 

and increase the volume of the cylinder by a small amount, and at the same 
time, keep the temperature of the system constant? The immediate effect is to 

lower the pressure of the vapor, thereby removing the system from the equi¬ 
librium state. Because there are fewer molecules of vapor per unit volume, the 

number of collisions per unit time with the liquid surface is lowered, and the 

rate of condensation decreases. Nevertheless, the rate of evaporation does not 

change, for the expansion in no way alters the state of the liquid. Thus the 
consequence of the disturbance is that the rate of evaporation is once again 

greater than the rate of condensation—a condition which will inevitably cause 

an increase in the number of vapor molecules, a subsequent equality of the 
evaporation and condensation rates, and the restoration of phase equilibrium. 

Now let the system, initially at equilibrium, be subjected to a sudden de¬ 

crease in its volume. The initial consequence is to increase the concentration 
of molecules in the vapor and thus increase the rate of condensation. Once 

again, the rate of evaporation remains unchanged. With the condensation rate 

greater than the evaporation rate, the number of molecules in the vapor starts 

to decrease, and continues to do so until the rates of the opposing processes 
become equal and equilibrium is restored. Thus, regardless of the direction in 

which the system is displaced, it inevitably returns unaided to the equilibrium 
state. 

Note particularly that the equilibrium vapor pressure is set by the equality 

of the condensation and evaporation rates, and that the evaporation rate, 
determined only by the fraction of molecules which have enough energy to 

leave the liquid, is always constant at a fixed temperature. Therefore, at a 

fixed temperature, the equilibrium vapor pressure is always the same, regardless 
of the direction from which the system approached equilibrium. 

The Equilibrium State 

Now it is possible to draw from our discussion of liquid-vapor equilibrium some 

very useful generalizations that apply to all situations of physical or chemical 
equilibrium. We have emphasized that the potential energy of molecules in the 

liquid state is lower than that of molecules in the gas phase. We have also 
observed that a liquid left undisturbed in a closed container inevitably moves 
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toward a state of equilibrium in which there is a definite concentration' of 

molecules in the vapor phase. Thus it follows that at equilibrium the system is 

not in a condition of minimum energy, for the energy of the system can always 

be lowered by condensing the vapor entirely. This conclusion may seem strange, 

for all our experience with simple mechanical systems suggests that they seek 

an equilibrium condition in which their energy is as low as possible; that is, 

objects fall, clocks run down, a stirred liquid stops moving. All these phenomena 

can be summarized by saying that mechanical systems seek a resting place of 

minimum energy. 

Almost the same thing can be said about molecular systems. It is clear that 

one of the driving forces that determines the behavior of molecular systems is 

the tendency to seek a state of the lowest possible energy. After all, this is the 

reason that a gas condenses or that a liquid freezes. But it is also certain that 

the tendency toward minimum energy cannot be the only factor governing the 

behavior of molecular systems; if it were, no gases would exist at any tem¬ 

perature. There is another driving force, just as important as the energy factor. 

To put it briefly, it is the tendency of systems to assume a state of maximum 

molecular chaos, or disorder. 

Perhaps the simplest demonstration of this tendency is the observation that 

an ideal gas will expand spontaneously into an evacuated space. Surely the 

gas does not do so in order to achieve a state of lower energy, for we have seen 

that the energy of an ideal gas depends only on its temperature, and this need 

not change during the expansion. However, when a gas occupies the larger 

volume, all molecules have more space available to them, and it is more difficult 

to predict the exact position of any one of them. Whenever the detailed arrange¬ 

ment of the molecules is unknown or unknowable, we say that the system is 

disordered. Thus we can justifiably describe the expansion of an ideal gas by 

saying that it increases the variety of positions available to molecules, and 

thereby increases the disorder of the system. 

The evaporation of a liquid provides still another illustration of the tendency 

toward maximum disorder. In the liquid state, the motion of any one molecule 

is somewhat limited by the presence of its neighbors. The molecules are ar¬ 

ranged in a manner such that if we know where one is, we can predict the 

location of others with some certainty by using the radial distribution function. 

This possibility is diminished considerably for molecules in the gas phase, where 

at any instant the distribution of the molecules is completely random. Thus 

we can classify the gas phase as a condition of greater molecular chaos than the 

liquid or solid phases. 

Now if the tendency of systems to move toward a state of maximum molec¬ 

ular chaos were all-important, all materials would eventually evaporate or 

dissociate entirely, and there would be no solids or liquids at any temperature. 

Thus, on one hand, we have the drive toward lowest energy, that can be followed 

by allowing molecules to associate in one of the condensed phases, and on the 

other hand, we have the drive toward molecular chaos, which could be achieved 
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by the evaporation or separation of molecules into independent units. The 

condition of equilibrium must be one which is the best compromise between 

these two conflicting drives toward maximum chaos and minimum energy. 

Consequently we have two ways of interpreting the condition of liquid-vapor 

equilibrium. From one point of view, equilibrium represents the situation in 

which the rates of evaporation and condensation are equal. From the other 

viewpoint, equilibrium is the condition of most favorable compromise between 

the natural tendencies of the system to reach minimum energy and maximum 

chaos. 

By now it should be clear that the concept of molecular chaos is important 

not only in the description of the nature of atomic arrangements in pure phases, 

but also in understanding the factors that are responsible for phase changes 

and phase equilibria. In fact, molecular chaos is a concept useful in the analysis 

of any phenomenon, chemical or physical, which involves collections of mole¬ 

cules. We shall find in Chapter 8 that it is possible to define and determine 

experimentally a property of a system that measures molecular chaos. This 

property is called entropy. A full appreciation of what entropy is and how it 

depends on the properties of systems requires the thermodynamic arguments 

presented in Chapter 8, but for the present we shall find the qualitative asso¬ 

ciation between entropy and molecular chaos to be sufficient. What we have 

said about the nature of solids, liquids, and gases suggests that the entropy of 

a liquid is greater than that of a solid, and that the entropy of a gas is greater 

than that of either a liquid or solid. Our remarks about the natural tendency 

of systems to reach a state of molecular chaos can be rephrased to say that 

systems have a tendency to reach a state of maximum entropy. 

To summarize our discussion, we can list four important features of all 

equilibria which have been illustrated by the liquid-vapor equilibrium: 

1. Equilibrium in molecular systems is dynamic and is a consequence of the 

equality of the rates of opposing reactions. 

2. A system moves spontaneously toward a state of equilibrium. If a system 

initially at equilibrium is perturbed by some change in its surroundings, it 

reacts in a manner which restores it to equilibrium. 

3. The nature and properties of an equilibrium state are the same, regardless 

of how it is reached. 

4. The condition of a system at equilibrium represents a compromise between 

two opposing tendencies: the drive for molecules to assume the state of 

lowest energy and the urge toward molecular chaos or maximum entropy. 

Temperature Dependence of Vapor Pressure 

Experimental measurements show that the equilibrium vapor pressure of a 

liquid increases as the temperature increases. Data that illustrate this point 

are shown in Fig. 4.5. In the temperature range in which the vapor pressure is 
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small, it is relatively insensitive to the temperature, but the vapor pressure 

grows at an increasing rate as the temperature is raised. The temperature at 

which the equilibrium vapor pressure becomes equal to 1 atm is called the 

normal boiling temperature, or the boiling point. In the boiling process, bubbles 

of vapor form throughout the bulk of the liquid. In other words, evaporation 

occurs anywhere in the liquid, not just at the upper surface. The reason that 

this occurs only when the vapor pressure equals the atmospheric pressure is 

easy to understand. In order for a bubble to form and grow, the pressure of the 

vapor inside the bubble must be at least equal to the pressure exerted on it by 

the liquid. This in turn is equal to the pressure of the atmosphere plus the very 

small pressure due to the weight of the liquid above the bubble. Therefore, 

bubble formation and boiling occur only when the vapor pressure of the liquid 

is equal to the pressure of the atmosphere. 

The vapor pressures of several liquids FIG. 4.5 

plotted as a function of temperature. 

The initiation of a bubble in the bulk of a pure liquid is a very difficult process, 

since it requires that many molecules with kinetic energies greater than that 

required for vaporization must be close to one another. Hence the fact that 

the liquid reaches the boiling temperature is no guarantee that boiling will 

occur. If it does not, continued addition of heat will cause the liquid to become 

superheated; that is, to reach a temperature greater than its boiling point. 

When bubble formation in a superheated liquid finally occurs, it does so with 

almost explosive violence, because the vapor pressure in any bubble formed 

greatly exceeds atmospheric pressure, and the bubbles tend to expand rapidly. 

Such violent boiling, called humping, can be avoided by introducing agents 

which initiate bubbles in the liquid as soon as the boiling temperature is reached. 

Porous pieces of ceramic material which evolve small bubbles of air into which 

evaporation can occur serve very well in this application. 

From Fig. 4.5 we can see that comparison of boiling points is a convenient, 

if approximate, way of evaluating the relative volatilities of liquids. That is, 
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liquids that boil at low temperatures usually have vapor pressures that are 

greater at all temperatures than the vapor pressures of liquids that boil at much 

higher temperatures. However, some of the curves in Fig. 4.5 cross each other, 

showing that there are exceptions to the correspondence between vapor pres¬ 

sure and normal boiling temperature. Another point of some importance is the 

correlation between AHvap and the normal boiling temperature. Reference to 

Table 4.1 shows that liquids with high boiling temperatures have relatively 

large enthalpies of vaporization. Thus a liquid in which the intermolecular 

forces are large will, in general, have a high boiling temperature. 

Phase Diagrams 

A solid, like a liquid, can exist in equilibrium with its vapor in a closed container. 

Thus at any fixed temperature, each solid has a characteristic fixed vapor pres¬ 

sure. The vapor pressure of a solid increases with increasing temperature, and 

it is informative to plot the vapor pressure of a solid and that of its liquid on 

the same diagram, as is done in Fig. 4.6. The vapor pressure of the solid in¬ 

creases more rapidly as the temperature is raised than does the vapor pressure 

of the liquid. Therefore, there is an intersection of the two vapor-pressure 

curves. At the temperature corresponding to the intersection, the liquid and 

solid phases are in equilibrium and have the same vapor pressure. It is not 

difficult to construct an argument which shows that in this condition, liquid 

and solid must be in equilibrium with each other. 

fig. 4.6 Vapor pressure of a solid and its liquid, as 
a function of temperature. 

Consider the apparatus shown in Fig. 4.7. One bulb contains a solid, the 

other its liquid, and the two bulbs are connected so that vapor can pass freely 

from one to the other. Now let both bulbs be immersed in a bath at temperature 

TV If the vapor pressure of the solid at T\ is less than that of the liquid, then 

gas will flow from the bulb containing the liquid to that containing the solid. 

As this flow persists, the liquid evaporates, and the vapor condenses as solid. 

This continues until all the liquid has evaporated. Alternatively, if the ap¬ 

paratus is held at a temperature T2 at which the vapor pressure of the solid is 
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greater than that of the liquid, the vapor flows from the solid to the liquid. 
This is accompanied by evaporation of the solid and condensation of the vapor 

to the liquid, and the process continues until all the solid is consumed. 
Clearly, the solid and liquid are not in equilibrium with each other at tem¬ 

perature T, or T2, for if they were in equilibrium, the system would not change, 

and both phases would remain indefinitely. In contrast, if the temperature of 
the apparatus is set at T0, at which the vapor pressures of the liquid and solid 

are the same, the pressure is uniform, and there is no tendency for vapor to 
flow from one chamber to the other. Thus both the liquid and solid phases 

remain indefinitely. This persistence of the state of the system indicates that 
the solid and liquid phases are in equilibrium at a temperature at which their 

vapor pressures are the same. This situation is a specific example of an important 

general principle: if each of two phases is in simultaneous equilibrium with a 
third, then the two phases are in equilibrium with each other. 

Apparatus for the equilibration of two FIG. 4.7 

phases not in contact. 

The temperature at which liquid, vapor, and solid are in simultaneous equi¬ 

librium with one another is called the triple-point temperature. The triple point 
is usually very close to what is known as the freezing point, which is the tem¬ 

perature at which liquid, vapor, and solid are in simultaneous equilibrium 

in the presence of 1-atm pressure of air. For example, liquid water and ice are 
simultaneously in equilibrium with water vapor only at a temperature of 0°C, 

in the presence of 1-atm pressure of air. When air is completely eliminated 
from the container, water, ice, and water vapor are simultaneously in equi¬ 
librium only at a temperature of 0.0098°C. This temperature is called the triple 

point of water, and we see that it differs only slightly from the normal freezing 

point. 
Let us consider the equilibrium among water vapor, ice, and liquid water in 

more detail. The vapor pressure of water at the triple point is 4.579 mm. What 
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said happen if the external pressure applied to the -tern by a piston were 
to be increased above 4.579 mm? First of all. the water vapor initially preseat 

ur .-jjd be completely converted to liquid an 2 ~.>Iid. It is round experimentally 

that as the pressure >n tbe system :> further increased, the temperature of the 
5v>te*n must be lowered. :■ o-ier/or ,\t a~d uirr :: rrmas* at eqyUibrniaL. 

F r -...*. pressure ttozzct ~~ 4 mw there is tily one particular value :•: 

the *eir:e-nature it which toe and w^ier can both be present at equilibrium. 
:n.d is the pessure increases the temperature necessary to maintain equilibrium 

Depresses- Am her way ;f stating this is to say that as the pressure appued f 

ice iKiea-ts. its neltmx temperature deaeases. 

f*g. 4.8 ne phase r agrar- fix water oat :n»T 
to scste). 

Tnpie K-rbrtf 

pacBt pcmn 

Tessperst ire 

Figure 4.S is called the phase diagram for water. The lines represent simul- 

taneous values of z-ressure and temperature at which two phases may be present 
at equilibrium- At the temperatures and pressures whieh lie on the line 0.4. 

liquid water and its vapor can be at equilibrium. Along the line OB. ice and its 
vapor are at equilibrium while the sets of temperature and pressure at which 

both ke and liquid water are in equilibrium he along OC. Only at the pressure 

and temperature corresponding to the triple p>int (Oj0O98*>C, 4.579 mmj are 
ice. water, and water vapor amultaneously present at equilibrium. The areas 

between the curves represent temperatures and pressures at which only one 

phase can enst. 
Figure 4.S show* that when ke melts, its vapor pressure is considerably lese 

than 760 mm Thi- is the behavior whkh is observed for most substances. 

However, carbon dioxide and iodine are solids whose vapor pressures reach 
760 mm at temperatures which are lover than their triple-point temperature 

and consequently these substances evaporate at 1-atm pressure without ever 

melting. The phase diagram for carbon dioxide is shown in Fig. 4.9. The tem- 

146 LIQUIDS i.ND S0LUT>0'*S 4-2 



perature at which the vapor-pressure curve intersects the 760-mm line is known 

as the normal sublimation temperature. Solid carbon dioxide evaporating at 

1-atrn pressure maintains a constant temperature of —78.1°C. Carbon dioxide 

can be liquefied only by raising the applied pressure to at least 3880 mm 

(5.1 atm); at this pressure carbon dioxide melts at a temperature of —56.6°C. 

4.3 THE PROPERTIES OF SOLUTIONS 

It is difficult to give a definition which tells clearly and briefly how solutions 

differ from mixtures and compounds, in spite of the fact that solutions are 

among the most familiar substances in nature. However, it is often true that the 

most common concepts are the most difficult to define precisely. A solution is 

a homogeneous substance that has, over certain limits, a continuously variable 

composition. The word “homogeneous” sets a true solution apart from a me¬ 

chanical mixture, for mixtures have macroscopic regions which have distinct and 

different composition and properties. The properties and composition of a 

solution are uniform, as long as the solution is not examined at the molecular 

level. There are substances, however, which cannot be clearly classified as 

solutions or mixtures. A solution of soap in water has a cloudy appearance due 

to particles which consist of many soap molecules collected together. Such a 

substance has properties and composition which might be described as either 

inhomogeneous or homogeneous depending on the experiment which is to be 

done. Therefore there is no sharp dividing line between mixtures and solutions. 

Sublimation Melting 
point point 

T emperature 

The phase diagram forcarbon dioxide (not fig. 4.9 

drawn to scale). 

The requirement that solutions have continuously variable composition 

distinguishes them from most compounds. However, as we saw in Chapter 1, 

many solid materials which we commonly think of as compounds actually 

show variable composition. Cuprous sulfide and ferrous oxide are examples of 
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compounds which might also be thought of as solutions. No matter how care¬ 

fully we make our definitions of solution, mixture, and compound, we must 
expect to find certain substances which cannot be uniquely classified as one of 

these. There is no reason to expect nature to be cooperative and produce only 
substances which are easily classified, and since this is the case, the most useful 

definitions are often the shortest, rather than the most exhaustive. 

Types of Solutions 

Just as the variables, pressure, volume, and temperature, were used to describe 
the state or condition of pure gases, liquids, and solids, these and certain other 

variables must be used to describe solutions. First, some statement must be 

made about what chemically important constituents are present in the solution. 
A solution of ethyl alcohol (C2H5OH) and water really contains three elements, 

hydrogen, oxygen, and carbon. However, because there is a quantitative rela¬ 

tionship (the law of definite composition) between the amounts of carbon, 
hydrogen, and oxygen in ethyl alcohol, and a similar relationship between the 

amounts of hydrogen and oxygen in water, the composition of the solution can 

be completely described by specifying only the quantities of alcohol and water 

used to prepare the solution. The substances used to specify the composition 

of a solution are known as components. One of the components, usually the 
one present in greatest quantity, is called the solvent; any other component is 

called a solute. 

There are many possible types of solute-solvent pairs. A mixture of two 
gases satisfies our definition of a solution, but the properties of gaseous mixtures 

have been treated by Dalton’s law in Chapter 2, and we shall not consider them 

again here. Other types of solutions that are important are: 

1. liquid in liquid, 4. liquid in solid, 

2. solid in liquid, 5. gas in solid, 

3. gas in liquid, 6. solid in solid. 

Of these, the first three are common, and the last three, called solid solutions, 
occur less frequently. Mercury dissolved in zinc, hydrogen gas dissolved in 

palladium metal, and zinc dissolved in copper are examples of solutions in which 

a liquid, gas, and solid, respectively, are dissolved in a solid. Apart from their 
mechanical properties, solid solutions do not differ greatly from the solutions 

of liquids which we shall discuss in detail. 

Concentration Units 

In addition to the qualitative statement of what components are present in a 
solution, some specification of the amount of each component must be made. 

Usually only the relative amounts of the components are specified, since the 

properties of solutions do not depend on the absolute amounts of material 
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present. The relative amount of a substance is known as its concentration and 
is expressed in five common sets of units: 

1. Mole-fraction units. The mole fraction of component 1 is the number of moles 

of component 1 divided by the total number of moles of all the components of 
the solution. For a solution made up of two components, 1 and 2, we have: 

mole fraction of component 1 = —^— > 
ni -F n2 

mole fraction of component 2 = —^—- > 
nx + n2 

where nx and n2 are the number of moles of components 1 and 2 in the solution. 

Commonly, the symbol x stands for the composition expressed in mole-fraction 
units. That is, in our example 

*1 = 

n i 
nx -|- n2 

n2 
n j + n2 

For an arbitrary number (i) of components we would have 

n i n2 

Hi -f- n2 • * • + ni nx -\- n2 ni 

It is always true that the sum of all the mole fractions is unity: 

Xj + x2 + • • • = 1. 

Mole-fraction units are useful when it is desirable to emphasize the relation 
between some concentration-dependent property of a solution and the relative 

numbers of molecules of solute and solvent. 

2. Molality. The molality of a solution is defined as the number of moles of 

solute in 1000 gm of solvent. Molality is commonly symbolized by the lower¬ 

case letter m. Thus a 1-ra aqueous solution of sodium chloride contains one mole 
of sodium ions and one mole of chloride ions in 1000 gm of water. Molality is 

a useful unit in calculations dealing with the freezing and boiling points of 
solutions, but the fact that it is difficult to weigh out liquid solvents makes 

molality an inconvenient unit for common laboratory work. 

3. Molarity. This is the most common concentration unit. The molarity of a 

solution is the-qiumber of moles of solute in 1 liter of solution. The symbol 

for molarity is M. A 0.2-A/ solution of BaCl2 contains 0.2 mole of the salt 
barium chloride in a liter of solution. The concentration of barium ion is 0.2 M 

as well, but the concentration of chloride ion is 0.4 M, since there are two moles 
of chloride ion in every mole of barium chloride. Molarity is a very convenient 
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unit for laboratory work, since aqueous solutions of known molarity can be 
prepared easily by weighing out small amounts of solute and measuring the 

volume of solution in calibrated containers. However, since the volume of a 
solution depends on temperature, the concentration expressed in units of 

molarity also depends on temperature. This is a disadvantage which the mole- 

fraction and molality units do not have. 

4. Formality. The formality of a solution is the number of gram-formula weights 

of solute per liter; the symbol for this unit is F. Formality is very similar 

to molarity, and its use avoids the difficulty of assigning a molecular weight to 
something (such as NaCl) that contains no discernible molecules. If the formula 

of sodium chloride is written as NaCl, a 1-F NaCl (one-formal) solution con¬ 
tains 58.5 gm of sodium chloride in one liter of solution. When an actual 

molecule (and hence molecular weight) exists, molarity and formality become 

identical. For solutions of ionic substances, or materials for which only em¬ 
pirical formulas are known, formality would seem to be the preferred unit of 

concentration. However, most chemists avoid the use of formality as a con¬ 
centration unit in the interest of uniform notation. This book, for instance, 

will always refer to a solution which contains 58.5 gm of sodium chloride per 

liter as a 1 -M NaCl solution, even though no sodium chloride molecules exist 
in solution. 

5. Normality. The equivalent weight of any material is the weight which would 

react with, or be produced by, the reaction of 7.999 gm of oxygen or 1.008 gm 

of hydrogen. The normality of a solution is the number of gram-equivalent 

weights of solute in one liter of solution. The equivalent weight of zinc ion, for 
example, is (65.38/2.016) X 1.008, since 65.38 gm of zinc metal will produce 

2.016 gm of hydrogen gas in a reaction with any acid. A one-normal zinc ion 
solution (1 -N Zn++) therefore contains 32.5 gm of Zn++ in one liter of solution. 

Normality is a convenient unit for certain calculations of quantitative analysis. 

Example 4.1 A solution is prepared by dissolving 2.50 gm of NaCl in 550 gm H2O. 
The density of the resulting solution is 0.997 gm/ml. What is the molality, molarity, 
and mole fraction of NaCl? 

moles NaCl = -2-50 &m- _ 0.0428 moles, 
58.44 gm/mole 

moles NaCl __ , 
-X 1000 = molality — 0.0778 m. 
gm solvent 

The volume of the solution is 

550 gm 

0.997 gm/ml 
552 ml = 0.552 1. 
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Thus the molarity of NaCl is 

0.0428 moles 

0.552 1 
0.0776 M. 

The number of moles of water is 

550 gm 

18.0 gm/mole 
30.55, 

so the mole fraction of NaCl is 

XNaCl 
0.0428 

30.55 + 0.0428 
1.4 X IQ-3. 

4.4 THE IDEAL SOLUTION 

Let us consider a solution made up of a volatile solvent and a nonvolatile solute. 

It is found experimentally that the vapor pressure of the solvent depends on 
the concentration of the solvent in the solution, often in a very complicated 

manner. However, there are some solutions, those that can be formed from their 
components with no evolution or absorption of heat, for which the relation 

between vapor pressure and concentration is very simple. For these solutions 
the vapor pressure of the solvent is proportional to its mole fraction, and the 
proportionality constant is simply the vapor pressure of pure solvent. That is, 

Solution = Psolvent = Pi = P°*l = P? ^ - ) ■ (4.1) 
\ni -r n2/ 

In this equation, Pi is the actual vapor pressure of the solvent (component 1), 

P? is the vapor pressure of component 1 when it is pure, X\ is the mole fraction 
of component 1 (the solvent) in the solution, and nj, n2 are the number of 

moles of components 1 and 2, respectively, in the solution. Any solution 
whose vapor pressure depends on concentration according to Eq. (4.1) is called 
an ideal solution. The relation Pi = X\P\ is called Raoult’s law, and thus a 

definition of an ideal solution is that it is one that obeys Raoult’s law. 
Let us examine the mathematical consequences of Eq. (4.1). First we will 

define the vapor-pressure lowering of the solvent as AP, where 

A P = P\ — Pi. 

Substitution of Eq. (4.1) for P\ gives AP = P°i — X\P°i = (1 — Xi)P?. If 

the solution has only two components, 1 and 2, we have 

X\ X2 = 1, 
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and therefore 

A P = x2Pl (4.2) 

This simple result will be very useful when we examine the effect of the solute 

on the boiling point and freezing point of the solution. In itself, however, it 
suggests a method for the determination of molecular weights of dissolved 

substances. We can write 

A P = P\ 
n2 

ni + n2 ) - p° ( 
w2/mw2 

Wi/MW j + W2/MW ;) (4.3) 

If a solution is made up by adding a certain known weight W2 of a substance 2, 
whose molecular weight MW2 is unknown, to a known weight IT i of a solvent 

whose molecular weight MW i and vapor pressure P? are known, then measure¬ 
ment of AP, the vapor-pressure lowering, permits calculation of MW2, the 

molecular weight of the unknown. 

Example 4.2 The vapor pressure of water at 20°C is 17.54 mm. When 114 gm of 
sucrose are dissolved in 1000 gm of water, the vapor pressure is lowered by 0.11 mm. 

A P = P\ 
n2 

m + n2 

0.11 

MW 

17.54 

325. 

114/MIT 

114/MIT + (1000/18.0) 

The formula of sucrose is actually C12H22O11, which corresponds to a molecular 
weight of 342. 

Boiling and Freezing Points of Solutions 

It is informative to compare the vapor pressures of the ideal solution of a non¬ 

volatile solute and the pure solvent itself as a function of temperature. Figure 

4.10 shows that at each temperature the vapor pressure of the solution is lower 
than that of the pure solvent, and as predicted by Eq. (4.2), the difference 

increases as temperature and vapor pressure increase. The intersection of the 
solution vapor-pressure curve with the line corresponding to 760 mm defines the 

normal boiling point of the solution. It is clear from Fig. 4.10 that the boiling 

point of the solution is higher than that of the pure solvent. 

The intersection of the vapor-pressure curve of the solution with the vapor- 
pressure curve of the pure solid solvent is the freezing point of the solution, and 

should be the temperature at which the first crystals of the solvent appear 
when a solution is cooled. As the crystallization continues, the composition of 

the solution changes because solvent molecules are being removed from the 

solution. Therefore, the temperature at which crystals first appear is defined 

152 LIQUIDS AND SOLUTIONS 4.4 



as the freezing point of a solution of a given concentration. From Fig. 4.10 it 
is clear that the freezing point of the solution is lower than that of the solvent, 

and that the freezing point of the solution decreases as the concentration of 
solute increases. 

Diagram showing the lowering of the vapor pressure, increase of the boiling temperature, fig. 4.io 

and depression of the freezing point that occur when a nonvolatile solute is dissolved in 
a volatile solvent. 

Relation between vapor-pressure lower- fig. 4.ii 

ing and boiling-point elevation. Vapor 
pressures of the pure solvent and of 
solutions of two concentrations are 
shown. 

By referring to Fig. 4.11, we can derive the quantitative relationship be¬ 
tween the elevation of the boiling point AT, and the concentration of the solute. 

For small values of AT and AP, the segment AB of the vapor-pressure curve 

can be considered to be straight line. Then, by the properties of similar triangles, 
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AT is proportional to AP. For ideal solutions, AP is, by Eq. (4.2), proportional 

to x2, the mole fraction of the solute. If K'b is the proportionality constant 

which relates x2 to AT, we have 

AT = K{,x2 = K'b (—• (4.4) 
\«i + n2) 

We can simplify this equation if we restrict our treatment to very dilute solu¬ 

tions. For a dilute solution, n2 « therefore in Eq. (4.4) we can make the 
approximation that 

n2 ^ n2 . 
ni + n2 ~ rii ’ 

that is, we can neglect n2 in the denominator if it is much smaller than n We 

can write further that 

n2 w2/MW2 

n\ ~ Wi/MWi ’ 

where nq and w2 refer to the weights of components 1 and 2 which are present 

in solution, and MW i and MW2 refer to their molecular weights. Therefore, 
Eq. (4.4) becomes 

Experiments show that for ideal solutions the value of the constant K£ 

depends only on the identity of the solvent, and not at all on the solute. The 
quantity MWi is also a property of the solvent only, and thus it is reasonable 

to combine MWj with K'b to obtain a new constant. We define the constant 
Kb by the equation 

1000 Kb = KIMWl 

Then substitution into Eq. (4.5) gives us 

AT = Kb (^2^W2^J 1000. 

The factor in parentheses is the number of moles of component 2 per gram of 

component 1. If this quantity is multiplied by 1000, it becomes equal to the 

number of moles of solute per 1000 gm of solvent, or the molality, m. Thus 
we obtain the final form, 

AT Kbm, (4.6) 

for the dependence of the boiling point on concentration. 

The constant Kb is called the molal boiling-point elevation constant; it is 
equal to the increase in the temperature of the boiling point of a 1-m solution. 
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Table 4.2 Molal boiling-point and freezing-point constants 

Solvent 
Boiling 
point 

Kb 
Freezing 

point K/ 

Acetic acid 118.1 2.93 17 3.9 
Benzene 80.2 2.53 5.4 5.12 
Chloroform 61.2 3.63 — — 

Naphthalene — — 80 6.8 
Water 100.0 0.51 0 1.86 

As we mentioned, Kb is a quantity characteristic only of the solvent, and values 
of Kb for different liquids are given in Table 4.2. These constants are obtained 

by measuring the boiling points of solutions of known concentration. 

Example 4.3 Exactly 1.00 gm of urea dissolved in 75.0 gm of water gives a solution 
that boils at 100.114°. The molecular weight of urea is 60.1. What is Kb for water? 

For the molality of the solution we obtain 

1.00 1000 

60.1 754) 
m = 0.222. 

Since AT = 0.114°C, we find that 

AT _ 0.114 
m 0.222 

0.513. 

The phenomenon of boiling-point elevation provides a simple method for 
determining the molecular weights of soluble materials. A weighed amount of 
material of unknown molecular weight is dissolved in a weighed amount of a 

solvent whose boiling-point elevation constant is known. The measured in¬ 
crease in the boiling point permits calculation of the molality of the solution, 

and from this the molecular weight of the solute can be obtained. 

Example 4.4 A solution prepared by dissolving 12.00 gm of glucose in 100 gm of 
water is found to boil at 100.34°C. What is the molecular weight of glucose? 

The boiling-point elevation constant for water is 0.51. Therefore the molality of 
the solution is 

AT _ 0.34 _ 0.67 mole 
m ~ Kh ~ 0.51 ~ 1000 gm H20 ' 

The solution as prepared would contain 120 gm of glucose in 1000 gm of water, which, 
as we have just learned, corresponds to 0.67 mole. Therefore 

120 
molecular weight = = 179. 

This answer agrees very well with the exact value of 180, which can be derived from the 
formula of glucose, CgH^Oe- 
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fig. 4.12 Relation between vapor-pressure lower¬ 
ing and freezing-point depression for a 
solution of a nonvolatile solute in a 
volatile solvent. Vapor pressures of the 
pure solvent and of solutions of two con¬ 
centrations are shown. 

Temperature 

Reference to Fig. 4.12 shows that the change in the freezing temperature of 

the solution is related to the change in vapor pressure produced by addition 

of the solute. If the figure ABC is taken to be a triangle, then the depression of 

the freezing point AT is directly proportional to AP, the lowering of the vapor 

pressure. Use of Eq. (4.2) then gives us 

AT = K'fx 2, (4.7) 

where x2 is the mole fraction of the solute and K'f is a proportionality constant. 

Once again we limit ourselves to dilute solutions, and hence we can make the 

approximation that 

n2 ^ W2 w2/MW2 
2 m + n2 ~ m Wi/MWi { ’ 

If we define the freezing point depression constant Kf by 

1000 Kf = K}MWi, (4.9) 

then Eqs. (4.7), (4.8), and (4.9) yield 

AT = Kf 1000 

= Kfm, (4.10) 

when m is the molality of the solution. Experiments show that Kf is charac¬ 

teristic of the solvent only, and does not depend on the nature of the solute. 

The values of Kf for several liquids are given in Table 4.2. 

Freezing-point depression measurements can be used to determine the molec¬ 

ular weights of dissolved substances, by a procedure quite analogous to that 

employed in the boiling-point elevation experiments. A weighed amount of 

a solute of unknown molecular weight is dissolved in a weighed amount of a 

liquid whose freezing-point depression constant is known. The freezing point 

of the solution is measured, the freezing-point depression and the molality of 
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the solution are calculated, and the molecular weight of the solute is found 

from the weights of solute and solvent, and the molality. 

Example 4.5 The freezing temperature of pure benzene is 5.40°C. When 1.15 gm of 

naphthalene are dissolved in 100 gm of benzene, the resulting solution has a freezing 

point of 4.95°C. The rnolal freezing-point depression constant for benzene is 5.12. 

What is the molecular weight of naphthalene? 

The molality of the solution is 

m 
AT 

~Kf 

5.40 - 4.95 

5.12 
0.088. 

The weight of naphthalene in 1000 gm of solvent is 11.5gm. Consequently the 

molecular weight of naphthalene is 

—:— = 130 = molecular weight of naphthalene. 
0.088 

The molecular formula of naphthalene is CioHs, which corresponds very well to 

the result obtained by experimental determination of molecular weight. 

In our treatment of both freezing-point depression and boiling-point eleva¬ 

tion we have used Eq. (4.2), which refers to a system with only one type of 

solute species. How should we treat solutions in which two or more distinct 

solute species are present? Such solutions occur when a salt such as NaCl or 

BaCl2 is dissolved in water. A 1 -m solution of sodium chloride contains one mole 

of sodium ions and one mole of chloride ions in 1000 gm of solvent. The total 

concentration of solute particles is 2 m, and such a solution shows a freezing- 

point depression of 2Kf. Thus, in general, the molality to be used in Eqs. (4.6) 

and (4.10) is the total molality of all solute species. 

Example 4.6 When 3.24 gm of mercuric nitrate, Hg(N03)2, are dissolved in 1000 gm 

of water, the freezing point of the solution is found to be —0.0558°C. When 10.84 gm 

of mercuric chloride, HgCl2, are dissolved in 1000 gm of water, the freezing point of 

the solution is —0.0744°C. The molal freezing-point depression constant for water 

is 1.86. Are either of these salts dissociated into ions in aqueous solutions? 

From the freezing-point data we find that the molality of the mercuric nitrate 

solution is 

m 
AT 

Kf 

0.0558 

1.86 

But the number of moles of Hg(NC>3)2 in 1000 gm of water was 

3 24 
moles Hg(NC>3)2 = wry = 0.01. 

o2 4 

This must mean that mercuric nitrate is dissociated into Hg + + and NOj in aqueous 

solution. 
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The freezing-point data show that the molality of the mercuric chloride solution is 

A71 0.0744 
m = jr- = gr = 0.040. 

Kf 1.86 

The number of moles of mercuric chloride dissolved in 1000 gm of solvent is 

moles of HgCl2 = = 0.040. 
271 

Therefore, mercuric chloride must be present in solution largely as undissociated 
HgCl2 molecules. 

Osmotic Pressure 

We have seen that the lowering of the solvent vapor pressure by a nonvolatile 

solute, and its consequences of boiling-point elevation and freezing-point depres¬ 

sion can be used to determine the molecular weights of dissolved substances. 

The phenomenon of osmotic pressure is also associated with vapor-pressure 

lowering, and can also be used to determine molecular weights of solute mole¬ 

cules. In addition, it is profoundly important in the operation of living systems. 

The osmotic pressure phenomenon involves a semipermeable membrane, 

that is, some film which has pores large enough to allow the passage of small 

solvent molecules but small enough to prevent large solute molecules of high 

molecular weight from passing through. When a solution is separated from its 

pure solvent by a semipermeable membrane, as in the apparatus shown in 

Fig. 4.13, one observes that some of the pure solvent passes through the mem¬ 

brane into the solution. The flow stops and the system reaches equilibrium 

after the meniscus has risen to a height which depends on the concentration of 

the solution. Under these equilibrium conditions, the solution is under a 

greater hydrostatic pressure than the pure solvent. The height of the meniscus, 

multiplied by the density of the solution and the acceleration due to gravity, 

gives the extra pressure on the solution, and this is the osmotic pressure 7r. 

fig. 4.13 A simple apparatus for exhibiting the 
osmotic pressure phenomenon. 
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From experimental measurements on dilute solutions of known concentra¬ 

tion, it has been found that the relation between osmotic pressure and con¬ 

centration is simply 

7T = cRT, (4.11) 

where c is the concentration of solute, R is the gas constant, and T is the tem¬ 

perature in degrees kelvin. If c is expressed in moles/liter, and R is taken as 

0.082 liter-atm/mole-deg, the osmotic pressure t is expressed in atmospheres. 

Equation (4.11) will be derived simply and rigorously by using the methods of 

thermodynamics in Chapter 8. For the present, we will only call attention to 

the relation between osmotic pressure and solvent vapor-pressure lowering by 

the following argument. 

Consider a pure solvent and a corresponding solution of a nonvolatile solute 

placed in the two compartments of the apparatus shown in Fig. 4.7. Because 

the vapor pressure of the solution is lower than that of the pure solvent, the 

pure solvent will tend to evaporate, flow to the solution chamber, and condense 

in the solution. This is entirely analogous to the flow of pure solvent through 

the semipermeable membrane into the solution chamber in the osmotic pressure 

experiment, and occurs for exactly the same reason. We can anticipate that 

we could stop the flow of pure solvent into the solution by doing something 

that raised the vapor pressure of the solution back to a value equal to the vapor 

pressure of the pure solvent. This can be done and, in fact, is done in the 

osmotic-pressure experiment, by exerting an external hydrostatic pressure on 

the solution. 

According to Eq. (4.11), the osmotic pressure corresponding to a solute 

concentration of 1 mole/liter would be 

7r = 0.082 —X 273 deg X 1 mole/liter 
mole-deg 

= 22.4 atm. 

It is possible to measure precisely pressures of less than 10-3 atm. Con¬ 

sequently, the osmotic pressure due to 10~4 M solutions is readily detectable. 

This very great sensitivity of osmotic pressure is used to advantage in the 

determination of the molecular weight of biologically important molecules. 

These substances tend to be rather insoluble; however, it is often possible to 

measure the osmotic pressure of their very dilute solutions and, by knowing 

the weight of material dissolved, calculate their molecular weight. 

Example 4.7 An aqueous solution containing 5.0 gm of horse hemoglobin in 1 liter of 

water shows an osmotic pressure of 1.80 X 10~3 atm at 298°K. What is the molecular 
weight of horse hemoglobin? 

By Eq. (4.11) 

it _ 1.80 X 10~3 

° ~ RT ~ 0.082 X 298 

= 0.74 X 10-4 mole/liter. 
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Since 5.0 gm/liter corresponds to 0.74 X 10 4 mole/liter, 

molecular weight = ' . = 68,000. 
0.74 X 10 * 

Solutions of Two Volatile Components 

If two volatile liquids are mixed to form a solution, and there is no evolution 
or absorption of heat, the solution is ideal, and both components follow Raoult’s 

law over the entire range of concentrations. That is, 

pl = XlP\, P2 = x2Pl 

The vapor pressure of the solution is simply the sum of the partial pressures of 

each component: 

Pt — Pi + P2 = %i Pi + x2P2. 

Figure 4.14 shows how the partial and total vapor pressures depend on con¬ 

centration, for an ideal solution of two volatile components. 
It is important to note that the composition of a vapor in mole-fraction 

units is not the same as the composition of the liquid solution with which it is 

in equilibrium. For example, consider a mixture of benzene (component 1) and 

toluene (component 2). Let us choose a liquid mixture in which the mole 
fraction of benzene (aq) is 0.33, and that of toluene (X2) is 0.67. Then at 20°C 

we have ' 

Pi — 75 mm and P2 = 22 mm, 

so that 
P1 = 0.33 X 75 = 25 mm, 

P2 - 0.67 X 22 = 15 mm, 

and 
PT = Pi -f- P2 = 40 mm. 

The composition of the vapor in mole-fraction units can be obtained by using 

Dalton’s law. In the vapor, we have 

Xi -1 = — = 0.63 
PT 40 

and x2 — 
P2 

Pt -1 - °'37- 

The vapor is nearly twice as rich in benzene as the liquid is. This is a specific 
illustration of the general fact that when an ideal solution is in equilibrium 

with its vapor, the vapor is always richer than the liquid in the more volatile 
component of the solution. This fact can be made the basis for a procedure 

which will separate the components of the solution. Suppose that the vapor 
(63% benzene, 37% toluene) from the previous example was collected, con- 
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densed to a liquid, and then allowed to evaporate so as to come into equi¬ 
librium with its vapor. What is the composition of this new vapor? We have 
as before 

Pi = 75 mm and P2 = 22 mm. 

But now the mole fractions of components 1 and 2 in the liquid are 0.63 and 
0.37, respectively. Therefore their vapor pressures are given by 

Pi = (0.63)(75) = 47 mm, 

P2 = (0.37) (22) = 8.1 mm, 

Pt = 47 + 8.1 = 55 mm. 

From these data we can calculate the mole fractions in the vapor phase to be 

and 

*' = ^ = I = a85 
Pi 
Pt 

X2 — 
h 
Pt 

8.1 mr rr = 0.15. 
55 

Vapor pressure as a function of composi¬ 
tion for an ideal solution of benzene and 
toluene. 

A laboratory distillation apparatus which employs a twisted metal 
gauze to increase liquid-vapor contact in the column. 

FIG. 4.14 

FIG. 4.15 
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Thus the second evaporation has produced a vapor still richer in benzene, the 

more volatile component. It is clear that if we were to collect the vapor once 
again, condense it, and then allow a small amount of it to evaporate, we would 
obtain a vapor even richer in benzene. Repetition of the evaporation-condensa¬ 

tion process therefore tends to produce a vapor that is very nearly pure benzene, 
and a liquid that is very nearly pure toluene. This is the process that goes on 

in the distillation apparatus shown in Fig. 4.15. As the material rises through 
the column it undergoes many evaporation-condensation cycles, and thus the 

material that reaches the top of the column is richest in the most volatile 

component. 

4.5 NONIDEAL SOLUTIONS 

A nonideal solution is formed when the process of mixing its components is 
accompanied by the evolution or absorption of heat. Nonideal solutions do not 

obey Raoult’s law, and indeed, the dependence of their vapor pressures on 
concentration can be quite complicated, I or the purpose of discussion, it is 

convenient to divide nonideal solutions into two groups: those whose formation 

is accompanied by the evolution of heat, and those that are formed with the 

absorption of heat. 

FIG. 4.16 Hydrogen bond interaction between 

chloroform and acetone. 

Cl ch3 
\ / 

Cl—C—H • • • 0=C 

c\ ch3 

The evolution of heat upon mixing indicates that in the solution the com¬ 
ponents have found a situation of lower energy than in their pure states. This 

behavior occurs when the molecular structure of the components is such that 

there are stronger attractive forces between unlike molecules than between 

molecules of the same kind. A specific example of such a pair of molecules is 
chloroform, CHC13, and acetone, (CH3)2CO. When molecules of chloroform 

and acetone are brought together, the single hydrogen on the chloroform mole¬ 

cule is strongly attracted to the oxygen atom in the acetone molecule, as shown 

in Fig. 4.16. This type of interaction is known as hydrogen bonding, and will 
be discussed more completely in Chapter 12. Hydrogen bonding does not occur 

in pure chloroform or pure acetone, because there are no oxygen atoms in 
chloroform and the hydrogen atoms in acetone do not have the proper electrical 

characteristics needed to form strong hydrogen bonds. 
Since the heat evolution indicates that the molecules in solution are in a 

situation of low energy, it is not surprising that the vapor pressure of each 
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component is lower than would be predicted by Raoult’s law. Figure 4.17 

shows the vapor pressures as a function of concentration for chloroform-acetone 
mixtures. Such a solution is said to display negative deviations from Raoult’s 

law, since at each concentration, the vapor pressure of each component is less 
than that predicted by Raoult’s law. Note, however, that at each end of the 

concentration scale, the component which is in excess deviates from Raoult’s 
law only very slightly. Since the component in excess is always taken to be the 

solvent, we can assert that to an acceptable approximation, the solvent in a 
dilute solution obeys Raoult’s law. 

Vapor pressure as a function of composi- fig. 4.17 

tion for acetone-chloroform solutions. 
Behavior expected if the solutions were 
ideal is shown by dashed lines. 

Absorption of heat during mixing indicates that the component molecules in 
solution have higher energy than they do in their pure states. In other words, 

the attractive forces between unlike molecules are weaker than those between 
molecules of the same kind. Since the molecules in such a solution are in a 

condition of high energy, it is not surprising they should have an increased 
tendency to escape from solution, and that the vapor pressure of each of the 

components is greater than that predicted by Raoult’s law. Solutions which 

show these positive deviations from Raoult’s law are often the result of mixing 
a liquid consisting of polar molecules with nonpolar molecules. In the solution, 

the strong attraction between two polar molecules is replaced by the weaker 
attraction between polar and nonpolar molecules, and this is an energetically 

unfavorable situation. The acetone-carbon disulfide system provides an ex¬ 
ample of this type of behavior. Carbon disulfide is a linear molecule that is not 

polar, since its atoms are arranged symmetrically (S=C=S). Acetone has a 
dipole moment, and when it is mixed with carbon disulfide the vapor pressures 
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fig. 4.18 Vapor pressure as a function of com¬ 
position for acetone-carbon disulfide 
solutions. Behavior expected if the 
solutions were ideal is shown by 
dashed lines. 

Mole fraction of carbon disulfide, CS2 

of both components exceed the predictions of Raoult’s law, as is shown in 

Fig. 4.18. 
In our discussions of ideal solutions, we stated that the vapor in equilibrium 

with such solutions is always enriched in the more volatile of the two com¬ 

ponents, i.e., the one with the lower boiling point. This simple rule does not 

always apply to nonideal solutions, however. In fact, consideration of Fig. 4.18 

shows that at mole fractions of 0.65 or greater for carbon disulfide, the vapor 

phase is actually less concentrated in carbon disulfide than the liquid phase, 
even though pure carbon disulfide is more volatile than pure acetone. At mole 

fractions of carbon disulfide of less than 0.65 the solution behaves normally. 

Right at the 0.65 CS2 concentration, the composition of the vapor is exactly 

the same as that of the liquid, and consequently no amount of distillation can 

purify such a mixture. Solutions which distill with no change in composition 

are called azeotropes. There are many azeotropic mixtures, and one of the most 
extensively studied is the solution of hydrochloric acid in water. If any solution 

of hydrochloric acid is boiled long enough at atmospheric pressure its composi¬ 

tion will change until it becomes 20.22% hydrochloric acid by weight. This 
technique can be used to prepare solutions of known acid concentration for use 

in quantitative analysis. However, it is important to note that the composition 

of the azeotrope depends on the atmospheric pressure, and the value of 20.22% 

applies only to a solution boiling at 760 mm. 

4.6 SOLUBILITY 

While there are many pairs of substances which, like water and ethyl alcohol, 
can be mixed in any proportions to form homogeneous solutions, it is a matter 

of common experience that the capacity of a solvent to dissolve a given solute 
is often limited. When a solvent placed in contact with an excess of solute 

attains and maintains a constant concentration of solute, the solute and solution 

are at equilibrium, and the solution is said to be saturated. The solubility of a 

substance in a particular solvent at a given temperature is the concentration 
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of the solute in the saturated solution. In other words, the solubility of a solute 

is the dissolved concentration characteristic of the state of equilibrium between 
the solute and the solution. It is difficult to overemphasize the importance of 

the concept of solubility to chemistry; it is the basis of innumerable laboratory 

and industrial processes that prepare, separate, and purify chemicals, and is 
the controlling factor in a variety of geological and other natural phenomena. 

The solubility of a substance in a particular solvent is controlled principally 

by the nature of the solvent and solute themselves, but also by the conditions 
of temperature and pressure. Let us analyze these factors, first limiting our¬ 
selves to the case of ideal solutions. 

Two liquids that form an ideal solution are always miscible in any propor¬ 

tions and thus have infinite solubility in each other. The reason for this is easy 
to see if we recall two facts. First, limited solubility and a saturated solution 

result only when a solute and its solution reach equilibrium. Second, the equi¬ 

librium state is a compromise between a natural tendency toward minimum 

energy and maximum molecular chaos. Now the mixing of two ideal liquids is 

always accompanied by an increase in entropy or molecular chaos, because in 

the solution, the solute molecules are spread randomly throughout the solvent, 
rather than being nearly closest packed as they are in the pure solute. That is, 

even if we could locate one solute molecule in solution, we could not predict 

what the identity of its nearest neighbors was, as we could if the molecule were 
in the pure solute phase. Consequently the solution has a higher entropy than 

the pure solvent and solute, and the tendency toward maximum molecular 
chaos favors the mixing of the two liquids. Moreover, the fact that there is no 

energy change in the mixing process means that the tendency toward minimum 

energy does not restrict the solution process. Consequently, the two liquid 
components of an ideal solution can mix in any proportion. 

Consider now a solid substance dissolving in a liquid solvent. The solid is 

such that when melted, it is converted to a liquid that in turn can form an 
ideal solution with the solvent. The dissolution of the solid can be pictured as 

occurring in two hypothetical stages: 

solid solute —* liquid solute —> solute in solution. 

We have just specified that the second of these steps does not involve any 
energy change, for the solution formed is ideal. In contrast, the first step does 

involve the absorption of energy in the amount AHfus per mole of solute. Con¬ 
sequently, while the tendency toward maximum entropy favors the dissolution 

of the solid, the tendency toward minimum energy favors the solid remaining 

undissolved. Therefore the solubility of the solid is limited, and a saturated 
solution which represents the best compromise between maximizing entropy 
and minimizing energy is formed. Since AHfua is related to the strength of the 

attractive forces between solute molecules, we can deduce that the magnitudes 

of these same forces determine the solubility of the solid in ideal solutions. 
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By using some care, we can extend our arguments to nonideal solutions. 
Two liquids which mix with the evolution of heat will be infinitely soluble in 

each other, for both energy and entropy effects favor their mixing. Two liquids 

which mix with the absorption of heat may have limited solubility in each 
other, for if the mixing process is energetically unfavorable, the tendency to¬ 

ward maximum molecular chaos may or may not be sufficient to allow the 

liquids to mix in all proportions. Likewise, the solubility of a solid is likely to 
be small if it enters the solution only with considerable absorption of heat. 

On the other hand, if the dissolution of the solid is accompanied by evolution 

of heat, the solubility of the solid may be quite high. Even with these generaliza¬ 

tions it is difficult to predict or even rationalize qualitatively the solubilities of 
substances that form markedly nonideal solutions, for the energy and entropy 

changes that accompany the mixing of strongly interacting molecules are subtle 
and difficult to anticipate. 

Temperature Effects 

If the enthalpy change that accompanies the dissolution of a solute is known, 

it is possible to predict the effect of a change in temperature on the solubility. 
To do this, we need only recall one of the general principles of equilibrium 

discussed in Section 4.2. There we noted that if a system initially at equilibrium 

is perturbed by some change in its surroundings, it reacts in a manner which 

restores it to an equilibrium state. A very useful restatement and extension 
of this observation is known as Le Chatelier’s principle: If anything is done to 

a system initially in equilibrium that would result in a change of any of the factors 

that determine the state of equilibrium, the system will adjust itself in such a way 

as to minimize that change. To see how to use LeChatelier’s principle, let us 
apply it to liquid-vapor equilibrium. 

Let us consider a liquid and its vapor at equilibrium at some particular tem¬ 

perature. If heat were delivered to this system, and no other change allowed 

to occur, the temperature would rise. This would cause a departure from 
equilibrium, since the existing vapor pressure is not the equilibrium vapor 

pressure at the higher temperature. The induced temperature change could 

be minimized, however, if the system reacted, that is, if liquid and vapor were 

interconverted in a way that absorbs heat. Le Chatelier’s principle tells us that 
this is the way the system will react, and we also know that the system absorbs 

heat if the liquid evaporates. Therefore, the prediction based on Le Chatelier’s 

principle and a positive value for AHvav is that as heat is added, the liquid will 
evaporate, and consequently the vapor pressure will increase. After the addition 

of heat the new position or state of equilibrium corresponds to increased vapor 
pressure and temperature. This prediction is consistent with the observed fact 

that the vapor pressure of a liquid increases as the temperature increases. 

The form of the argument we have just used is in no way limited to liquid- 

vapor equilibrium. We might generalize and say that for any reaction which 
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has a positive AH, an increase in temperature will result in an increase in 
product concentration at the expense of reactant concentration. The converse 
must also be true, for it corresponds to reversing the direction in which a re¬ 

action is written: if AH is negative, increasing the temperature decreases the 
concentration of products in favor of the reactants. We can use this general 

conclusion to predict the temperature dependence of solubility. If the enthalpy 

change that accompanies the solution reaction AHso\ is positive, that is, if heat 
is absorbed when the reaction 

solvent -f- solute —» solution 

takes place, the solubility of the solute increases as temperature increases. If, 
on the other hand, AHS0\ is negative, then the solubility of the solute decreases 

as temperature increases. Figure 4.19 illustrates the temperature dependence 
of the solubility of KN03, NaCl, and Na2S04. The prediction based on Le 

Chatelier’s principle is substantiated by these data, for AHso\ is +8.5, +1.3, 

and —5.5 kcal/mole, respectively, for KN03, NaCl, and Na2S04. 

Temperature (°C) 

The temperature dependence of the solubility of fig. 4.19 

three salts in water. 

Two-Component Phase Diagrams 

In Section 4.2 we discussed phase diagrams for systems of one chemical com¬ 
ponent. With such diagrams, we could describe the conditions of temperature 

and pressure under which we could expect to have one phase, or two or three 
phases present in equilibrium. Such phase diagrams are also very useful in 
analyzing the behavior of systems which have two or more chemical components. 

When we have two components, there are three state functions that must be 

specified in order to describe the system: temperature, pressure, and the con¬ 
centration (mole fraction) of one of the components. Since there are three 

variables, the phase diagram should be three-dimensional. It is common prac- 
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tice, however, to consider the total pressure as fixed; thus we can have a two- 

dimensional phase diagram with concentration and temperature as variables. 
Figure 4.20 shows the phase diagram of the bismuth-cadmium system at a 

fixed pressure. The point A is the freezing point of pure bismuth, 273°C, while 

point B is the freezing temperature of pure cadmium, 323°C. At temperatures 
above 323°C we have, regardless of composition, only one phase present: a 

liquid solution of bismuth and cadmium. At temperatures below 140°C, two 

pure solid phases are present: crystalline bismuth and crystalline cadmium. 
At intermediate temperatures, one, two, or three phases may be present, 

depending on the temperature and composition. 

Phase diagrams are constructed from experiments in which mixtures are 
liquefied and allowed to cool, and the temperature as a function of time deter¬ 

mined. Examples of such cooling curves are shown in Fig. 4.20(b), and their 

relation to the phase diagram (Fig. 4.20(a)) is indicated. If pure bismuth is 

melted and allowed to cool, the temperature at first falls, and then when the 

freezing point of bismuth is reached, the temperature remains constant until 
all the bismuth solidifies, and then it starts to fall again. This abrupt leveling 

off of the cooling curve is characteristic of the freezing of a pure substance. 

Mole fraction Cd XCi Time 

(a) (b) 

fig. 4.20 (a) Phase diagram and (b) cooling curves for the cadmium-bismuth system. 

If a liquid having a mole fraction Xca of cadmium of 0.2 were allowed to 

cool, nothing would happen until the temperature reached 240°C, the inter¬ 

section of Aca = 0.2 and the curve AE of Fig. 4.20(a). At this point, pure solid 
bismuth would just begin to crystallize from the liquid, and solid bismuth 
would be in equilibrium with a solution containing 0.2 mole fraction Cd. The 

cooling curve shows a change in slope at this temperature, as the latent heat 
of crystallization of bismuth is released, and reduces the rate of temperature 

decrease. In contrast to the behavior of a pure substance, the solution does not 
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freeze completely at one temperature. As bismuth crystallizes, the liquid 
becomes richer in cadmium, and therefore has a lower freezing temperature. 

Consequently, in order to continue to crystallize bismuth, the temperature 
must continue to be lowered. At 140°C, the cooling curve does level off, and 

at this one temperature, the solution that remains solidifies abruptly. The 
temperature at which this occurs is the eutectic temperature, and the abrupt 
leveling off of the cooling curve is called the eutectic halt. 

If liquids of other compositions which are near to 0.2 mole fraction cadmium 
are cooled, the first crystallization of bismuth occurs at a temperature given by 
the intersection of the composition with the curve AE. In fact, the curve AE 

represents all conditions of temperature and concentration at which pure solid 

bismuth and a liquid solution can exist in equilibrium. We can indeed say 

that the curve AE describes the freezing point depression of bismuth by cad¬ 
mium over a range of compositions indicated. For small mole fractions of Cd, 

the curve AE and hence the freezing point depression AT f varies linearly with 

A'ca, as has been discussed earlier. For larger mole fractions of Cd, this is not 
the case. 

We can now analyze what happens when a solution with 0.8 mole fraction 
Cd is cooled. At the temperature corresponding to the intersection of XCd = 0.8 

and the curve BE, the first solid appears, and is found to be pure crystalline 
cadmium. The cooling curve shows a change of slope characteristic of the 
gradual crystallization of a solid from a solution. At 140°C there is a eutectic 

halt, and complete solidification. 
The curve BE represents all pairs of temperatures and concentrations at 

which pure solid cadmium is in equilibrium with a cadmium-bismuth solution. 
It is, therefore, the curve of the freezing-point depression of cadmium by 
bismuth. As a solution from which cadmium is crystallizing is cooled, the 

solution becomes increasingly rich in bismuth. The concentration of the solu¬ 
tion left behind at any temperature can be found from the curve BE. As the 

temperature is further lowered, the point that describes the system moves 
along the curve BE toward the point E. 

The curve BE represents temperatures and concentrations at which pure 
solid cadmium is in equilibrium with a Bi-Cd solution, and the curve AE gives 
the temperatures and concentrations at which pure solid bismuth is in equi¬ 

librium with the solution. Their intersection at point E must therefore be a 
situation at which cadmium and bismuth as pure solids are in equilibrium with 
a liquid solution. Note that this occurs only at one temperature and for one 

liquid phase composition. This point is called the eutectic point. Any further 
cooling of this eutectic mixture below the eutectic temperature produces abrupt 
crystallization of the liquid to mixed crystals of cadmium and bismuth. It is 

this crystallization of both solids that produces the eutectic halt in the cooling 
curves. If a solution of the eutectic composition is cooled, no crystallization 

occurs until the eutectic temperature is reached, at which point both solids 

crystallize abruptly. 
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Question. The curves AE and BE are said to describe the freezing point depression of 
bismuth and cadmium, respectively. Could they just as well be said to represent the 
solubility of bismuth and cadmium in the liquid? 

There is another important set of conclusions which we can draw from the 

cadmium-bismuth phase diagram. In the region of the diagram where there is 
only one phase, the liquid solution, we can vary both the temperature and the 

composition independently of each other without producing or destroying any 
phases. It is said, therefore, that in this one phase region, there are two deyrees 

of freedom. Along the lines AE and BE, where two phases are present in equi¬ 
librium, there is oidy one degree of freedom. If the temperature is changed, 

the liquid composition must change in the way prescribed by the curves if the 

two phases are to be retained. Thus temperature, but not composition, or 

composition, but not temperature, may be varied independently. Finally, at 
the eutectic point where three phases are present, there are no degrees of freedom, 

since a change in liquid composition or temperature will cause at least one 
phase to disappear. 

It is clear, then, that the number of independent variables available to us is 
related to the number of phases present. It is also found to depend on the num¬ 

ber of chemical components in the system. The relation between the number 
of components C, the number of phases P, and the number of degrees of freedom 

F is given by the Gibbs phase rule 

F — C — P + 2 (pressure variable), 

F = C — P + 1 (pressure fixed). 

Note that in the one-phase region of a two-component system with the pressure 

fixed, F = 2. In the two-phase region F = 1, and at the three-phase eutectic 
point F = 0. The phase rule is of considerable use in the analysis of compli¬ 

cated phase diagrams involving multicomponent alloys. 
The existence of chemical compounds can be inferred from phase diagrams. 

Figure 4.21 shows that in the zinc-magnesium system, there are two eutectic 
points, and an intermediate maximum freezing point at 0.33 mole fraction 

magnesium. A cooling curve at this composition shows one point at which the 
cooling stops and the temperature remains constant while the liquid solidifies 

completely to produce only one solid phase. These are the cooling charac¬ 

teristics of a pure compound, which in this case has the formula MgZn2. 
Once the existence of the compound MgZn2 is recognized, the appearance 

of the rest of the phase diagram is readily understood. The diagram is in effect 

two simple phase diagrams back to back: one corresponds to the Zn-MgZn2 
system, the other to the MgZn2-Mg system. The phase rule can be applied to 

each of these two-component systems just as we have done for the cadmium- 
bismuth system. Note, however, that at the exact composition which cor¬ 

responds to MgZn2, there is only one component present, and consequently at 
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TOO 

The phase diagram for the magnesium-zinc system, shoeing the formation of the com¬ 
pound MgZn2- 

the freezing point of MgZno. there are two phases, and the number of degrees 
of freedom is 

F = C — P+l = l — 2 — 1 = 0. 

This is as expected for the freezing of a pure substance at a fixed pressure. 

4.7 

In this chapter we have explored some of the phenomena and concepts asso¬ 
ciated with liquids and their solutions. All of these ideas find repeated use in 
the study of chemistry. We shall see that an appreciation of the kinetic theory 
of liquids will help us understand some of the factors that determine the rates 
of chemical reactions which take place in solution. The colligative properties 
of solutions—the vapor-pressure lowering, boiling-point elevation, and freezing- 
point depression—offer ways of determining the molecular weights of dissolved 
substances. These methods are used actively in chemical research, both in 
organic chemistry and in the study of polymeric molecules of high molecular 
weight. Of most general importance, however, are the ideas associated with 
phase equilibria. In subsequent chapters we shall be continually concerned 
with chemical equilibria, sometimes in systems of considerable complexity. 
Regardless of the chemical complexity, the general nature of the equilibrium 

FIG. 4.21 

CONCLUSION 
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state and the general factors that determine the concentrations that exist at 
equilibrium are always the same. Consequently, the ideas generated in our 
discussion of phase equilibria will be of use to us in analyzing all situations 
of equilibrium. 
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PROBLEMS 

4.1 What are the molality and the molarity of a solution of ethanol, C2H5OH, in 
water if the mole fraction of ethanol is 0.05? Assume that the density of the solution 
is 0.997 gm/ml. 

4.2 Concentrated nitric acid is 69% by weight HNO3 and has a density of 1.41 gm/ml 
at 20°C. What volume and what weight of concentrated nitric acid are needed to 
prepare 100 ml of 6-M acid? 

4.3 Calculate how many milliliters of 0.10-4/ KM11O4 are required to react com¬ 
pletely with 0.01 mole of oxalate ion, C2O4, according to the reaction 

2M11O4 + 5C2OJ + 16H+ = 2Mn + + + 10CO2 + 8H20. 

4.4 Exactly 100 gm of a certain solution contain 10 gm of NaCl. The density of the 
solution is 1.071 gm/ml. What is the molality and the molarity of NaCl? 

4.5 The boiling point of a solution of 0.402 gm of naphthalene, CioHs, in 26.6 gm of 
chloroform is 0.455°C higher than that of pure chloroform. What is the molal boiling- 
point elevation constant for chloroform? 

4.6 The vapor pressure of a dilute aqueous solution is 23.45 mm at 25°C, whereas the 
vapor pressure of pure water at this temperature is 23.76 mm. Calculate the molal 
concentration of solute, and use the tabulated value of Kb for water to predict the 
boiling point of the solution. 

4.7 What weight of ethylene glycol, C2H6O2, must be included in each 1000 gm of 
aqueous solvent to lower the freezing point to —10°C? 
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4.8 When 1.00 gm of sulfur is dissolved in 20.0 gm of naphthalene, the resulting 
solution freezes at a temperature 1.28C° lower than pure naphthalene does. What is 
the molecular weight of sulfur? 

4.9 The freezing-point depression constant for mercuric chloride, HgCE, is 34.3. For 
a solution of 0.849 gm of mercurous chloride (empirical formula HgCl) in 50 gm of 
HgCb, the freezing-point depression is 1.24°C. What is the molecular weight of 
mercurous chloride in this solution? What is its molecular formula? 

4.10 T 'en liters of dry air were bubbled slowly through liquid water at 20°C, and the 
observed weight loss of the liquid was 0.172 gm. By assuming that 10 liters of saturated 
water vapor were formed in the experiment, calculate the vapor pressure of water 
at 20°C. 

4.11 Ethanol and methanol form a solution that is very nearly ideal. The vapor 
pressure of ethanol is 44.5 mm, and that of methanol is 88.7 at 20°C. (a) Calculate 
the mole fractions of methanol and ethanol in a solution obtained by mixing 60 gm 
of ethanol with 40 gm of methanol, (b) Calculate the partial pressures and the total 
vapor pressure of this solution, and the mole fraction of ethanol in the vapor. 

4.12 At 20°C, the vapor pressure of pure benzene is 22 mm, and that of pure toluene 
is 75 mm. What is the composition of the solution of these two components that has a 
vapor pressure of 50 mm at this temperature? What is the composition of the vapor 
in equilibrium with this solution? 

4.13 The solubility of borax (Na2B-t07 • IOH2O) in water increases as the tempera¬ 
ture increases. Is heat evolved or absorbed as this salt dissolves? Is the All of the 
dissolution process positive or negative? 

4.14 At 55°C, ethanol has a vapor pressure of 168 mm, and the vapor pressure of 
methyl cyclohexane is 280 mm. A solution of the two, in which the mole fraction of 
ethanol is 0.68, has a total vapor pressure of 376 mm. Is this solution formed from 
its components with the evolution or absorption of heat? 
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CHAPTER 5 

CHEMICAL EQUILIBRIUM 

In this chapter we shall explore the consequences of the fact that chemical 

reactions are reversible, and that in closed chemical systems there eventually 
occurs a state of equilibrium between reactants and products. In so doing, we 

will be starting to develop concepts which will lead us eventually to a quanti¬ 

tative expression of “chemical reactivity.” The concentrations which exist 

when a chemical system reaches equilibrium reflect the intrinsic tendency of 

the atoms to exist either as reactant or product molecules. Thus by learning to 

describe the equilibrium state quantitatively, we will be able to replace qualita¬ 
tive statements about “the tendency of a reaction to go” with definite numerical 

expressions of the extent of conversion of reactants to products. 

5.1 THE NATURE OF CHEMICAL EQUILIBRIUM 

In Chapter 4 we found that the existence of a characteristic equilibrium vapor 

pressure for a condensed phase is a consequence of the fact that the evaporation 
process is reversible. A liquid or solid that has been completely vaporized can, 

by an appropriate change in conditions, be completely recondensed. Both 

evaporation and condensation can occur, and for each substance there is a set 

of conditions—particular values of temperature and vapor pressure—at which 
evaporation and condensation occur at equal rates. Under these conditions 

both phases remain indefinitely, and we say that the system is at equilibrium. 
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Chemical reactions, like phase changes, are reversible. As a consequence, 
there are conditions of concentration and temperature under which reactants 

and products exist together at equilibrium. To illustrate our point, and to 
emphasize the close connection between phase equilibria and chemical equi¬ 
libria, we consider the thermal decomposition of calcium carbonate, 

CaCOa(s) -> CaO(s) + C02(g). (5.1) 

By carrying out this reaction in an open vessel which allows carbon dioxide to 

be swept away, complete conversion of calcium carbonate to calcium oxide can 
be effected. On the other hand, it is well known that calcium oxide reacts with 

carbon dioxide, and if the pressure of C02 is high enough, the oxide can be 
completely converted to the carbonate by 

CaO(s) + C02(g) - CaC03(s). (5.2) 

This is, of course, just the reverse of reaction (5.1). Thus we must look upon 
reactions (5.1) and (5.2) as reversible chemical processes, a fact which we denote 
by either of the following notations: 

CaC03(s) = CaO(s) -f- C02(g), 

CaC03(s) ^ CaO(s) + C02(g). 

This chemical system is closely analogous to the “physical” system consisting 
of a condensed phase and its vapor. Just as a liquid and its vapor come to 

equilibrium in a closed container, there are certain values of the temperature 
and pressure of C02 at which CaC03, CaO, and C02 remain indefinitely. 

When pure CaC03 is heated in a closed vessel, it begins to decompose according 

to reaction (5.1). As the C02 accumulates, its pressure increases, and eventually 
reaction (5.2) begins to occur at a noticeable rate, a rate which increases as the 

pressure of C02 increases. Finally, the rates of the decomposition reaction and 

its reverse become equal, the pressure of carbon dioxide remains constant, and 

the system has reached equilibrium. 
In the discussion of phase equilibrium in Chapter 4 we used liquid-vapor 

equilibrium to illustrate four characteristics of all equilibrium situations. Let 
us review each of these characteristics and see how they are exemplified by 

chemical equilibria. 
The first feature of the equilibrium state is that it is dynamic; it is a per¬ 

manent situation maintained by the equality of the rates of two opposing 

chemical reactions. That is, when the system CaC03, CaO, C02 comes to 

equilibrium with respect to the reaction 

CaC03(s) = CaO(s) + C02(g), 

we assert that CaC03 continues to be converted to CaO and C02, and that 

C02 and CaO continue to form CaC03. It is not difficult to prove this state- 
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merit by an experiment. Some pure CaC03 is decomposed in a closed system, 

and allowed to come to equilibrium with CaO and a certain pressure of C02. 
Then the reactor is connected to another flask which contains, at the same 

temperature and pressure, some C02 which has been “labeled” with radioactive 

carbon, C14. This operation in itself does not disturb the equilibrium between 
C02 and the solids, since the pressure and temperature are always constant. 

After a while, some of the solid is withdrawn and examined for radioactivity. 
The characteristic radiation of C14 is found in the CaC03, which indicates that 

some C1402 reacted with CaO to form CaC1403, even though the system was 

always at equilibrium. While this occurred, some CaC03 must have dissociated 
to CaO and C02 in order to maintain a constant pressure of C02. Thus, even 

though no net change in composition occurred, the opposing reactions went on, 

and the equilibrium conditions were maintained by a dynamic balance. This 
type of experiment can be performed with many systems, and the results always 

indicate that dynamic balance of opposing reaction rates is a characteristic of 
systems at equilibrium. 

Our second generalization is that systems move toward an equilibrium state 
spontaneously; that a system can be removed from equilibrium only by some 

outside influence, and once it is left to itself, the disturbed system returns to an 

equilibrium state. We must be careful to understand the meaning of the word 

“spontaneously.” In this context it means that the reaction proceeds at some 

finite rate without the action of outside influences such as changes in temperature 
or pressure. This assertion that systems proceed naturally toward equilibrium 

cannot be proved by a single simple example, for it is a generalization based on 
the observation of many different systems under many different conditions. 

We can, however, rationalize this behavior with a simple argument. A system 

moves toward the equilibrium state because the rate of reaction in the forward 

direction exceeds the rate of the reverse reaction. In general, it is found that 
the rate of a reaction decreases as the concentrations of reactants decrease, just 

as the rate of condensation of a vapor decreases as its pressure decreases. There¬ 

fore, as reactants are converted to products, the rate of the forward reaction 
decreases and that of the reverse reaction increases. When the two rates become 

equal, net reaction ceases, and a constant concentration of all reagents is main¬ 
tained. In order for the system to move away from equilibrium, the rate of the 

forward or reverse reaction would have to change, and this does not happen if 

external conditions such as pressure and temperature are kept constant. Thus 

systems move toward equilibrium because of an imbalance of reaction rates; 
at equilibrium these rates are equal, and there is no way for the undisturbed 

system to move away from equilibrium. 
The third generalization about equilibrium is that the nature and properties 

of the equilibrium state are the same, regardless of the direction from which it 
is reached. It is easy to see that this applies to our example of the CaC03, CaO, 

C02 system, for at each temperature there is a fixed value of the equilibrium 

C02 pressure at which the rate of evolution of C02 equals the rate of its con- 
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version to CaC03. It does not matter if this pressure is attained by allowing 

CaC03 to decompose, or by allowing C02 to react with pure CaO. The rates 
of the forward and reverse reactions become equal, and net reaction ceases when 
the equilibrium pressure of C02 is reached, whether this pressure is approached 
from above or below the equilibrium value. 

A certain amount of care is necessary in applying the third generalization to 
chemical systems. Consider the reaction 

PCl5(g) = PCl3(g) + Cl2(g). 

It is found experimentally that the equilibrium concentrations are the same 
when one mole of pure PC15 decomposes in a fixed volume or when one mole of 
PC13 and one mole of Cl2 are mixed and react in the same volume. If in another 

experiment one mole of PC13 and two moles of Cl2 are mixed, a new equilibrium 
state is reached. To approach this new equilibrium state from the opposite 

direction we would have to mix one mole of PC15 with one mole of Cl2. That is, 
our assertion that the equilibrium state is the same regardless of how it is 

approached presupposes that a fixed number of atoms of each element per unit 
volume are involved. 

The fact that the nature of the equilibrium state is independent of the 
direction from which it is approached is often used as a criterion for chemical 

equilibrium. There are chemical reactions that are exceedingly slow. How 
then can we distinguish between the truly time-invariant concentrations of 
reagents that exist at equilibrium, and a situation far from equilibrium which 

is changing so slowly that we cannot detect any net reaction? If bringing 

together pure “reactants” and then pure “products” leads to the same con¬ 
centrations of all reagents when all apparent net reaction ceases, then we can 

be sure the time-invariant situation is one of true equilibrium. If the situations 
reached from the product side and reactant side are different, then equilibrium 

has not been reached, and the reaction is merely very slow. 
The fourth generalization is that the equilibrium state represents a com¬ 

promise between two opposing tendencies: the drive for molecules to assume 

the state of minimum energy and the urge toward a state of maximum molecular 
chaos or entropy. It is not difficult to analyze the equilibrium situation for the 

reaction 

CaC03(s) = CaO(s) + C02(g) 

in these terms. In solid CaC03, the carbon and oxygen atoms are in a highly 
ordered condition: they are grouped as carbonate ions, COJ, which occupy 

well-defined sites in the crystal lattice. The chemical reaction corresponds to 

“freeing” a fragment of the CO^ group as a C02 gaseous molecule. These 
gaseous molecules can move anywhere within the volume of the container, and 
their positions at any instant can be regarded as randomly distributed. Con¬ 

sequently, the C02 molecules have more entropy in the gas phase than they do 

when they constitute part of the CO^ grouping in the ionic lattice. If the 
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urge toward maximum molecular chaos were dominant, CaC03 would decom¬ 

pose completely to CaO and C02. Experiments show, however, that energy is 

absorbed by the system when C02 is evolved from CaC03. Consequently, 
the change in the system that satisfies the drive to maximize entropy violates 

the tendency to minimize energy, and vice versa. Therefore, the equilibrium 

pressure of C02 over a mixture of CaC03 and CaO represents the best com¬ 
promise between the two opposing tendencies. 

There are many other chemical reactions in which the influence of entropy 

and energy is easy to discern. The simplest example is a dissociation reaction 
of a gaseous molecule: 

H2(g) = 2H(g). 

The drive toward maximum entropy favors the dissociation reaction, for this 

process converts ordered pairs of atoms into free atoms that can move inde¬ 
pendently and which are randomly distributed in space at any instant. On the 

other hand, the dissociation requires energy to break the chemical bond between 

atoms, and consequently the drive toward minimum energy favors the mole¬ 
cules’ remaining undissociated. In general, reactions in which molecules arc 

fragmented and bonds are broken are favored by the drive to maximize entropy, 

but opposed by the tendency to minimize energy. 
There are reactions for which the energy and entropy changes are much less 

obvious. For example, the entropy change for the reaction 

N2 + O 2 = 2NO 

is nearly zero, and it is not possible to discern by inspection whether the en¬ 

tropy factor favors products or reactants. Similarly, it is not possible to see by 
inspection that the energy of the reactants is lower than that of the products. 

To analyze the energy and entropy effects for such a reaction, we must use the 

quantitative methods of thermodynamics described in Chapter 8. We shall 
find there that it is possible to evaluate energy and entropy changes quanti¬ 

tatively, and to use this information to predict the extent to which a reaction 
will proceed from reactants to products. 

While the general nature of phase equilibria and chemical equilibria is the 
same, the manner in which the equilibrium state is specified in the two instances 

is superficially different. Situations of phase equilibria can often be described 

simply by saying that a certain compound melts at a particular temperature 
and pressure, or that the vapor pressure has a certain value at a given tem¬ 

perature. In contrast, to specify situations of chemical equilibrium it is often 
necessary to give the concentrations of several reagents at each temperature. 

Fortunately, for each chemical reaction there is a single function which com¬ 

pactly expresses all possible situations of equilibrium at a particular temperature. 

This quantity, the equilibrium constant, is of foremost importance in chemistry, 
and is discussed in detail in the next section. 
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5.2 THE EQUILIBRIUM CONSTANT 

It is an experimental fact that the pressure of C02 in equilibrium with solid 

CaO and CaC03 is a function only of the temperature of the reaction mixture. 
Once the system has reached equilibrium, either solid CaO or CaC03 may be 
added or removed, and so long as some of each solid is present in the system, 

the pressure of C02 will remain constant. Thus in order to characterize the 
equilibrium state of this system, it is only necessary to state the equilibrium 
pressure of C02. 

The situation is somewhat different when there are several dissolved or 

gaseous reagents involved in a chemical reaction. Let us consider the reaction 
between hydrogen gas and iodine vapor to form gaseous hydrogen iodide: 

H2(g) + I2(g) = 2HI(g). 

It is easy to demonstrate that this reaction is reversible, and that the same 
state of equilibrium can be reached either by starting from pure H2 and I2 as 

reactants, or by decomposing pure HI. Now, while the equilibrium state of the 

CaC03, CaO, C02 system can be characterized by one number, the pressure of 
C02, in the H2, I2, III system, it is found that there are infinitely many sets of 

pressures of the reagents that can exist at equilibrium. This variety of equilib¬ 

rium compositions arises because it is possible to reach equilibrium by starting 
the reaction with equal pressures of II2 and I2, or with H2 in excess of I2, or 

vice versa. For any choice of initial concentrations an equilibrium state is 

reached, but for each choice the concentration of the individual reagents at 
equilibrium is different. There is, however, a simple relationship between the 

concentrations of reagents at equilibrium. It is found experimentally that 

despite the infinite variety of pressures of individual reagents, the quantity 

P HI 

Ph 
(5.3) 

is a constant, dependent only on the temperature. Table 5.1 contains some of 

the experimental data that demonstrate this fact. Thus, while there is a large 

number of sets of pressures or concentrations that can exist at equilibrium, 
there is a sincjle universal relationship that is satisfied when the system is at 

equilibrium. 
Equation (5.3) is a simple example of an equilibrium constant. In general, 

experiments show that for a reaction of the form 

aA + 5B = cC + clD, 

the concentrations of the reactants and products at equilibrium arc related by 

the requirement that the function 

[C]c[D]d _ K 
[AMBP 

(5.4) 
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Table 5.1 Equilibrium in the H2, 12, HI reaction 

Partial pressure (atm) 
h2 I2 HI K = Phi/Ph2Pi2 

0.1645 0.09783 0.9447 55.41 
0.2583 0.04229 0.7763 55.19 
0.1274 0.1339 0.9658 54.67 
0.1034 0.1794 1.0129 55.31 
0.02703 0.02745 0.2024 55.19 
0.06443 0.06540 0.4821 55.16 

Data of Taylor and Crist, J. Am. Chem. Soc., 63, 1377 (1941). 
In the first four experiments HI was formed from its elements. 
In the last two, equilibrium was approached by decomposing HI. 
The temperature was 698.6°K. 

be a fixed constant whose value depends on the temperature and the identity of 
the reactants and products. Should any of the reagents be a gas, its pressure 
can be used in place of its concentration in Eq. (5.4). 

In the equilibrium-constant expression, the concentrations of the reaction 
products, each raised to a power equal to its stoichiometric coefficient in the 
chemical reaction, appear in the numerator, and the concentrations of the 
reactants, each raised to the appropriate power, appear in the denominator. 

Why is there such a thing as the equilibrium constant, and why does it have 
this form? It is possible to answer this question by using the methods of thermo¬ 
dynamics or reaction kinetics which are presented in Chapters 8 and 9. For the 
present, we will take the existence and form of the equilibrium constant as 
experimental facts. We must remark, however, that the expression of Eq. (5.4) 
holds only if we are dealing with reagents that are ideal gases or are present as 
solutes in an ideal solution. Thus Eq. (5.4) might be called the ideal law of 
chemical equilibrium. 

There are several matters concerning the use of equilibrium constants that 
should be carefully noted. First, how are we to write the equilibrium-constant, 
expression for reactions such as 

CaC03(s) = CaO(s) -|- CO2(g) 

that involve pure solids like CaO and CaC03? Direct application of Eq. (5.4) 
would suggest that the appropriate expression is 

[C02][CaO] 
[CaC03] 

In this instance, the solid phase is a mixture of individual microscopic crystals 
of pure CaO and CaC03, and it is conventional not to include the concentra¬ 
tions of pure solids in the equilibrium-constant expression. In the first place, 
the concentration of a pure solid in itself is a constant, and is not changed by the 
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chemical reaction or by addition or removal of the solid. Moreover, it is an 
experimental fact that neither the amount of CaC03 nor that of CaO affects 

the equilibrium pressure of C02, so long as some of each solid is present. Con¬ 

sequently, we can include the constant concentrations of the pure solids in the 
equilibrium constant itself and write 

[C02] = 
[CaC03] 

[CaO] 
K' = K, [C02] = K. 

Thus the equilibrium constant for the decomposition of CaC03 is equal to the 

concentration (or pressure) of the carbon dioxide at equilibrium. The same 
principle applies to the reaction 

Cu++(aq) -f Zn(s) = Cu(s) + Zn++(aq). 

The equilibrium constant is 

[Zn++] 

[Cu++] 

The metals do not appear in the equilibrium expression, for they are pure solids 
of constant composition. 

Another important matter is illustrated by the relation between the equilib¬ 

rium constant for the reaction 

2H2(g) + 02(g) — 2H20(g) 

and that for the simpler reaction 

H2(g) + i02(g) = H20(g). 

For the first reaction we have 

[H2Q]2 

1 [H2]2[02] ’ 

while for the second reaction we would write 

[H2Q] 
2 [H2][02]l/2 

Comparison of these expressions shows that 

K2 = K\12. 

In general, if a reaction is multiplied by a certain factor, its equilibrium constant 
must be raised to a power equal to that factor in order to obtain the equilibrium 

constant for the new reaction. 
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A closely related problem is the relationship between the equilibrium con¬ 

stants for a reaction such as 

and its reverse, 

2NO + 02 = 2N02 

2N02 = 2NO + 02. 

For the reaction as first written we get 

[NQ2]2 

1 [N0]2[02]’ 

while the equilibrium constant for its reverse is 

K [N0]2[02] 

2 [N02]2 

Comparison of the two expressions shows that 

That is, the equilibrium constants for a reaction and its reverse are reciprocals 

of each other. We could have obtained this result by following the previous 

rule, that is, multiplying the forward reaction by —1, and raising Kx to the 

— 1 power. 

Often it is necessary to add two reactions together to obtain a third reaction. 

The equilibrium constant of the third reaction is related to the equilibrium 

constants of the two component reactions, as the following example illustrates: 

2NO(g) + 02(g) = 2NOa(g), 

2N02(g) = N204(g), 

2NO(g) + 02(g) = N204(g), 

K1 

K2 

K 3 

[NQ2]2 , 
[N0j2[02] ’ 

[N2o4], 
[NOa]2 ’ 

[N2Q4] 

[N0]2[02]' 

Comparing the three equilibrium constants, we see that K3 = K\K2- Thus, 

when two or more reactions are added, their equilibrium constants must be 

multiplied to give the equilibrium constant of the overall reaction. 

The magnitude of the equilibrium constant depends on the units used to 

express the concentrations of the reagents. For example, consider the ammonia 

synthesis reaction at 673°K: 

N2 -f- 3II2 = 2NH3. 
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When the equilibrium constant is written in terms of the pressures of the reagents 
expressed in units of atmospheres, we have 

Kp(atm) (-Pnh3)2 

(■Pn2)(Pk2)3 

1.64 X 10~4. 

However, if the pressure units to be used are torr (mm Hg), we would employ a 
value of Kp given by 

K’p(torr) = Kp( atm) 

^760 torrj2 

atm 

^760 torr\ /760 torr\3 ’ 

atm atm 

Kp( torr) = 2.84 x jo-0. 
(760)2 

Similarly, we might wish to use concentration units of moles per liter instead of 

pressure. From the ideal gas law we see that 

C (moles/liter) = — =-, 
V RT 

where P is in atmospheres, and R has units of liter-atmospheres per mole-degree. 

Thus the conversion factor from pressure to concentration is 1/RT. 

Therefore for the ammonia synthesis we have 

if c (moles/liter) = if p (atm) -(1 /RT)- 
(1/RT)(1/RT)3 

= ifp(atm) (RT)2 

= 1.64 X 10~4 X 3.05 X 103 

= 0.500. 

Note that to convert an equilibrium constant to a new set of units, we multiply 
the old value by a factor which is found by raising the conversion factor from 

old to new units to the power An, where An is the change in the number of moles 

(final minus initial) of dissolved or volatile reagents. 

Interpretation of Equilibrium Constants 

The numerical value of the equilibrium constant for a reaction is a concise 
expression of the tendency for reactants to be converted to products. Because 

the algebraic form of the equilibrium constant is sometimes moderately com¬ 
plex, some care and experience are required to interpret its numerical value. 
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FIG. 5.1 

In this section we shall examine some simple types of reaction with the purpose 

of finding what qualitative information can be learned from the value of the 

equilibrium constant. 
As our first example, we choose reactions in which there is only one reagent 

of variable concentration. These include 

CaC03(s) = CaO(s) + C02(g), K = [C02]; 

I2(s) = I2 (in CC14 solution), K = [I2]. 

For such reactions, the equilibrium constant is simply equal to the equilibrium 

concentration of a single reagent. For the second of these reactions, the equi¬ 

librium constant is just the solubility of iodine in carbon tetrachloride. One 
way of representing the iodine solubility is to plot the allowed concentrations 

of dissolved iodine as a function of the amount of solid iodine present, as in 

Fig. 5.1. The significance of the horizontal line is that if any excess solid iodine 

is present, the solution is saturated, and the concentration of dissolved iodine 

must equal K. The meaning of the vertical line is that so long as no solid I2 

is present, the concentration of dissolved I2 may be any value less than K. 

Solubility of l2 in CCI4. The solid 
horizontal line represents the equi¬ 
librium states of the system, while 
the dashed line represents a possible 
path to an equilibrium state. 

Moles of solid I2 present 

J 
0.3 

It is informative to use this diagram to represent what happens when a 
certain amount of 12 is added to one liter of solvent. The initial state in which 

I2 is present only as the undissolved solid is represented by a point on the 
abscissa. As I2 dissolves, the states through which the system passes fall on a 

straight line of slope —1, since for each mole of I2 that enters the solution, the 
concentration increases by 1 M. The final equilibrium situation is at the inter¬ 

section of this line with the heavy horizontal line. If the initial amount of I2 

is insufficient to form a saturated solution, the sloping line will intersect the 
ordinate. A little reflection on this example leads us to conclude that any initial 

situation that is not represented by a point on the heavy line in Fig. 5.1 is not 
an equilibrium state, and such a system will approach equilibrium by precipitat¬ 

ing or dissolving solid iodine. The progress toward equilibrium is represented 

by a line of negative slope, and the final state of the system by the intersection 

of this line with the ordinate or the equilibrium line [I2] = K. 

184 CHEMICAL EQUILIBRIUM | 5.2 



Now let us turn to reactions of the type exemplified by 

Zn(s) -f Cu++(aq) = Cu(s) -j- Zn++(aq), 

HCl(g) + LiH(s) = H2(g) + LiCl(s), 

CH3 

ch3ch2ch2ch3 = ch3chch3, 

n-butane isobutane 

K 

K = 

[Zn++] 

[Cu++] 

[H2] _ 

[HC1] “ 

= 2 X 1037; 

8 X 1030; 

K = 
[isobutane] 

[n-butane] 

In each instance the concentration ratio of products to reactants is a constant 

at equilibrium. Thus the value of K gives the concentration ratio at equilibrium 

directly: if the value of K is less than one, the reactant is in dominant con¬ 

centration, and if K is large, the product is greatly favored. The equilibrium 

constants depend on temperature, and the values quoted refer to 25°C. 

Equilibrium states of the n-butane-isobutane system. The 
dashed lines represent possible paths to equilibrium. 

The possible equilibrium states for such systems can be represented by 

plotting the concentration of product at equilibrium as a function of the con¬ 

centration of reactant. The result for the n-butane-isobutane system, shown in 

Fig. 5.2, is a straight line of slope K. Any point on the line corresponds to a 

state of equilibrium, while any system represented by a point not on the line 

is not at equilibrium. 

Two paths that a system might follow as it proceeds to an equilibrium state 

are also shown in Fig. 5.2. If only pure n-butane is present initially, the reaction 

path starts at a point on the abscissa and is a straight line slope —1, because 

1 mole/liter of product appears for each mole/liter of reactant that disappears. 

If only isobutane is present initially, the reaction path starts on the ordinate 

and is a line of slope —1 that terminates on the equilibrium line. From these 

two examples it is clear that any arbitrary mixture of isobutane and n-butane 

FIG. 5.2 
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FIG. 5.3 

that does not stand in a concentration ratio K is represented by a point some¬ 

where off the equilibrium line. The system will proceed to equilibrium by 

following a path whose slope is —1, and whose direction is determined by 

whether the initial concentration ratio is greater or less than K. 
A third type of reaction that has a simple equilibrium-constant expression 

is illustrated by 

BaS04(s) = Ba++(aq) + SOT(aq), K = [Ba++][S07] = 1 X KT10; 

NH4HS(s) = NH3(g) + H2S(g), K = [NH3][H2S] = 9 X 10~6. 

The numerical magnitude of an equilibrium constant of this type depends on 

the units chosen for concentration. In this instance, and those that follow, the 

concentration units are moles/liter. With this in mind, the value of the equi¬ 

librium constant can be interpreted without difficulty. A small value of K 

means that at equilibrium the concentrations of both products must be small, 

or if one is in large concentration, the other must be in very small concentration. 

For the special case in which the concentrations of the two products are the 

same, they must both be equal to K1'2. In general, the concentrations of 

the two products are not equal, and the value of K limits only the product 

of the two concentrations. 

These ideas can be understood with the aid of Fig. 5.3, where the equation 

[Ba++][S07] = K= IX 1(T10 

is plotted. The equilibrium states lie on a rectangular hyperbola which has the 

coordinate axes as asymptotes. We see that if the concentration of S04 is 

made large by addition of Na2S04, the Ba++ concentration at equilibrium 

must become very small. 

Equilibrium states of the BaS04-H20 
system. Dashed line a is the path to equi¬ 
librium followed when pure BaS04 dis¬ 
solves in water, while b represents the 
addition of BaCI2 to a solution of H2S04. 
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Examples of the paths that systems might follow to reach an equilibrium 

state are shown in Fig. 5.3. If pure BaS04 is dissolved in water, the system 

follows a line of unit slope from the origin, since the concentrations of the two 

ions increase equally as BaS04 dissolves. On the other hand, if small amounts 

of solid BaCl2 are added to a solution of H2S04, the concentration of Ba+ + 

rises along a vertical line which eventually intersects the equilibrium hyperbola. 

The first BaS04 precipitates at a Ba++ concentration corresponding to this 

point of intersection. Any further addition of Ba++ causes more BaS04 to 

precipitate, and consequently the concentration of S07 decreases. As this 

process continues, the point representing the system follows the hyperbola in 

the direction of increasing [Ba++] and decreasing (SO7]. 

A fourth type of reaction is of the general form 

A = 2B, K = [bj! 
[A] 

As specific examples we have 

[H]2 
H2(g) = 2H(g), K1000 = = 2.1 X HT21; 

l-B2J 

N204(g) = 2NOa(g), K2Q8 = = 5.7 X KT3, 
[N204] 

where the concentrations are expressed in moles per liter. Although there are 

only two chemical species involved, the interpretation of this type of equilibrium 

constant is less straightforward than were the previous cases, for K is no longer 

a simple product or ratio of concentrations. It is still true, however, that if K 
is a very small number, the reactant will be in predominant concentration at 

equilibrium, while if K is very large, the product will be favored. The examples 

above indicate, therefore, that at room temperature, the dissociation of hydrogen 

to atoms is negligible, but the dissociation of N204 is noticeable. 

Equilibrium states of the N02-N204 sys¬ 
tem. The curve is a parabola which has 
the equation [N02]2 = K[N20.,]. 

FIG. 5.4 
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Figure 5.4 is a graphical representation of the NO2-N2O4 equilibrium. The 

equilibrium states lie on a parabola which has the equation 

[NO2]2 = A'[N204]. 

The paths representing the passage of a system to equilibrium arc lines of slope 

—2, for two moles of NO2 are formed for each mole of N204 consumed. 

The graphical treatment of equilibria which we have just discussed is helpful 

because it provides a clear way of seeing whether a given set of concentrations 

corresponds to an equilibrium state, and how a system not at equilibrium will 

change. Unfortunately, if there are more than two different reagents of variable 

concentration involved in the reaction, graphical representation of the system 

is difficult and not particularly informative. Nevertheless, our arguments based 

on the graphical treatment of simple systems suggest some generalizations that 

we can express algebraically and apply to all systems. If the concentrations of 

the reagents that appear in the general reaction 

aA + bB = cC + (ID 

are such that 

[C]c[D]d 

[AMB]b ’ 

the system is at equilibrium. If the concentrations are such that 

[cnD]" . K 
(A]«(B]» 1 

the reactants are in excess of the equilibrium values, and the reaction will 

proceed to equilibrium from left to right as written. On the other hand, if 

[chd]* 
[A]«[B]‘ ’ 

the products are in excess of their equilibrium value, and the reaction proceeds 

from right to left. 

5.3 EXTERNAL EFFECTS ON EQUILIBRIA 

In Section 4.G we made use of LeChatelier’s principle, which states that if a 

system at equilibrium is subjected to a disturbance or stress that changes any 

of the factors that determine the state of equilibrium, the system will react in 

such a way as to minimize the effect of the disturbance. LeChatelier’s prin¬ 

ciple is of great help in dealing with chemical equilibria, for it allows us to 

predict the qualitative response of a system to changes in external conditions. 
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Such qualitative predictions are valuable guides and checks on the quantita¬ 

tive mathematical analysis of equilibria. In this section we shall illustrate the 

application of LeChatelier’s principle and compare its predictions with the 

results of arguments based more directly on the equilibrium-constant expression. 

Concentration Effects 

Let us consider first a saturated solution of iodine in carbon tetrachloride which 

is in contact with excess solid iodine. What is the effect of adding a small 

amount of pure carbon tetrachloride to the system? The immediate conse¬ 

quence is to remove the system from equilibrium, for immediately after the 

addition of the pure solvent, the concentration of iodine in the solution is less 

than the equilibrium value. Thus the addition of solvent does affect the value 

of a factor that determines the state of equilibrium, and is, therefore, a stress 

in the sense implied in LeChatelier’s principle. The prediction from LeChatelier’s 

principle in this instance is that more solid iodine will dissolve, and thereby 

minimize the effect of the addition of solvent. Common experience assures us 

that this is indeed what happens. 

The equilibrium-constant expression can be used to make a qualitative 

prediction of the behavior or response of a system to a disturbance. For the 

example we are treating, the relation 

[I2] = K 

holds at equilibrium, but immediately after addition of the solvent we have 

[I2] < K. 

This situation can be remedied if the reaction 

I2(s) solvent = I2 (in solution) 

proceeds as written from left to right. Thus the predictions based on 

LeChatelier’s principle and on the equilibrium-constant expression are in 

accord with each other and with experimental fact. 

For a somewhat more involved situation, let us turn to the equilibrium 

between solid barium sulfate and an aqueous solution of its ions: 

BaS04(s) = Ba^^aq) — SOF(aq). 

What is the effect of the addition of a small amount of a concentrated solution 

of Xa2S04? Such an addition causes an immediate and marked increase in the 

concentration of sulfate ion, and is, therefore, a stress that removes the system 

from equilibrium. From LeChatelier’s principle we predict a reaction in the 

direction that minimizes the effects of this stress; that is, a reaction that 
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FIG. 5.5 

removes sulfate ion from solution. Consequently, addition of the sodium sulfate 

solution should cause barium sulfate to precipitate from solution. 

Let us see how the same prediction can be made bv using the equilibrium- 

constant expression. At equilibrium the relation 

[Ba++][SOT] = K (5.5) 

holds, but immediately after the addition of excess sulfate ion, before any 

reaction occurs, we must have 

[Ba++][SOr] > K. 

It is clear that in order for the system to reach equilibrium, the concentrations 

of Ba++ and SO7 must diminish, and this is accomplished by the precipitation 

of solid barium sulfate. Once again predictions based on the equilibrium con¬ 

stant and LeChatelier’s principle are in agreement. 

Perturbation of the barium sulfate solu¬ 
bility equilibrium by addition of sulfate 
ion. Line a represents the departure from 
equilibrium caused by sulfate addition, 
and line b is the path followed by the 
system to a new equilibrium state. 

We can make the conclusions about the behavior of the barium sulfate 

system more vivid by using the graphical representation of the equilibrium 

states of the system. Figure 5.5 shows Eq. (5.5) plotted as a rectangular 

hyperbola. Initially, the system can be represented by a point on this equi¬ 

librium curve, but sudden addition of sulfate ion causes the system to follow a 

horizontal path away from the equilibrium line. When the system is left to 

itself, it returns to equilibrium by following a path of slope +1 on the graph, 

and the final state is at the intersection of this line with the equilibrium curve. 

Figure 5.5 shows clearly that the final concentration of barium ion is less than 

the initial concentration, and that the final concentration of sulfate ion is (treater 

than the initial concentration, but less than what would have existed after the 

addition if no precipitation had occurred. 
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The methods we have been using apply equally well to gaseous equilibria. 

For instance, if the reaction 

S02(g) + h02(g) = so3(g) 

is initially at equilibrium, what is the effect of suddenly adding oxygen gas to 

the mixture? Such an addition is a disturbing stress, and from LeChatelier’s 

principle we predict a net reaction that consumes the oxygen—the reaction of 

S02 and 02 to produce S03. By using the equilibrium-constant expression we 

conclude that immediately after the addition of oxygen, the relation 

[SOa] 
[S02][02]i/2 

< K 

holds, and can be converted to an equality only if sulfur trioxide is formed from 

sulfur dioxide and oxygen. 

Now we can explore the consequences of changing the volume of the vessel 

that contains a gaseous system at equilibrium. A change in total volume 

changes the concentrations of all gases, and consequently may cause a de¬ 

parture from equilibrium. This behavior is evident if we imagine the reaction 

2N02(g) = N204(g), K = 

initially at equilibrium and ask for the effect of decreasing the volume of the 

containing vessel by a factor of two. If no reaction occurred, the immediate 

result would be to double all concentrations, and in such a state we would have 

[N2Q4] 

[N02p 
< K. 

This must be true, for if all concentrations are doubled, the numerator of the 

concentration quotient increases by a factor of two, while the denominator 

increases by a factor of two squared, or four. The concentration quotient then 

is not equal to the equilibrium constant, and a reaction that increases the con¬ 

centration of N204 while decreasing the concentration of N02 must occur. 

Use of LeChatelier’s principle confirms this prediction. The stress in this case 

is an increase in the total concentration of molecules—a stress that can be 

relieved if the system reacts so as to decrease the net number of molecules. 

Since two molecules of N02 are consumed for each molecule of N204 formed, 

the response of the system is to convert N02 to N204. 

A volume change does not necessarily remove a gaseous system from equi¬ 

librium. If the reaction 

CH3 

CH3CH2CH2CH3 = CH3CHCH3 
Butane Isobutane 
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is at equilibrium and the volume of the container is halved, each concentration 

is doubled, but the relation 

[isobutane] _ ^ 

[butane] 

shows that even in this more concentrated situation the system remains at 

equilibrium. Any change of the concentration of butane is accompanied by an 

identical change of the isobutane concentration, and the ratio of these two 

concentrations remains constant. A little reflection on this and the previous 

example leads to the conclusion that only in the cases of reactions in which the 

number of moles of gaseous reactants is different from the number of moles of 

gaseous products does a volume change remove the system from equilibrium. 

Temperature Effects 

What is the effect of a temperature change on a system initially at equilibrium? 

In general, the numerical values of equilibrium constants depend on tempera¬ 

ture. Therefore, if the temperature of a system initially at equilibrium is 

changed, some net reaction must occur in order for the system to reach equi¬ 

librium at the new temperature. Experiments show that if a reaction is 

exothermic, that is, if AH is negative, its equilibrium constant decreases as 

temperature increases. From the point of view of LeChatelier’s principle, an 

increase of temperature is a stress that is partially relieved by the occurrence 

of a net reaction that proceeds with absorption of heat by the system. Con¬ 

sider then the reaction 

2 N02(g) = N204(g), AH = —13.9 kcal, 

K-2 73 = 76, K.2 98 = 8.8, 

where the K’s are the equilibrium constants at 273°K and 298°K, respectively. 

The reaction is exothermic, K does in fact decrease, and reactants become more 

favored as temperature increases. According to LeChatelier’s principle also, 

increasing temperature should favor the formation of reactants from products 

for this is the direction of reaction that absorbs heat. Thus the prediction 

based on LeChatelier’s principle and the actual observed values of the equilib¬ 

rium constant are consistent. 

As an example of an endothermic reaction, let us inspect 

N2(g) + 02(g) = 2NO(g), AH = 43.5 kcal. 

By LeChatelier’s principle we can predict that increasing temperature should 

favor formation of nitric oxide, for this process is accompanied by absorption 

of heat. Actual determination of equilibrium constants confirms this, as we 

can see: 

K2000 — 4.1 X 10 4, K2500 — 36 X 10 4. 
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In the special case of a reaction for which AH is zero, a temperature increase 

can favor neither products nor reactants, for the reaction does not proceed in 

either direction with absorption of heat. In harmony with this conclusion, the 

equilibrium constants of reactions for which AH is zero are found to be in¬ 

dependent of temperature. 

5.4 EQUILIBRIA IN NONIDEAL SITUATIONS 

We remarked earlier in this chapter that the expression 

K [C]c[D]d 

[A]a[B]6 ’ 

holds only in situations where all reactants and products behave like ideal 

gases or are components of an ideal solution. For reactions between gases at 

high pressures, or for reactions in markedly nonideal solutions, the equilibrium 

“constant” expressed in terms of pressures or concentrations is not strictly 

constant. To analyze these nonideal situations, it is customary to make use of 

the concept of activity. The activity of a substance may be thought of as an 

effective concentration. It has the property that in all situations, the equilib¬ 

rium-constant expression can be written as 

{CHD}* K 
{A}»{B}‘ ’ 

where the notation {A} stands for the activity of A. Thus in terms of the 

activity, the equilibrium-constant expression has its simple form and is always 

constant at a particular temperature. 

How is the activity of a substance determined? For an ideal gas the activity 

is numerically equal to the pressure in atmospheres, but for a nonideal gas the 

activity must be calculated from the experimentally determined equation of 

state. This is a moderately involved process which we will not describe. For 

our purposes it is enough to remark that for gases at pressures of 1 atm or less 

and at ordinary temperatures, an error usually of less than 1% is made by 

considering the activity and the pressure of a gas to be equal. 

For electrolytes in very dilute aqueous solution, activity is very nearly 

numerically equal to the molal or molar concentration. For solutions of ap¬ 

proximately 0.1-il/ concentration, however, activity and concentration differ 

by from 10 to 50%, depending on the electrolyte concentration and the charge 

on the ions. One way of determining the activity of such solutions is by freezing- 

point depression measurements. If solutions were ideal, the freezing-point 

depression would be directly proportional to the total molal concentration of 

solute: 

AT = Kfm. 
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This law is obeyed by very dilute solutions, but the more concentrated solutions 

deviate from it noticeably. By comparing the observed freezing point of a 
solution with that expected for an ideal solution of the same concentration, the 

activity of the solute can be calculated. This procedure establishes a relation 

between activity and concentration that can be used in dealing with other 
equilibrium situations. 

Any very accurate mathematical analysis of an equilibrium situation must 
be performed in terms of activities rather than concentrations. However, 

relating activities to concentrations is often a tedious task, and the accuracy 

gained by using activities is in many cases not worth the extra effort. In par¬ 

ticular, design and analysis of the laboratory work of undergraduate chemistry 
require performing equilibrium calculations to an accuracy of about 5%, which 

can be accomplished easily if concentrations are used in place of activities. 

This is the procedure we shall follow without comment in subsequent sections 
of this book. It is important to realize that the results of such calculations, while 

very useful, are usually accurate only to 5%. 

5.5 CALCULATIONS WITH THE EQUILIBRIUM CONSTANT 

In many situations it is necessary to know the concentrations of the reactants 

and the products of a reaction when the system is at equilibrium. Rather than 

measure these numbers directly for each new situation, it is easier to calculate 

them if the equilibrium constant for the reaction is known. In this section we 
shall perform some calculations with the equilibrium constant to illustrate the 

technique and to demonstrate how the value of the equilibrium constant can 

be interpreted quantitatively. We shall concentrate on some simple gas re¬ 

actions and reserve for special consideration in Chapter 6 the situations of 
equilibrium between ions in aqueous solution. 

The equilibrium constants of reactions between gases are often expressed in 

terms of the partial pressures of reagents, and unless otherwise stated, the units 

are atmospheres. Thus for the reaction 

we have 

N204(g) = 2N02(g), 

jr ^no2 

Kr = p^l 
0.14, 

when pressures are expressed in atmospheres, at 25°C. 

In dealing with a gaseous system, the experimental information most readily 

available is the total pressure of all the reactants and products, rather than the 
partial pressures of each. Therefore, it is sometimes useful to express the 

equilibrium constant in terms of the total pressure. For the N204-N02 reaction 
we can accomplish this as follows. Imagine starting with a certain number 
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of moles of pure N204; when equilibrium is reached, a fraction/ of the original 

N204 has dissociated. Then, 1 — / is the fraction of the original N204 
remaining, and is proportional to the number of moles of N204 present at 
equilibrium. Similarly, since 2 moles of N02 are formed from each mole of 

N204 that dissociates, 2/ is proportional to the number of moles of N02 present 

at equilibrium. Therefore, the total number of moles of all particles present at 
equilibrium is proportional to 1 — /+ 2/, or to 1 + /. Now we can write the 
following expressions for the mole fractions of N204 and N02: 

Y 1 - / Y 2/ 
AN204 — l _|_ y ’ AN02 — Y+f‘ 

By Dalton’s law, we can express the partial pressures of N02 and N204 in 
terms of the total pressure P• 

T‘no2 = X^q2P = 

Ln2o4 = XN2o4P = 

2/ 
1+/ 
1 -/ 

1 +/ 

P, 

P. 

We can now return to the equilibrium constant, and use these expressions 

in place of the partial pressures to get 

KP = 
4 f2P 
1-p- (5.6) 

This is the expression we were seeking: the equilibrium condition expressed in 

terms of P, the total pressure of reactants and products, and /, the fraction of 

the original X204 that dissociated. Bear in mind that Kp is a constant that 

depends only on temperature. Therefore, as the total pressure P is varied, the 
fraction of N204 dissociated must change so as to keep the right-hand side of 

Eq. (5.6) constant. Suppose, for example, that the volume of the system is 
increased, so that P decreases. Does / increase or decrease? By LeChatelier’s 

principle we expect more N204 to dissociate and thus / to increase as P de¬ 

creases. This is just what Eq. (5.6) says will happen. To see this clearly, we 

rearrange Eq. (5.6) to 

) 

from which it is obvious that if P decreases, / must increase if Kp is a constant. 

• Thus, as predicted from LeChatelier’s principle, a decrease in total pressure 

favors the products of this reaction. 

I 
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Example 5.1 A mixture of N2O4 and NO2 has at equilibrium a total pressure of 
1.5 atm. What fraction of N2O4 has dissociated to NO2 at 25°C? The equilibrium 
constant Kp = 0.14. By Eq. (5.6) 

KP = 
4/2P 

1 ~P 

f = 0.023, 

0.14 = 
4r 

1 -p 

f = 0.15. 

1.5; 

If the volume of the system is increased so that the pressure falls to 1 atm, what frac¬ 
tion of the original N2O4 is dissociated? 

0.14 -i^l 
1-/2’ 

f = 0.034, / = 0.18. 

Thus, / does increase as total pressure decreases. 

Occasionally it is possible to measure the partial pressure of one of the sub¬ 

stances in an equilibrium mixture directly. Then it may be possible to calculate 
the partial pressures of the other reagents by using the equilibrium constant. 

Suppose, for example, the partial pressure of N02 in equilibrium with N204 

is found to be 0.23 atm. What pressure of N204 is present? To solve this 

problem we use the equilibrium constant in the form 

KP = 
Plo2 
-Pn2o4 

0.14. 

Setting Pno2 = 0-23 atm, and carrying out the arithmetic gives 

Pn2o4 
(0.23)2 

0.14 
0.38 atm. 

Calculations of this type are easy when only two reagents are involved, but we 

shall find that they can be accomplished even for more complicated situations. 

To gain experience with an equilibrium constant of a different form, let us 
consider the reaction 

NH4HS(s) = NH3(g) + H2S(g), 

Kp = Pnh3-Ph2s = 0.11, 

where the equilibrium constant is evaluated at 25°C. Since ammonium hydro¬ 
sulfide is a solid of invariant composition, it is not included in the equilibrium- 

constant expression. Let us use the value of the equilibrium constant to 

calculate the pressure of ammonia and hydrogen sulfide in equilibrium with the 
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pure salt at 25°C. Since the gases come from the evaporation of the pure salt 
in equimolar quantities we have 

■Pnh3 = -Ph2s> 

Kp = Pnh3-Ph2s — -Pnh3 = 0.11, 

-Pnh3 = 0.33 atm = Ph2s- 

Thus, when the pure salt evaporates into an evacuated container, the pressure 

of each gas is 0.33 atm at equilibrium. 

What would be the effect of injecting some pure ammonia gas into the am¬ 
monium hydrosulfide system, after the latter had reached equilibrium? By 

LeChatelier’s principle, this would be a stress that could be relieved by the 

consumption of ammonia by reaction with hydrogen sulfide. The result of the 

addition of ammonia, then, would be a decrease in the pressure of hydrogen 
sulfide at equilibrium. This conclusion can be reached by using the equilib¬ 

rium-constant expression, for if Phn3 is increased, Ph2s must decrease if their 
product is to remain constant. 

Example 5.2 Some solid NH4HS is placed in a flask containing 0.50 atm of ammonia. 

What are the pressures of ammonia and hydrogen sulfide when equilibrium is reached? 

Because some ammonia is added, the pressures of ammonia and hydrogen sulfide 

are not equal when equilibrium is reached. However, we can write 

Pnh3 = 0.50 -)- ?h2S' 
Therefore, 

Kp = Pnh3Ph2s = (0.5 -j- Ph2s)Ph2s, 

0.11 = (0.50 -f- Ph2s)Pr2s, 

Ph2s = 0.17 atm, 

Pnh3 = 0.50 0.17 = 0.6/ atm. 

Comparison of the pressure of hydrogen sulfide with that found after the evaporation 

of the pure solid into vacuum shows that the added ammonia has repressed the evap¬ 

oration of the solid, as expected according to LeChatelier’s principle. Note also that 

since equilibrium can be approached from either direction, the results of this calcula¬ 

tion apply to the case in which a quantity of ammonia equivalent to a pressure of 

0.5 atm in this flask is added to the solid already at equilibrium with its vapor. 

The two reactions investigated are particularly easy to treat, since each of 
them involves only two reagents of variable concentration. Nevertheless, our 

experience with them will help us deal with the reaction 

PCle(g) = PCl3(g) + Cl2(g). 
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When pressures are expressed in atmospheres, 

KP = 
P-pc\3Pc\2 

Ppc\b 
11.5, 

at a temperature of 300°C. 

First let us imagine that enough pure solid PC15 is placed in a flask so that 

when the temperature is raised to 300°C, it would all vaporize to give a pres¬ 

sure of P0 atm, if no PC15 dissociated. If some PC15 does dissociate to PCI3 

and Cl2, we have 

P Cl2 = -Ppci3, P PCI5 = P 0 — P Cl2, 

since for each mole of PC15 that dissociates, one mole of Cl2 and one mole of 

PCI3 are formed. With these relations we can write the equilibrium-constant 

expression entirely in terms of the partial pressure of chlorine and P0, the 

pressure of PC15 that would exist if no dissociation occurred: 

PPC13PCl2 _ Pc\2 

P PC15 P 0 — P Cl2 

11.5. 

As a specific case, suppose that P0 is 1.5 atm. Then at equilibrium, 

KP = 11.5 
Pci2 

1.5 - PCi2’ 

PCi2 = 1.34 atm, PPCi3 - 1.34 atm, PPCis = 1.50 - 1.34 = 0.16 atm. 

We can compute the fraction / of PC15 that dissociated by 

'=^r = r35 = 0-89- 

For comparison, let us now assume that enough PC15 is used so that P0 is 

3.0 atm. Then 

KP - 11.5 
Pci2 

3.0 - Pci2 ’ 

Pci2 = 2.47 atm, Ppci3 = 2.47 atm, Ppci5 = 0.53 atm. 

For the fraction dissociated we find 

0.82. 
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Increasing the total amount of material at fixed volume, or increasing the total 

pressure, decreases the fraction of PC15 that dissociates. 

What is the effect of adding chlorine gas to the reaction mixture? Qualita¬ 

tively it is clear that the additional chlorine must repress the dissociation of 

PC15. To demonstrate this quantitatively, let us assume that 1.5 atm of chlorine 

is added to an amount of PC15 sufficient to exert 3.0-atm pressure if none dis¬ 

sociated. Then, if some PC15 does dissociate, the stoichiometry of the reaction 

tells us that 

P pci5 = 3.0 — jPpci3) Pci2 = 1.5 + Ppci3- 

Substitution of these relations into the equilibrium-constant expression gives 

KP = 11.5 = 
Ppci3Pci2 

11.5 = 
Ppci3(1.5 + PpciJ 

Ppels " ^ 3.0 — Ppci3 

Ppci3 = 2.26 atm, Pci2 = 3.76 atm, Ppci5 — 0-74 atm. 

The expression for the fraction of PC15 that dissociated is 

Ppn 2.26 
/ = = ±f2.= 0.75. 

Po 3.0 

Comparison of these answers with corresponding ones from the previous cal¬ 

culation shows that addition of chlorine does diminish the amount of PCI 5 that 

dissociates. The fraction dissociated would also be diminished by addition of 

PCI3, as a trial calculation will show. 

As a final application, we can use the equilibrium-constant concept to pro¬ 

vide a heuristic derivation of the equation of state for nonideal gases. Let us 

assume that nonideality arises from the dimerization of gas molecules, 

2A = A2, 

which is a reaction with a small, but significant equilibrium constant K. If 

[A]0 is the concentration that A-molecules would have if none dimerized, we 

can write 

TV- _ [A,] _ _[A2]_ 

[A]2 ([A]0 — 2[A2])2 ’ 

[A2] = -KXtAo] — 2[A2])2 = K[A.q]2 , 

where the approximation is valid if the concentration of dimers is very small. 

We now regard the gas as a mixture of dimers and monomers, and the total 
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pressure can be found from Dalton’s law 

P = RT([ A] + [A2]) 

= •RT’QAq] 2[A2] -f- [A2]) 

= «^([Ao] - A[A0]2). 

Letting n stand for the total number of moles of A, we can write 

PV 1 nK 

nRT 1 V ' (5'7) 

This is the form of the first two terms of the virial equation of state. Since K 

is positive, Eq. (5.7) accounts for negative deviations from ideal gas behavior. 

The positive deviations, which do not arise from dimer formation, are not 

accounted for in Eq. (5.7). If, however, we had expressed the total concentra¬ 

tion of A-molecules not as n/T but as n/(V — ?ife), both positive and negative 

deviations from ideality would have been accommodated. 

5.6 CONCLUSION 

A chemical reaction is a complicated mechanical process in which atoms 

initially in one arrangement are converted to some other arrangement. This 

process is reversible, and consequently, in a closed system, reactants and 

products can exist permanently together in fixed relative amounts that reflect 

the intrinsic stabilities of the various compounds. The most succinct and 

meaningful description of these equilibrium situations is contained in the 

equilibrium constant. Therefore, to deal with the quantitative aspects of 

chemistry, to understand what is meant by chemical reactivity, an appreciation 

of the use and significance of the equilibrium constant is absolutely essential. 

In this chapter, we have investigated some simple chemical equilibria qualita¬ 

tively and quantitatively, and we shall make continual use of the ideas we have 

generated. As more complicated equilibria are encountered, it is essential to 

be guided by previous experience and to attempt to answer the questions we 

have discussed here: What is the qualitative meaning of the form and mag¬ 

nitude of the equilibrium constant? What do they tell us about the tendency 

of a reaction to proceed to products? What do the AH- and equilibrium-constant 

expression tell us about how temperature and concentration changes influence 

the amounts of products and reactants at equilibrium? How can the equilib¬ 

rium constant be used to calculate the concentrations that exist at equilibrium? 
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PROBLEMS 

5.1 Write the equilibrium-constant expression for each of the following reactions. 

2NOCl(g) = 2NO(g) + Cl2(g) 

Zn(s) + C02(g) = ZnO(s) + CO(g) 

MgS04(s) = MgO(s) + S03(g) 

Zn(s) + 2H+(aq) = Zn++(aq) + H2(g) 

NH4C1(s) = NH3(g) + HCl(g) 

5.2 For which of the following reactions does the equilibrium constant depend on the 

units of concentration? 

(a) CO(g) + H20(g) = C02(g) + H2(g) 

(b) COCl2(g) = CO(g) + Cl2(g) 

(c) NO(g) = £N2(g) + |02(g) 

5.3 Of the metals Zn, Mg, and Fe, which removes cupric ion from solution most 

completely? The following equilibrium constants hold at room temperature. 

Zn(s) + Cu++(aq) = Cu(s) + Zn++(aq) K = 2 X 1037 

Mg(s) + Cu ++(aq) = Cu(s) + Mg ++(aq) K = 6 X 1090 

Fe(s) + Cu ++(aq) = Cu(s) + Fe++(aq) K = 3 X 1026 

5.4 Nitrogen and hydrogen react to form ammonia by the reaction 

iN2 + |H2 = NH3, AH = -11.0 kcal. 

If a mixture of the three gases were in equilibrium, what would be the effect on the 

amount of NH3 if (a) the mixture were compressed; (b) the temperature were raised; 

(c) additional H2 were introduced? 

5.5 Would you expect the equilibrium constant for the reaction 

I2(g) = 21(g) 

to increase or decrease as temperature increases? Why? 

5.6 The equilibrium constants for the following reactions have been measured at 

823°K: 
CoO(s) + H2(g) = Co(s) + H20(g), A = 67; 

CoO(s) + CO(g) = Co(s) + C02(g), K = 490. 

From these data, calculate the equilibrium constant of the reaction 

C02(g) + H2(g) = CO(g) + H20(g) 

at 823°K. 
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5.7 Suggest four ways in which the equilibrium concentration of S03 can be increased 
in a closed vessel if the only reaction is 

S02(g) + J02(g) = S03(g), AH = -23.5 kcal. 

5.8 Solid ammonium carbamate, NH4C02NH2, dissociates completely into ammonia 
and carbon dioxide when it evaporates, as shown by 

NH4C02NH2(s) = 2NH3(g) + C02(g). 

At 25°C, the total pressure of the gases in equilibrium with the solid is 0.116 atm. 

What is the equilibrium constant of the reaction? If 0.1 atm of C02 is introduced 

after equilibrium is reached, will the final pressure of C02 be greater or less than 
0.1 atm? Will the pressure of NH3 increase or decrease? 

5.9 For the reaction 

H2(g) + I2(g) = 2HI(g), 

K = 55.3 at 699°K. In a mixture that consists of 0.70 atm of HI and 0.02 atm each 

of H2 and I2 at 699°K, will there be any net reaction? If so, will HI be consumed 
or formed? 

5.10 Hydrogen and iodine react at 699°K according to 

H2(g) + I2(g) = 2HI. 

If 1.00 mole of H2 and 1.00 mole of I2 are placed in a 1.00-liter vessel and allowed to 

react, what weight of hydrogen iodide will be present at equilibrium9 At 699°K 
K = 55.3. 

5.11 At 375°K, the equilibrium constant KP of the reaction 

S02Cl2(g) = S02(g) + Cl2(g) 

is 2.4 when pressures are expressed in atmospheres. Assume that 6.7 gm of S02C12 

are placed into a 1-liter bulb and the temperature is raised to 375°K. What would 

the pressure of S02C12 be if none of it dissociated? What are the pressures of S02, 
Cl2, and S02C12 at equilibrium? 

5.12 Compute the pressures of S02C12, S02, and Cl2 in a 1-liter bulb (at 375°K) 

to which 6.7 gm of S02C12 and 1.0 atm of Cl2 (at 375°K) have been added. Use the 

data supplied in Problem 5.11. Compare your answer with that obtained for Problem 

5.11 and decide whether they are consistent with LeChatelier’s principle. 

5.13 The gaseous compound NOBr decomposes according to the reaction 

NOBr(g) = NO(g) + *Br2(g). 

At 350°K, the equilibrium constant KP is equal to 0.15. If 0.50 atm of NOBr, 0.40 atm 

of NO, and 0.20 atm of Br2 are mixed at this temperature, will any net reaction occur? 
If so, will Br2 be consumed or formed? 

5.14 The equilibrium constant for the reaction 

C02(g) + H2(g) = CO(g) + H20(g) 

is 0.10 at 690°K. What is the equilibrium pressure of each substance in a mixture 

prepared by mixing 0.50 mole of C02 and 0.50 mole of H2 in a 5-liter flask at 690°K? 
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5.15 At 1000°K, the pressure of CO2 in equilibrium with CaC03 and CaO is equal 

to 3.9 X 10~2 atm. The equilibrium constant for the reaction 

C(s) + C02(g) = 2C0(g) 

is 1.9 at the same temperature when pressures are in atmospheres. Solid carbon, CaO, 

and CaC03 are mixed and allowed to come to equilibrium at 1000°K in a closed vessel. 

What is the pressure of CO at equilibrium? 
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CHAPTER 6 

IONIC EQUILIBRIA 
IN AQUEOUS SOLUTIONS 

Equilibria between ionic species in aqueous solutions deserve special attention 
because of their importance in industrial, analytical, and physiological chemistry. 

The principles used in dealing with problems of ionic equilibria are of course 

the same as those that apply to other situations of chemical equilibrium. Thus 
the study of ionic equilibria offers us a chance to learn general principles while 
studying an important practical application. 

The ability to solve equilibrium problems is a result of a thorough under¬ 

standing of physical principles and of an intuition that can be acquired only by 

experience. This chapter should be read with a pencil and paper at hand, and 
the steps in each derivation and example should be worked out independently 

of the text. One is not ready to attempt new material until, with the book 
closed, he can work out the section he has just studied. 

6.1 SPARINGLY SOLUBLE SALTS 

The problem of finding the equilibrium concentration of a slightly soluble salt 

involves one of the simplest applications of the principles of chemical equilibrium. 
Consider the dissolution of solid silver chloride in water, which proceeds by 

AgCl(s) = Ag+(aq) + Cl_(aq). (6.1) 

When equilibrium between the pure solid and the solution is reached at 25°C, 
it is found that only 1.67 X 10-5 mole of silver chloride is dissolved in one liter 

204 



of water. As small as this concentration may seem, it is large enough to be 
important in many laboratory situations. As a result, we are interested in 
finding quantitative expressions telling us what the solubilities of salts such as 
silver chloride are under any conditions. 

According to the general procedure for writing equilibrium constants, for 
Eq. (6.1) we might write 

[Ag+][cr] 
[AgCl(s)] ' 

But the concentration of a pure solid in a pure solid is a constant, and we can 
immediately simplify our expression by defining a new constant Ksp by 

Kap ^ K[AgCl(s)] 

= [Ag+][cn. 

That is, we include the fixed concentration of the pure solid in the equilibrium 
constant itself. Consequently, the equilibrium constant for reaction (6.1) is a 
product of ion concentrations. For this reason, Ksp for these reactions is often 
called the ion product constant, or simply the solubility product. Three other 
such reactions and their equilibrium constants are 

CaF2(s) = Ca++(aq) + 2F"(aq), Ksp = [Ca++][F-]2, 

Ag2Cr04(s) = 2Ag+(aq) + CrOr(aq), Ksp = [Ag+]2[CrOr], 

La(OH)3(s) = La+3(aq) + 30H-(aq), Ksp = [La+3][OH-]3. 

Table 6.1 Solubility products* 

BaSCq 1.1 X 10-10 Ag2Cr04 1.9 X 10-12 
BaF2 1.7 X 10-6 Ag2S 1 x io-51 

BaC03 1.6 X 10-9 Fe(OH)2 1.6 X 10-15 

BaCr04 8.5 X 10-11 FeS 1 x io-19 

CaSC>4 2.4 X 10-5 Zn(OH)2 4.5 X 10-17 

Ca3(P04)2 1.3 X 10-32 ZnS 4.5 X 10-24 
CaF2 1.7 X lO-m ZnC03 2 X IO-10 

CaCr04 7.1 X 10-4 Sn(OH)2 5 X 10-26 
Mg(0H)2 1.8 X 10-11 SnS 8 X 10-29 
PbS 7 X 10-29 CuS 4 X 10-38 

PbS04 1.3 X 10-8 Cu(OH)2 1.6 X 10-19 
PbC03 1.5 X 10-13 Cu(I03)2 1.3 X 10-7 
PbCr04 2 X 10-16 Mn(OH)2 2 X 10-13 
Pb(OH)2 2.8 X 10-16 MnS 7 X IO"16 

AgBr03 5.2 X 10-5 HgS 3 X 10-53 
AgCI 2.8 X 10-10 CdS 1.4 X 10-28 
AgBr 5.2 X 10-13 Ni(OH)2 1.6 X 10-16 
Agl 8.5 X 10-17 

‘From W. M. Latimer, Oxidation Potentials, 2nd ed., New York, Prentice 
Hall, Inc., 1952. 
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These examples demonstrate the practice of not writing any invariable con¬ 

centrations in the equilibrium-constant expression. Solubility products of a 
few other salts are given in Table 6.1. 

Questions. Suppose the solid phase were impure, as would be the case for a solid solution 
of AgCI and NaCI. Do you expect that the solubility in water of this material would be a 
function of the concentration of AgCI in the solid phase? Would the simple ion product 
constant for AgCI describe the equilibrium adequately? 

Application of the equilibrium constant to the solubility of electrolytes is 
usually limited to cases in which the substances are only slightly soluble. There 

are two principal reasons for this. First, concentrated solutions of electrolytes 
such as saturated potassium chloride are not ideal solutions, and the simple 

equilibrium-constant expressions do not apply rigorously to nonideal solutions. 
Second, in the practical problems of chemical analysis one often takes advantage 

of the difference in the solubilities of two sparingly soluble salts, and therefore 
it is for such substances that information derived from the equilibrium constant 

is of most value. Thus we are in the happy situation of having a theoretical 
framework that applies best to cases that are of most interest. 

There is still another reason for the application of the equilibrium constant 
to the dissolution of slightly soluble salts. Because of the small quantities of 

dissolved materials involved, it is very difficult or impossible to measure directly 

the solubilities of these substances. However, it is possible to detect minute 
quantities of dissolved ions by measurements of the voltages of electrochemical 

cells, as we shall see in Chapter 7. These voltage measurements yield the 
solubility product Ksp of the salt directly, and from this quantity we must be 

able to calculate the salt solubility. Let us assume then that we have been 
provided with the value of the solubility product for silver chloride in water: 

[Ag+][C1-] = Ksp = 2.8 X 10-10, (6.2) 

where the concentration unit is mole per liter. How do we calculate from this 
the solubility of AgCI in pure water? 

Reaction (6.1) shows us that for each mole of silver ion dissolving, we have 

also one mole of chloride ion in solution. There are no other sources of these 
ions, so in Eq. (6.2) we can make the substitution 

[Ag+] = [Cl~] in otherwise pure water, 
to get 

[Ag+][C1-] = [Ag+]2 = 2.8 X Hr10, 

[Ag+] = 1.7 X 10-5 M. 

This is the concentration of silver ion present when equilibrium between the 

solution and the excess undissolved solid is reached. From the stoichiometry 
of reaction (6.1) we see that it is also the maximum number of moles of silver 

chloride that dissolve in one liter of water, so the solubility of the salt in pure 
water is 1.7 X 10-5 M. 
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The calculation of the solubility in pure water of a salt like CaF2 is nearly as 

straightforward. The reaction accompanying dissolution and the corresponding 
solubility product are 

CaF2(s) = Ca++(aq) + 2F~(aq), 

[Ca++][F-]2 = Ksp = 1.7 X 10-10. 

In pure water, the only source of calcium or fluoride ions is the salt itself, and 

the stoichiometry tells us that twice as many fluoride ions dissolve as calcium 
ions. Consequently, we can say that 

[F_] = 2[Ca++] in otherwise pure water, 
and so 

[Ca++][F~]2 = [Ca++](2[Ca++])2 = 1.7 X 10~10, 

4[Ca++]3 = 1.7 X 10-10, 

[Ca++] = 3.5 X 10-4 M. 

Since one mole of calcium dissolves for each mole of salt, the solubility of 
calcium fluoride in pure water is 3.5 X 10-4 M. 

In response to this and similar examples, it is often asked why one of the 

concentrations is doubled and squared. The form of the equilibrium constant 
requires that the concentration of the fluoride ion be squared. The stoichiometry 
requires that the concentration of the calcium ion be doubled if it is substituted 

for the fluoride ion concentration. These two requirements lead to the factor 
(2[Ca++])2 in the solution of the problem. 

Question. When silver chromate, Ag2Cr04, dissolves in otherwise pure water, what is the 
relation between [Ag+] and [CrOyl? The solubility product of Ag2CrC>4 is 1.9 X 10-12. 
Show that its solubility in pure water is 0.78 X 10~4 M. 

To see the advantage of knowing the solubility product of a salt, let us cal¬ 

culate the solubility of silver chloride in a solution that contains 0.1 M AgNC>3. 
So that we can get a qualitative idea of the answer to expect, let us imagine 
ourselves starting with a saturated solution of AgCl in pure water, and then 

adding enough solid AgNC>3 to reach the eventual concentration of 0.1 M. 

The addition of Ag+ in the form of AgNC>3 is a “stress” applied to the silver 
chloride solubility equilibrium, and according to Le Chatelier’s principle, the 

position of this equilibrium must shift so as to relieve the stress. This means 
that as AgN03 is added, AgCl must tend to precipitate. Therefore we can 
conclude that the solubility of AgCl (as measured by the chloride ion concen¬ 

tration) in a solution of 0.1 M Ag+ is less than in pure water. 
To verify this quantitatively we must calculate the concentration of dissolved 

chloride ion in the solution containing 0.1 M AgN03, and saturated with respect 
to silver chloride. We could calculate the chloride ion concentration from the 

solubility-product expression 

[Cl"] = 
K, sp 

[Ag+] 
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if we knew the silver ion concentration at equilibrium. For the latter we can 
surely write 

[Ag+] = [Ag+] (from AgN03) + [Ag+] (from AgCl). 

The second term on the right-hand side is bound to be less than 1.7 X 10-5 M, 

the concentration of silver ion in a saturated solution of AgCl in pure water, 

according to our argument based on Le Chatelier’s principle. The first term on 
the right-hand side is 0.1 M, which is much larger than the second term. There¬ 
fore, to a very good approximation we can write 

[Ag+] ^ 0.1 M 

KBP _ 2.8 X 10-10 

[Ag+] ~ 0.1 ' 

£* 2.8 X 10~9. 

This quantity must be equal to the number of moles of AgCl dissolved in one 
liter of solution, and thus is the solubility of AgCl in 0.1 M Ag+. We see that 

in accordance with Le Chatelier’s principle, the solubility is reduced compared 

with that in pure water. Furthermore, since so little silver chloride is dissolved, 
the silver ion concentration contributed by the silver chloride is very much 

less than 0.1 M, and we were justified in neglecting this source of silver ion in 
comparison with the dissolved AgN03. 

As a further illustration of the use of the solubility product and of the mean¬ 

ing of the word solubility, let us calculate the solubility of CaF2 in: (1) a solution 
of 0.1 M Ca(N03)2; (2) a solution of 0.1 M NaF. 

In considering the dissolution of CaF2 in a solution of Ca(X03)2, we cannot 
say that the solubility of CaF2 is equal to the equilibrium concentration of 

Ca4*4', for most of the Ca4 + in the solution is contributed not by CaF2 but by 

Ca(N03)2. However, we can recognize that CaF2 is the only source of fluoride 
ion in the solution, and that for each mole of CaF2 that dissolves, 2 moles of F- 
cnter the solution. Therefore the solubility of the salt is 

solubility = ^[F ]. 

Our problem then is to find the fluoride ion concentration that exists at 
equilibrium. 

The equilibrium-constant expression shows us that [F-] may be found if 
[Ca++] is known: 

iC“++nn2 = K.[f ] = (pl^y '■ 

For the concentration of calcium ion we have 

[Ca++] = [Ca++] (from Ca(N03)2) + [Ca++] (from CaF2). 

and consequently 

[CP] 

[C1-] 
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Earlier in this section we found that the calcium ion concentration resulting 
from CaF2 dissolving in pure water is 3.5 X 10-4 M. By Le Chatelier’s principle 
we know that even less CaF2 will dissolve in 0.1 M Ca(X03)2, and so the 

calcium ion contributed by CaF2 in this solution will be even less than 3.5 X 

10-4 M. Therefore, we can neglect the concentration of calcium contributed 
by CaF2 compared with 0.1 M, and write 

[Ca++] £* 0.1 M, 

which is a good approximation. Substitution into the solubility-product ex¬ 
pression 

gives 

if-] a (17 x0'10~,o)‘ =41 x io-5 M, 

and 

solubility = i[F~] ^2X 10-5 M. 

As we expected from Le Chatelier’s principle, the solubility of CaF2 is lowered 

by the presence of an excess of one of its ions. In addition, the fact that calcium 
ion coming from CaF2 is only 2 X 10_o M justifies our neglect of this quantity 

compared with the contribution from Ca(X03)2. 
Now we consider the solubility of CaF2 in 0.1 M XaF. In this situation we 

can take the solubility of calcium fluoride to be equal to the concentration of 
calcium ion at equilibrium: 

solubility = [Ca++]. 

As in our previous examples, we can estimate the concentration of the ion in 
excess, and calculate the concentration of the other ion with the solubility 

product. For the fluoride ion concentration we have 

[F ] = [F ] (from XaF) + [F~] (from CaF2). 

The first term on the right-hand side is 0.1 Af, and the second must be less than 
7 X 10-4 M, the concentration of F— in a pure saturated solution of CaF2. 

Consequently, we can say 

[F 1 S 0.1 M, 

and by the equilibrium-constant expression, 

[Ca++] 
[F-]2 

1.7 X 10-10 

(0.1)2 
1.7 X 10~8 M. 

Therefore, the solubility of CaF2 in 0.1 M XaF is 1.7 X 10 8 M. Once again 
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we can conclude that our decision to neglect the [F—] contributed by CaF2 in 

comparison with 0.1 71/ was justified, for the actual fluoride ion concentration 

contributed by CaF2 (~ 2 X 1.7 X 10“8 M) is much smaller than 0.1 M. 

Questions. The solubility of Ag2CrC>4 in pure water is 0.78 X 10-4 M. Will its solubility 
in 0.05 M AgN03 be greater or less than 0.78 X 10-4 M? Why? Will [Ag+] in the resulting 
solution be greater, less, or approximately equal to 0.05 Ml Show that the solubility of 
Ag2CrC4 in 0.05 M AgN03 is 7.6 X 1C>-10 M. 

These examples have shown how the solubility product can be used to cal¬ 
culate the solubility of a salt in any solution of one of its ions. They also 

show that in effecting these calculations it is a great help if one is guided by 

Le Chatelier’s principle and by comparisons to other simpler situations. These 
comparisons can lead to very satisfactory approximations that considerably 

simplify the calculations. Finally, it is most important to use the answer 
obtained to check the validity of any approximations that are made in the 
calculation. 

Selective Precipitation 

In both qualitative and quantitative chemical analysis, it is often necessary to 

take advantage of differing solubilities to remove only one of several salts from 
solution. Calculations using solubility products can tell us when a separation 

of this type is possible. As a practical example, consider the following. 
A solution contains 0.1 21/ Cl- and 0.01 21/ CrO^T. By adding a solution of 

AgX03, we wish to precipitate the chloride ion as AgCl, and leave the chromate 
ion in solution. As we can see from the solubility products 

[Ag+][C1-] = 2.8 X 10-10 

[Ag+]2[CrOr] = 1.9 X 10-12 

both AgCl and Ag2Cr04 are slightly soluble salts. What will happen when 
Ag+ is added slowly to the original solution? 

To answer we need only recognize the significance of the solubility product: 
it is a number which the product of the ion concentrations can never exceed at 

equilibrium. That is, if the product [Ag+][C1-] is greater than 2.8 X 10-10, 
the system is not at equilibrium and precipitation of AgCl must occur. On 

the other hand, the concentration product [Ag+][C1~] can be less than Ksp, 
but only if there is no excess solid present. Therefore, upon adding Ag+ to a 
solution of Cl-, no precipitation of AgCl will occur until the Ag+ concentration 

becomes high enough so that [Ag+][C1-] = Ksp. In the case we are considering, 
no precipitation of AgCl will occur until the concentration of Ag+ is 

Kap _ 2.8 X 10-10 
= 2.8 X 10-9 21/. 

[C1-] 0.1 
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By a similar argument, no precipitation of Ag2Cr04 will occur until 

[Ag+f = 
[Cror] 

[Ag+] = 1.4 X 1(T5 

L s p 1.9 X 10-12 

0.01 

M, 

if the concentration of CrO^ is 0.01 M. 

Now we can see what will happen when we add silver ion to a mixture of 

0.1 M Cl- and 0.01 M CrOiT- No solid will form until the concentration of 
silver ion reaches 2.8 X 10~9 ill, at which point the first precipitation of AgCl 

will occur. Further addition of Ag+ will cause more precipitation of AgCl, 
but no precipitation of Ag2Cr04 will occur until the silver ion concentration 
rises to 1.4 X 10_5M.* 

It is interesting to see how complete the precipitation of the chloride ion is 
at the time when Ag2Cr04 first begins to precipitate. Since [Ag+] = 1.4 X 
10-5 M at this point, the chloride ion concentration must be 

Ksp 2.8 X 1(T10 

[Ag+] ~ 1.4 X 10-5 
2.0 X 10-5. 

From this answer we can conclude that the precipitation of chloride ion is 
essentially complete by the time Ag2Cr04 begins to precipitate, for of the 
original chloride material, less than one part in one thousand is left in solution. 

The foregoing calculation demonstrates the basis for using CrOif as an end¬ 
point indicator in the titration of chloride ion by silver ion. The chromate ion 

in aqueous solution is bright yellow, but a precipitate of silver chromate is 
dark red. As we have seen, the precipitate of Ag2Cr04 appears only after the 

chloride ion has been essentially completely precipitated by the addition of 
Ag+; thus the formation of Ag2Cr04 indicates the endpoint of the precipitation 

titration of the chloride ion. 
As another example of the use of selective precipitation in chemical analysis, 

consider the separation of Zn++ and Fe++ by controlled precipitation of one of 

their sulfides. The relevant solubility products are 

[Zn++][S=] = 4.5 X 1(T24, 

[Fe++][S=] = 1 X 10~19. 

We can see that ZnS is less soluble than FeS. Therefore it may be possible to 
start with a solution containing both Zn++ and Fe++ at 0.1-M concentration, 

and quantitatively precipitate only ZnS, leaving all the Fe++ in solution. 

* We are assuming that essentially no volume change occurs upon adding solution 
of Ag+, so that the concentration of Cr04 is constant. This is realizable if the Ag+ 
solution is sufficiently concentrated. 
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From the solubility product of FeS we can calculate that in order to avoid 
precipitating FeS, the sulfide ion concentration must be less than 

Ks p 1 X 10-19 

1 J [Fe++] 0.1 

= 10“18 M. 

To be safe, a maximum sulfide ion concentration of 10~19 M might be em¬ 

ployed. Does this result in essentially complete precipitation of ZnS? At a 

sulfide concentration of 10-19 M, the concentration of Zn++ remaining in 
solution is 

[Zn++] 
Asp 4.5 X 10“24 

- [S=] ~ 1 X 10-19 

= 4.5 X 10~5 M. 

We see that the concentration of zinc ion left in solution is only a small 
fraction of the original concentration, and thus it is possible to carry out a 

quantitative separation in this manner. The problem of how to maintain the 

sulfide ion concentration at the proper value for the separation can also be 
solved by arguments involving equilibrium constants, and we shall treat these 
later in the chapter. 

Questions. Silver ion is added to a solution that contains Cl- and 1“ both at 0.01 M 
concentrations. Which salt precipitates first, AgCI or Agl? What is the value of [Ag+] when 
the first salt starts to precipitate? What is the concentration of the anion of the first pre¬ 
cipitate when the second salt just starts to precipitate? 

6.2 ACIDS AND BASES 

There is perhaps no other class of equilibria as important as that involving 
acids and bases. As we continue the study of chemistry, we shall find that the 

classification “acid-base reaction” includes a vast number of chemical changes, 

so that the principles and practical points that we treat in the following sections 
are of very general use. Before attacking the mathematical problems of acid- 

base equilibria, we must devote some time to a discussion of nomenclature and 
classification of acids and bases. 

Arrhenius Theory of Acids and Bases 

The classification of substances as acids was at first suggested by their sour 
taste (Latin acidus, sour; acetum, vinegar) and alkalis (Arabic al kali, ashes of a 

plant) were taken as those substances that could reverse or neutralize the action 
of acids. It was thought also that an acid must have, as a necessary constituent, 

the element oxygen (Greek oxus, sour; gennae, I produce), but in 1810 Davy 

demonstrated that hydrochloric acid contained only hydrogen and chlorine. 
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Shortly thereafter the view was taken that all acids had hydrogen as an essential 
constituent. 

An explanation of why acids had differing strengths was one of the important 
results of the Arrhenius ionic dissociation theory, developed between 1880 and 

1890. The chemical activity and electrical conductivity of solutions of acids 

were taken to be consequences of their reversible dissociation into ions, one of 
which was H+: 

HC1 = H+ + Cl- 

CH3COOH = CH3COO- + H+ 

The fact that different acids had different strengths was explained as a result 
of a variation in the degree of dissociation. 

A similar scheme applied to the behavior of bases, which were all thought to 
produce the hydroxyl ion in solution: 

NaOH(s) = Na+(aq) + OH“(aq), 

Mg(OH)2(s) = Mg++(aq) + 20H"(aq). 

Thus the proton was responsible for acidic properties, and the hydroxyl ion 
was responsible for basic properties. 

While this point of view was a considerable advance in chemical theory, it 
led to certain difficulties. The first of these concerned the nature of the proton 

in aqueous solution, and the second had to do with the fact that substances 

which did not contain hydroxyl ion were capable of acting as bases. Let us 
examine these difficulties in turn. 

It is generally accepted that one of the reasons water is so excellent a solvent 

for ionic compounds is that ions in aqueous solution are stabilized by their 
strong attraction to the water molecule. This attraction is particularly strong 

because of the asymmetry of the charge distribution in the water molecule. 
Each ion in aqueous solution is hydrated, or strongly attached to a number of 

water molecules, generally estimated to be between 4 and 6. The proton is 
unique among ions in that it has no electrons. Consequently the radius of H + 

is just the nuclear radius, 10“13 cm, which is considerably smaller than 10-8 cm, 

the approximate radius of other ions. Therefore the proton should be able to 
approach and incorporate itself in the electronic system of a solvent molecule 

to a degree exceeding any other ion. In other words, if ordinary ions are hy¬ 
drated, the proton should be even more intimately bound to the solvent, and 

it is not legitimate to think of acid dissociation as producing “free” protons. 

There is considerable experimental evidence that the hydrated proton H30+, 
or the hydronium ion, is particularly stable. The hydronium ion is known to 

exist in electrical discharges through water vapor, and H30+ has been definitely 

identified as a distinct species in several crystals. In particular, the crystal of 
hydrated perchloric acid, sometimes denoted as HC104 • H20, really consists 

of H30+ and CIO^- Such data suggests that we might take the “true” form of 
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H+ in aqueous solution to be H30+. But even this may be an oversimplification. 
The H30+ species is very probably further hydrated, and there is considerable 

evidence that indicates three additional water molecules are rather firmly 
attached to it to form H90^. While we are not sure of the exact state of H + 

in aqueous solution, we feel sure it is not a free proton. To emphasize the 
hydration of the proton, we shall represent it in this chapter by H30+(aq), 

which indicates H30+ with an undetermined number of water molecules at¬ 

tached to it. This notation has a disadvantage, however, because it tends to 
clutter chemical equations with “extra” molecules of water. Therefore in sub¬ 

sequent chapters we shall find it helpful to abandon the H30+ notation and 
use simply H+(aq) to represent the aqueous proton. 

The impact this argument has on the acid-base problem is the following. 
If the proton exists as hydrated H30+, it is not entirely accurate to think of a 
dissociation as represented by 

hci = h+ + cr. 

A more realistic view is to think of acid “dissociation” as a transfer of a proton 

from the acid to the solvent: 

HCI + H20 = H30+(aq) + Cl“(aq). 

This in turn suggests that an acid is not necessarily a substance that dissociates 

to a proton, but rather is a molecule that is capable of transferring or donating 
a proton to another molecule. This is a fruitful concept, as we shall s£e. 

The second difficulty with the Arrhenius picture of acids and bases is that it 
suggests all basic properties are due to the hydroxide ion. However, there are 

substances that do not contain the hydroxide ion but can still neutralize acids. 
For example, in pure liquid ammonia the reaction 

HCl(g) + NH3(1) = NH t + Cl- 

proceeds readily, and thus we can look upon ammonia as a base, since it reacts 

with a known acid, HCI. When sodium carbonate, Na2C03, is dissolved in 

water a solution that will neutralize acids results. Sodium carbonate cannot by 
itself dissociate directly to product a hydroxide ion, but its reactions suggest 

that nevertheless it must be a base. It appears then that a broader view of 
acids and bases than is afforded by the Arrhenius theory is necessary. 

The Lowry-Brjrfnsted Concept 

The considerations we have just outlined led in 1923 to a more powerful and 

general concept of acids and bases, called the Lowry-Brpnsted definition: An 
acid is a species having a tendency to lose or to donate a proton, and a base is 
a species having the tendency to accept or add a proton. Accordingly the 
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ionization of HC1 is pictured as HC1 donating a proton (acting as an acid) to 
water (acting as a base). 

HCl(aq) + H20 = H30+(aq) + Cr(aq) 

acid base 

This reaction is reversible, for Cl- may accept a proton from H30+ and become 
HCl(aq). Therefore, the chloride ion must also be a base, and H30+ must also 

be an acid. Since HC1 and Cl- differ only by a proton, they are called a conjugate 

acid-base pair. Likewise, H30+ and H20 are a conjugate acid-base pair. To 
demonstrate this idea we can rewrite our reaction as 

HC1 + HoO = H30+ + C1-, 

acid 1 + base 2 = acid 2 + base 1, 

where the numbers indicate the conjugate pairs. The behavior of carbonate ion 
as a base can be represented by 

COT + H20 = HCOr+ OH“ 

base 1 + acid 2 = acid 1 -j- base 2. 

The Lowry-Brpnsted definition extends the terms acid and base to include 
substances besides H+ and OH- with the resulting advantage that a large 

number of reactions can be discussed in the same language and treated mathe¬ 
matically by the same methods. 

Strength of Acids and Bases 

The Lowry-Brpnsted definition suggests that a strong acid has a large tendency 

to transfer a proton to another molecule, and that a strong base is one with a 

large affinity for protons. We might then measure acid strength quantitatively 
by the degree to which reactants are converted to products in a reaction such as 

HS07 + H20 = H30+ + S07, 

acid 1 + base 2 = acid 2 -f- base 1. 

However, a little reflection shows that the extent to which this reaction proceeds 
to products is governed not only by the tendency of acid 1 to lose a proton, 

but by the tendency of base 2 to accept that proton. If the degree of proton 
transfer depends on the properties of both acid 1 and base 2, it is clear that the 

only valid way we can compare the strengths of individual acids is by measuring 
their tendencies to transfer a proton to the same base. By testing the ability 
of various acids to transfer a proton to water, we can rank them in order of their 

acid strength. The quantitative measure of acid strength is the acid dissociation 
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Table 6.2 Dissociation constants of acids 

Acid Reaction K (25°C) 

Acetic acid CH3COOH + H20 = H30+ + CH3COO- 1.8 X 10-5 

Formic acid HCOOH + H20 = H3O+ + HCOO- 1.8 X 10-4 

Hydrogen cyanide HCN + H20 = H3O+ + CN- 4.8 X 10-10 

Hydrogen sulfate ion HSO4 + H20 = H3O+ + SOy 1.2 X 10-2 

Hydrofluoric acid HF + H20 = H3O+ + F“ 6.8 X 10-4 

Nitrous acid HN02 + H20 = H3O+ + N02 4.5 X 10-4 

Chloracetic acid CH2CICOOH -f H20 = H3O++ ch2cicoo- 1.4 X 10-3 

Carbonic acid C02 + 2H20 = H30+ + HCO3- 4.2 X 10-7 

Bicarbonate ion HCOy + H20 = H3O+ + COy 4.8 + 10-11 

Hydrogen sulfide H2S + H20 = H30+ + HS- 1.1 x 10-7 
Hydrogen sulfide ion HS~ + H20 = H3O+ + S” 1 x 10-14 
Phosphoric acid H3PO4 + H20 = H3O+ + H2PO4 7.5 X IO-3 

Dihydrogen phosphate ion H2pOr+ H20 = H3O++ HPOy 6.2 X 10-8 

Hydrogen phosphate ion HPO|=+ H20 = H3O++ POy3 1 x 10-12 

constant: that is, the equilibrium constant for the reaction 

HA + H20 = H30+ + A", K = tH32J+J[iA~1 • 
[HA] 

Table 6.2 contains the dissociation constants of several common acids. 

Finally, we note that there is a relation between the strength of an acid and 

its conjugate base. For example, we say that because HC1 has a large tendency 
to lose a proton, it is a strong acid. But it must also be true that its conjugate 

base, chloride ion, has only a very small tendency to acquire a proton, and is 

therefore a weak base. Further reflection shows that in general if an acid is a 
strong acid, its conjugate base is a weak base, and vice versa. 

The Lewis Concept 

Another general definition of acids and bases was proposed in 1923 by G. N. 

Lewis. According to Lewis, an acid is any substance that can accept electrons, 

and a base is a substance that can donate electrons. Two examples of such 
acid-base reactions are 

BF3 -f F" = BF7, 
acid base 

Ag+ + 2CN- = Ag(CN)r- 
acid base 

We see that the Lewis definition extends the acid-base concept to reactions in 
which protons are not involved. 
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It is clear that since Lowry-Brpnsted bases react by donating electrons to a 
proton, a Brpnsted base is also a Lewis base. However, a Brpnsted acid must 

have a proton available for transfer to another molecule, whereas this is not 
required by the Lewis definition. In this chapter we are primarily concerned 

with aqueous solutions in which acid-base phenomena involve proton transfer, 
and so the Lowry-Brpnsted definitions are of most use to us. In other systems 

where protonic materials are not involved, the Lewis definition is more valuable, 

and we shall explore this concept in our subsequent discussions of descriptive 
chemistry. 

6.3 NUMERICAL PROBLEMS 

We have noted that the equilibrium constant for acid dissociation can be used 
as a quantitative indication of acid strength. In this section we shall be con¬ 

cerned with the details of the calculation of hydrogen ion concentration using 

acid and base ionization constants. First we must examine two conventions: 
one having to do with how ionization-constant expressions are written, the 
other with how small concentrations are expressed. 

We have emphasized that the acid properties of, for example, HSO^ are due 
to the proton transfer reaction 

Hsor + h2o = h3o+ + sor. 

Strictly, the equilibrium constant for this reaction should be written 

K, [H3o+][sor] 
" [HS0r][H20] 

However, virtually all the solutions that concern us are dilute and therefore 
the concentration of water (~55.5 M) is always larger than the concentration 

of the solute. Hence the concentration of water in such solutions can be con¬ 
sidered to be constant, and the usual convention of including constant con¬ 

centrations in the equilibrium constant itself is followed. Accordingly, acid 

ionization constants are commonly written as 

K'[H20] = K 

and for the reaction 

[H3o+][sor] 
[HSOF] 

NH3 + H20 = NH^ + OH~ 

[NH+KOH-] 

[NH3] 
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The pH Scale 

Because the solutions with which we deal most commonly are dilute, the con¬ 
centration of hydrogen ion in them is often quite small. As a result, hydrogen 

ion concentrations in moles per liter are often expressed as negative powers 
of 10. For example, the hydrogen ion concentration in a saturated solution of 

C02 is 1.3 X 10-4 M, and in a 0.5 M solution of acetic acid it is 3 X 10~3 M. 
To achieve compactness of notation and brevity of expression it is convenient 

to give these concentrations in terms of their negative logarithms. Thus we 

define pH as 

pH = - log [H30+], 

For example, in a saturated solution of CO2, [H30+] = 1.3 X 10-4 M, and the 

pH is given by 

pH = — log [H30+] = — log [1.3 X 10-4] 

= — (log 1.3 + log 10-4) 

= - (0.11 - 4) 

= 3.89. 

Conversely, a solution that has a pH of 4.5 must have [H30+] = 3.2 X 10-5, 

as we can see by 

4.5 = - log [H30+], 

-4.5 = (0.5 - 5) = log [H30+], 

100'5 X 10“5 = [H30+], 

3.2 X 10~5 = [H30+]. 

The use of negative logarithms for the expression of concentration is not 

restricted only to hydrogen ion. For example, pOH is the negative logarithm 

of the hydroxide ion concentration, and pAg is similarly related to the concen¬ 

tration of silver ion. It is also common to express equilibrium constants as 

their negative logarithms, and denote such quantities by pK. 

Self-ionization of Water 

We have seen that water can act as either an acid or a base, so it is not surprising 

that the reaction 

H20 + H20 = H30+ + OH” (6.3) 
acid 1 base 2 acid 2 base 1 

proceeds to a small but easily measurable extent in pure water. Following the 

convention of not writing constant concentrations explicitly, we obtain 

[H30+][0H-] = Kw (6.4) 
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for the equilibrium-constant expression. The quantity Kw is called the ion 
product constant for water, and has the value 10-14 at 25°C, when concentra¬ 
tions are expressed in moles per liter. 

A solution that is neither acidic nor basic has, by definition, equal concen¬ 
trations of H30+ and OH-. Thus if 

[H30+] = [OH-] and [H30+][0H-] = 10-14, 

we obtain 

[H30+] = [OH-] = 10-7 M 

for the concentrations of H30+ and OH- in a “neutral” solution at 25°C. 

Alternatively, we can say that for a neutral solution, 

pH = pOH = 7. 

From the ion product constant expression we can also write, in general, 

pH + pOH = pKw - 14 

at 25°C. Thus the pOH can be obtained by subtracting the pH from 14. 

The self-ionization of water always contributes to the hydrogen ion and 
hydroxide ion concentration in a solution, but this is only rarely a complicating 

factor in calculating the hydrogen ion concentration in solutions of acids and 
bases. Consider, for example, the problem of calculating the H30+ concentra¬ 

tion in a solution prepared by dissolving 0.1 mole of HC1 in enough water to 

make one liter of solution. For simplicity, we will assume that HC1 is totally 
dissociated to its ions. Is the concentration of H30+ equal to 0.1 Ml Perhaps 
not, because the self-ionization of water will also contribute to the H30+ 

concentration. 

It is not difficult to become convinced that the H30+ contributed by the 
ionization of water is of no importance in this case. In pure water, the con¬ 

centration of H30+ is 10-7 M, as we have noted previously. If H30+ in the 
form of HC1 is added to pure water, the self-ionization of water is subjected to 

a “stress,” and the system must react in a manner that minimizes this stress, 

according to Le Chatelier’s principle. This means that as H30+ is added, the 
self-ionization of water must diminish, and that the H30+ contributed by the 

self-ionization of icater must become less than 10-7 M. Therefore, in a 0.1 M 
solution of HC1, the concentration of H30+ is 0.1 M, because the “extra” 

amount contributed by the self-ionization of water is bound to be less than 
10-7 M. 

Now that we have established that the concentration of H30+ in a 0.1 M 
HC1 solution is 0.1 M, we can calculate the equilibrium concentration of OH- 

in the same solution. At equilibrium, the H30+ and OH- concentrations always 

obey Eq. (6.4): 

[H30+][OH-] = Kw = 10-14. (6.4) 
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Since [H30+] = 0.1 M, 

[OH"] = 
io-14 

[H30+] 

10-14 

10-1 
10-13 M. 

We see that in an acidic solution the concentration H30 + is greater, and the 
concentration of OH- less, than in pure water. 

The calculation of the OH- concentration can be used to further justify our 
assumption that the contribution of the self-ionization of water to the H30 + 

concentration is negligible. The only source of OH- in this solution is the self¬ 

ionization of water, and by the stoichiometry of reaction (6.3), one H30+ is 

contributed for each OH-. Therefore, the [H30+] contributed by the self¬ 
ionization of water is equal to [OH-], which we have seen to be 10-13 M. 

There is no question then that the contribution of the self-ionization of water 

to the H30+ concentration is completely negligible. 
While we have used a solution of a strong acid as our example, it is clear that 

similar arguments can be applied to a solution of a strong base. In a 0.01 M 
solution of NaOH, the contribution of the self-ionization of water to the con¬ 

centration of OH- is negligible, because it must be less than 10-' M. Thus in 

this solution 

[OH-] 

[H30+] 

0.01 M, 

Kw 
[OH-] 

10 

10 

— 14 

—2 
= 10-12 M. 

These arguments concerning the importance of either the H30+ or OH- 

contributed by water relative to the H30+ or OH- contributed by a dissolved 

acid or base are very important, for they are used repeatedly to simplify cal¬ 
culations dealing with weak acids and bases. Briefly, we can say that if a dis¬ 

solved acid itself contributes a concentration of H30+ equal to or greater than 

10-6 M, the contribution of water to the total H30+ concentration is negligible. 
A similar statement can be made about bases and the OH- concentration. 

Weak Acids and Bases 

Now let us attack the problem of calculating the concentration of H30+ in a 

pure aqueous solution of a weak acid. Acetic acid is a common laboratory 

reagent, and is often taken as a “typical” weak acid. The equilibrium we deal 
with then is 

CH3COOH + H20 = H30+ + CH3COO-. 

Let us abbreviate the formulas for acetic acid and the acetate ion to HOAc 
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and OAc , respectively. Then the equilibrium constant for the ionization is 

[H3Q+][OAc-] 

[HOAc] 
1.85 X 10-5. (6.5) 

The magnitude of this equilibrium constant lies roughly in the middle of the 

range of values that apply to weak acids, and this is the reason acetic acid is 
considered a typical weak acid. 

Suppose we have a solution made up by adding C0 moles of pure acetic acid 
to enough water to make one liter of solution. Some of this acid will dissociate 

to H30+ and OAc-, leaving behind an unknown concentration of undissociated 
acid. Our problem is to calculate the equilibrium concentrations of H30+, 

OAc-, and HOAc by using the ionization-constant expression, Eq. (6.5). To 

do this we must take an equation in three unknowns, and convert it to an 
equation in one unknown. 

The method we shall use is an intuitive approximate procedure. First, 
recognize that there are two sources of H30+: the ionization of the acid, and 

the self-ionization of water. But our experience is that the latter source is often 
unimportant compared with the former, at least when we deal with solutions of 

strong acids. As a trial procedure then, let us assume that all the H3Ot in 
solution comes from the ionization of the acid. As an immediate consequence, 

the stoichiometry of the ionization reaction tells us that 

[H30+] = [OAc-], (6.6) 

since the only source of either of these ions is a reaction which produces them 

in equal amounts. 
Equation (6.6) allows us to convert Eq. (6.5) into an equation in two un¬ 

knowns. To complete the solution, one more relation is necessary. To obtain 

it, we recognize that the ionization equilibrium constant is small, and that 
consequently very little H30+ and OAc- can exist in equilibrium with undis¬ 

sociated HOAc. This suggests that to a good approximation, the equilibrium 
concentration of HOAc is the same as C0, the concentration that would be 

present if no HOAc dissociated. Therefore as our second assumption we have 

[HOAc] = C0. (6.7) 

Xow let us calculate [H30+] for three different values of C0, and see whether 

our assumptions are justified in typical situations. First we choose C0 — 1 M. 

Then Eqs. (6.5), (6.6), and (6.7) give us 

_ [H3Q+][OAc-] _ [H3Q+]2 

[HOAc] — C0 

[H30+] ^ (C0K)112 = (1 X 1.85 X 10-5)1/2 

^ 4.3 X 10-3 M. 
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This answer is not exact, because we made two approximations in deriving it. 
However, we can use this approximate answer to check to see if our assumptions 

were justified. 
Our first assumption was that the H30+ contributed by the ionization of 

water was negligible compared with that derived from the acid. The concen¬ 

tration of H30+ from the ionization of water cannot be greater than 10-7 M, 
and this is much smaller than 4.2 X 10-3 iff, so our first assumption and the 

approximation that [H30+] = [OAc~] are justified. 

Our second assumption was that very little of the HOAc dissociated, so that 
Co = [HOAc]. Strictly, however, the concentration of HOAc at equilibrium is 

given by 

[HOAc] = Co - [OAc"] ^ C0 - [H30+], 

But C0 = 1 M, and [H30+] ~ 4.3 X 10-3. Therefore, our second assumption 
is justified and the approximation that Co — [HOAc] is accurate to better than 

one percent. 

Now let us try out our approximations in the situation where Co = 0.01 M, 
a rather dilute solution of acetic acid. Once again, assuming that 

[H30+] = [OAc"], 

C0 = [HOAc] = 0.01 M, 

we get 

[H3Q+][OAc-] _ [H30+]2 

[HOAc] “C0 

[H30+] £* (C0K)112 = (10-2 X 1.85 X 10-5)1/2 

^ 4.3 X lO-4 M. 

Now we must check the validity of our assumptions. As we have argued 
before, the concentration of H30+ contributed by the self-ionization of water 

is less than 10-7 M, and this is considerably smaller than 4.3 X 10-4 M. 

Therefore, our assumption that [H30+] = [OAc-] is justified. 
The validity of the second assumption depends on the concentration of 

H30+ being much less than Co, for only then can we say that Co = [HOAc]. 

But we see that [H30+] is as large as 4% of C0, and therefore there is some 
question as to whether we were justified in assuming that [HOAc] = 0.01 M. 

However, while we have made an error of about 4% in the concentration of 
HOAc, the resulting error in the concentration of H30+ is less than this because 

the concentration of H30+ depends only on the square root of the HOAc con¬ 

centration. Furthermore, in practical laboratory situations we are rarely 
interested in knowing the concentration of H30+ to better than a few percent, 

so our second assumption is satisfactory in this case, if only marginally. 

Our experience now suggests that if we try to calculate [H30+] for a solution 
of acetic acid in which Co = 0.001 M, at least one of our simplifying assump- 
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tions will break down. Let us see how serious the failure is, and what can be 

done about it. We assume that [H30+] = [OAc-] and [HOAc] = C0 = 10-3 M, 
and find 

[H30+] ^ (C0K)1/2 = (1.85 X 10-5 X 10-3)1/2 

S 1.36 X 10-4 M. 

Now there is no question that the first assumption is justified, but our answer 
shows that [H30+] is not small compared with Co, so the assumption that 

[HOAc] = C0 - [H30+] =* C0 

is not justified. The error in the HOAc concentration is greater than 10%, and 
the resulting error in the H30+ concentration is several percent. 

There are two ways by which we can avoid this difficulty. One is to use the 

accurate relation 

[HOAc] = Co - [H30+], 

C0 = 10"3 M 

in the equilibrium constant, along with [H30+] = [OAc-]. This gives us 

[H3Q+][OAc-] [H30+]2 

[HOAc] Co - [H30+] 

which is a quadratic equation in [H30+]. Let us rearrange it to 

[H30+]2 + K[H30+] -c0k = 0, 

and solve it by the quadratic formula 

(H30+] = -K±v/f±Mk. 
£ 

Inserting the values for K and C0 gives 

[H30+] = 1.27 X 10-4 M. 

We see that this answer is nearly 7% less than our approximate answer. 
From Eq. (6.8) we can deduce the condition for the validity of our approxi¬ 

mate expression for [H30+]. If, in Eq. (6.8), K « Co, then K2 « 4AC0, in 

which case we have 

[H30+] 
— K db V K 2 + 4KCo 

2 
| ± VKCo, 

and so if K Co, we can further simplify to 

[H30+] s Vkc~0, 
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which is our approximate expression for [H30+]. We see then that in order for 

this approximation to be valid, the acid must be weak (K small) and fairly 

concentrated (C0 large). 
The second way to handle problems in which the simplifying assumptions 

prove inaccurate is to proceed by successive approximations to the correct 

answer. In our present example, our guess that [HOAc] = C0 proved in¬ 
accurate. Let us use the approximate value of H30 + that we found at first to 

improve our guess of the HOAc concentration. We have 

[HOAc] = C0- [H30+] 

and [H30+] = 1.36 X 10-4. A second, or refined, approximation to [HOAc] 

would be 
[HOAc] ^ C0 - 1.36 X IQ-4 = 8.64 X 10-4 M. 

Inserting this into the equilibrium constant gives 

[H30+]2 „ 10—5 
M4xlF*“ 1,85 x 10 ’ 

[H30+] S* 1.26 X 10-4il/. 

This second approximation to the H30+ concentration is nearly the same as 

the “exact” value obtained from the solution of the quadratic equation. If we 
did not know the accurate answer to the problem, we could check the validity 

of this second approximation by using it to further refine our guess of [HOAc], 
and repeating the calculation. If two successive answers differ negligibly, the 

final approximation is satisfactory. 

Question. Use this second approximation of [H30+] = 1.26 X 10-4 to obtain a third 
approximation for [H30+]. What do you conclude from a comparison of the results of 
the second and third approximations? 

It might seem that the successive approximation method is inferior to the 

exact solution via the quadratic equation. Actually, the successive approxima¬ 

tion procedure is the more useful approach, since it is algebraically and arith¬ 
metically simpler, and can be applied to situations in which the exact approach 

would require the solution of a cubic or quartic equation. 
To find the hydroxide ion concentration in a pure solution of a weak base, 

we make use of approximations very similar to those we have just discussed. 

The substance methyl amine is a weak base, capable of accepting a proton from 

water by the reaction 

CH3NH2 + H20 = CH3NH^ + OH-. 

The corresponding equilibrium constant is 

[CH3NH^][OH-] 

[CH3NH2] 
K = 5.0 X 10-4. 
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What is the equilibrium concentration of hydroxide ion in a solution prepared 

by adding 0.1 mole of CH3NH2 to enough water to make one liter of solution? 
To reduce the problem to one unknown, we make two assumptions. The 

first is that the concentration of OH- contributed by the ionization of water is 

negligible compared with that contributed by the base. Therefore, by the 
stoichiometry of the ionization reaction 

[CH3NH+] = [OH"]. 

The second assumption is that most of the CH3XH2 remains as such, since the 
equilibrium constant for its conversion to CH3NH^ is small. Therefore, to a 

good approximation 

[CH3NH2] = 0.1 - [CH3NH£] ^ 0.1 M. 

Note carefully that these assumptions and approximations are exactly analogous 
to those made in the treatment of weak acid ionization. Using our two approxi¬ 

mations and the equilibrium constant, we obtain an equation for [OH-]: 

[CH3NH3+][OH-] [OH-]2 

[CH3NH2] 0.1 

[OH-] - 7.1 X IQ-3 M. 

5.0 X 10-4, 

To justify our assumptions we note that 7 X 10~3 M is much greater than 
10-7 M, which is the maximum OH- concentration ever contributed by the 

self-ionization of water. The second assumption, that 

requires that 

[CH3NH2] ^ 0.1 M, 

[OH"] = [CHaNHj] « 0.1 M, 

which is satisfied, but rather marginally. The validity of the second assumption 
depends on K being small and the concentration of the base being fairly large. 

A second approximation to [OH-] can be obtained by saying 

and 

[CH3NH2] S0.1-7.1X 10“3 = 9.29 X 10~2 M, 

[OH —12 

= 5.0 X 10 —4 

9.29 X 10-2 

[OH-] - 6.8 X 10-3 M. 

This answer differs only slightly from our first result, and therefore is a sufficient 

approximation for most purposes. 
In this section we have discussed specific examples of acid-base equilibria to 

illustrate the general method by which similar problems can be solved. We have 
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avoided and will continue to avoid supplying general mathematical formulas 

which give an answer in one step. The reason for this is that any simple for¬ 

mula we might give would necessarily be approximate and might fail to apply 
in a given situation. The only way to be sure that an expression is appropriate 

for a given problem is to derive it following the procedures we have illustrated, 

taking full account of the chemical and physical peculiarities of the problem. 

6.4 HYDROLYSIS 

Hydrolysis is an aspect of acid-base equilibrium that traditionally is treated as 

a separate, distinct phenomenon, but in fact it requires no concepts beyond 

those we have already discussed. We have remarked that a weak acid and its 
anion are a conjugate acid-base pair, and that if an acid is weak, its conjugate 

base tends to be strong. For example, acetic acid is a moderately weak acid, 
so acetate ion is a moderately strong base, and will acquire protons in aqueous 

solution by the reaction 

OAc~ + H20 = HOAc + OH~. (6.9) 

This reaction represents the hydrolysis of the acetate ion, but we can see 

that it is nothing more than the “ionization” of a weak base. Therefore it should 

be possible to calculate the hydroxide ion concentration in a pure solution of 
NaOAc in the same way that we calculated [OH-] in a pure solution of CH3NH2. 

There is one additional matter which must be dealt with. The equilibrium 

constant for reaction (6.9) is 

[HOAc][OH-] 

[OAc-] *’ 
(6.10) 

where Kh is called the hydrolysis constant. Hydrolysis constants are not 
often tabulated, because they can be evaluated easily from the ionization 

constants of the corresponding acid. To do this, we multiply Eq. (6.10) by 

[H30+]/[H30+] to get 

[HOAc][OH-][H3Q+] 

[0Ac-][H30+] 

In the numerator we recognize that the product [0H_][H30+] is equal to KW) 

the ion product constant for water. This gives us 

[HOAc ]KW _ 

[HsO+][OAc-] *h’ 

and it is now easy to see that the remaining factors are equal to the reciprocal 
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of the ionization constant for acetic acid. That is 

[HOAc] _ 1 

[H30+][0Ac-] ~ Ka ’ 

Kk = YLa (6-11) 

io-14 

1.85 X IO"5 

= 5.4 X 1CT10. 

Equation (6.11) is of general validity. It shows that the weaker the acid, 

the smaller Ka and the more extensively hydrolyzed is the anion. In other 
words, it is a quantitative demonstration that the weaker the acid, the stronger 

is its conjugate base, and vice versa. 
Now we can proceed with calculation of the hydroxide ion concentration in 

a solution prepared by dissolving one mole of sodium acetate in enough water 
to make one liter of solution. Our method, which by now should be familiar, 

is to neglect the [OH-] contributed by the self-ionization of water and thereby 

obtain 
[OH-] a* [HOAc] 

from the stoichiometry of the hydrolysis reaction. Furthermore, we recognize 

that acetate ion is a weak base, so that most of it will remain as the ion, which 

means 

[OAc“] S 1.0 M. 

Substituting these relations into the hydrolysis-constant expression results in 

[OH-]2 

1.0 
£* 5.4 X 10“10, 

[OH-] ^ 2.3 X 10-5 M. 

This hydroxide ion concentration is sufficiently large for our first assumption 

to be valid, but sufficiently small for our second assumption to hold, as the 

reader should demonstrate for himself. 
The salts of weak bases are themselves weak acids. For instance, ammonia 

is a weak base, as we can see from 

NH3 + H20 = NH^ + OH- 

[NH4 ][OH~ 

[NH3] 
= Kb= 1.8 X 10" 

As a result, its salts such as XH4C1 will act as weak acids, or be hydrolyzed 
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according to the formula 

NH t + H20 = H30+ + NH3. 

The corresponding hydrolysis constant is 

[H30+][NH3j ^ 
-—-= Aa 

[NH^] 

It can be evaluated numerically by multiplying by [OH ]/[OH ] to give 

[0H-][H30+][NH3] 

[OH"][NHj] 

in which we recognize factors equal to Kw and 1 /Kb- Thus 

(6.12) 

Equation (6.12) is the general form that relates the ionization constant of a 

weak base to the hydrolysis constant of its salt. If the base is weak, Kh tends 

to be large, and the salt tends to be a moderately strong acid, and vice versa. 
Now we shall find the concentration of H30+ in equilibrium with a pure 

solution of NH4C1 whose chloride ion concentration is 0.1 M. We have 

[NH3][H3Q+] 

[NH t] 

Most of the ammonium ion will remain unchanged, so that [NH^] = 0.1 M. 

Also, most of the H30+ comes from the hydrolysis reaction, so [NH3] = [H30+]. 

As a result 

[H30+] S 7.5 X IQ"6 M. 

The reader should verify that the approximations are justified. 

6.5 BUFFER SOLUTIONS 

So far we have treated only solutions containing a pure weak acid or a pure 

weak base. In this section, we shall find how to calculate the equilibrium con¬ 

centrations for solutions which contain a mixture of a weak acid and its salt, 
or a weak base and its salt. The arguments we use are only slight extensions of 

what we have learned in the two previous sections. 
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Let us calculate the concentration of H30+ in a solution prepared by mixing 

0.70 mole of acetic acid, and 0.60 mole of sodium acetate with enough water 
to make one liter of solution. The ionization constant of acetic acid, 

[H3Q+][OAc~ 

[HOAc] 
= 1.85 X 10- 

can be arranged to give 

[HaO+ 3^ J — 
[HOAc] 

[OAc-] 
X 1.85 X 10" (6.13) 

and it is clear that in order to calculate [H30+], we must obtain values for 

[OAc-] and [HOAc]. 
Of the original 0.70 mole of acetic acid added to the solution, some might be 

lost by dissociation into ions. However, we have argued earlier that acetic 
acid is a weak acid, and when it is dissolved in pure water, an overwhelming 

fraction of it remains undissociated. Will this be true when we dissolve it in a 
solution that already has a large amount of acetate ion in it? Le Chatelier’s 

principle assures us that the added acetate ion will repress the dissociation of 
the acid by the common ion effect. Therefore, if it is justified to neglect the loss 

of acetic acid by dissociation in its pure solution, it is even more justified to 
assume that it is very slightly dissociated in a solution containing excess ace¬ 

tate ion. 
Our argument suggests that we can assume [HOAc] = 0.70 M. However, 

there is one more point to be examined. Acetic acid can be produced by the 

hydrolysis of the excess acetate ion: 

OAc~ + H20 = HOAc + OH-, 

and this suggests that the concentration of HOAc might be greater than 0.70 M. 

However, we have investigated the hydrolysis of pure 1 M sodium acetate, and 
found that very little HOAc (~ 10_5 M) is produced. In a solution that 

already contains acetic acid, the hydrolysis will be repressed, and its contri¬ 
bution to the HOAc concentration will be negligible. Therefore we can conclude 

that since the amount of acetic acid added to the solution is fairly large, the amounts 
lost by dissociation or gained by hydrolysis must be comparatively small, 

and we can set the concentration of HOAc equal to 0.70 M to a very good 

approximation. 
To obtain a satisfactory approximation for the acetate ion concentration we 

first note that its concentration will be fairly large, since sodium acetate is 

totally dissociated into ions. The loss of acetate ion by hydrolysis is small even 
in a pure solution of sodium acetate, and is bound to be smaller in a solution 

where excess acetic acid represses the hydrolysis. The gain of acetate ion from 
the dissociation of acetic acid is also very small, by a similar argument. Con¬ 

sequently we can set the acetate ion concentration equal to 0.60 M. 
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With satisfactory, if approximate, values for [HOAc] and [OAc ] at hand, 
we can write 

[H30+] = x 1.85 X 10-5 = X 1.85 X lO”5 

= 2.2 X lO-5 M. 

Thus the concentration of H30+ is lower than in a pure solution of acetic acid 
at a comparable concentration. This residt is consistent with Le Chatelier’s 
principle, which predicts that the addition of excess acetate ion to a solution of 
acetic acid will repress the dissociation of the acid, and lower the concentration 
of H30+. 

Re-examination of the arguments that led to the solution of this problem 
will show that the approximations we used require that both the acid and its 
anion be present in substantial concentrations. Therefore, it is safe to use the 
procedure we have outlined only if the ratio of the acid to salt concentration 
lies between 0.1 and 10, and the absolute concentration of the acid is numerically 
much greater than its dissociation constant. 

A solution that contains appreciable amounts of both a weak acid and its 
salt is called a buffer solution, and has remarkable and useful properties. Buffer 
solutions can be diluted without changing the concentration of H30+. The 
general expression for [H30+], of which Eq. (6.13) is a special case, is 

[acid] 
[anion] °‘ 

The concentration of H30+ depends only on Ka and the ratio of the concentra¬ 
tions of acid and anion. When the buffer solution is diluted, the concentration 
of the acid and anion change, but their ratio remains constant, and [H30+] is 
unchanged. 

Buffer solutions also tend to keep the concentration of H30+ constant even 
when small amounts of strong acid or strong base are added to them. To illus¬ 
trate this phenomenon let us calculate the change in the concentration of H30+ 
that occurs when 1 ml of 1 M HC1 is added to 1 liter of (a) pure water and 
(b) the solution of acetic acid and acetate ion we have just discussed. 

In case (a) we add 

0.001 liter X 1 mole/liter = 0.001 mole 

of H30+ to one liter of water. The resulting solution therefore has an H30+ 
concentration of 10-3 M. The addition produces a 104-fold change in the 
concentration of H30+, compared to that in pure water. 

When, in case (b), we add 0.001 mole of H30+ to the solution containing 
acetate ion and acetic acid, the following chemical reaction occurs: 

OAc“ + H30+ -+ HOAc + H20. 
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We are certain of this because the equilibrium constant for this reaction is 

[HOAc] 1 1 

[H30+][0Ac-] ~ Ka~ 1.85 X 10-5 “ 

Since this equilibrium constant is large, virtually all of the added acid reacts 
with the acetate ion to produce acetic acid. Therefore the new acetic acid 
concentration is 

[HOAc] = 0.70 + 0.001 = 0.701 M. 

Since 0.001 mole of OAc- reacted with the added H30+, the new acetate ion 
concentration is 

[OAc-] = 0.60 - 0.001 = 0.599 M. 

As a result, the new concentration of H30+ is given by 

[H30+] 
[HOAc] 

[OAc-] a 

= 2.2 X 10-5. 

0.701 
0.599 

X 1.85 X 10-5 

Within the allowable significant figures, the concentration of H30+ is un¬ 

changed by this addition. A similar result is obtained when the effect of adding 
0.001 mole of a strong base is calculated. Mixtures of weak acids and their 

salts resist attempts to change the concentration of H30+ by addition of strong 

acids or strong bases. By storing excess protons as the weak acid, and excess 
base as the anion, they are able to modify the effect of any added acid or base. 

This is the origin of the name buffer solution. 

Buffer solutions can also be prepared by mixing appreciable amounts of a 
weak base and one of its salts. Ammonia is a weak base and in aqueous solu¬ 

tion produces OH- by the reaction 

NH3 + H20 = NH+ + OH-. 

The equilibrium-constant expression for this reaction can be written as 

[OH-] 
[NH3] 

[NH^] 
Kb, 

and we see that the concentration of OH- depends only on the ratio of the 

concentration of ammonia to that of ammonium ion. Consequently [OH-] 
(and [H30+]) will be unchanged by any dilution of the solution. Furthermore, 

excess base is stored in the solution as NH3 and excess acid as NH4. There¬ 
fore, any strong acids or bases added to the solution will be neutralized and the 

OH- and H30 + concentrations will be essentially unchanged. 

Question. In order for a buffer solution to work satisfactorily, the amount of weak acid 
and anion or weak base and cation present in solution must be considerably larger than 
the acid or base additions that must be offset. Explain why this is true. 
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As a practical illustration of the use of buffer solutions we can reconsider the 

separation of 0.1 M Zn++ and 0.1 M Fe++, which we treated in Section 6.1. 
We concluded there that in order to precipitate ZnS but not FeS, a sulfide ion 

concentration of 10-19 M was necessary. This concentration can be maintained 

by using a saturated solution of H2S, and an appropriate buffer. 
In aqueous solution, H2S dissociates very slightly into sulfide ions by the 

reaction 
H2S(aq) + 2H20 = 2H30+ + S=. 

The equilibrium constant for this reaction is 

[H3Q+]2[S=] 

[H2S] 
= 1.1 X nr21. 

In a saturated solution of hydrogen sulfide, [H2S] = 0.1 M, so we can see that 
in such a solution, the concentration of sulfide ion can be controlled by setting 

the concentration of H30+. What concentration of H30+ do we need if [S=] is 

to be 10“19 M? The equilibrium-constant expression tells us that 

[H30+]2 = X 1.1 X 10~21. 
I® 1 

Therefore, if [H2S] = 0.1 M, and [S=] is to be 10~19 M, 

[H3°+]2 = 1^9 X L1 X 10“21 = 11 X 10_3> 

[H30+] = 3.3 X 10“2 M. 

If we maintain the concentration of H30+ at about 0.03 M, the separation 

can be accomplished. 
To choose an appropriate buffer solution, we examine the expression 

[H3o+] = 
[acid] „ 

[salt] “ 

We see that in order to keep the concentration of the acid and its salt com¬ 
parable, as we should in order to have a good buffer solution, we must have 

[H30+] ^ Ka. 

The bisulfate ion, HS04 , is a weak acid with an appropriate ionization constant 

[H3o+][sor] 
[hsot] 

1.2 X 10-2, 

[H30+] = [HSOJ x 1 2 x 10-2 

[son 
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We see then that in order to maintain the concentration of H30^ at about 
0.03 M, we need only dissolve amounts of XaHS04 and Xa2S04 in the ratio 
of 2.5:1. This buffer will fix the H30+ concentration at the proper value, even 

though as the ZnS precipitates, H30~ is generated: 

H2S + Zn++ + 2H20 = ZnS + 2H30+. 

Question. The solubility products of Fe(OH>3 and Zn(OH)2 are 4 X 10-38 and 4.5 X 
10~17, respectively. At what pH would the precipitation of Fe(OH)3 be essentially complete 
while 0.5 M Zn++ remained in solution? From Table 6.2 choose an appropriate acid and 
give the concentrations you would use to make a buffer solution at this pH. 

Indicators 

Dye molecules whose color depends on the concentration of H30~ provide the 

simplest way of estimating the pH of a solution. These indicators are themselves 

weak acids or weak bases whose conjugate acid-base forms are of different color. 
For example, the indicator phenol red ionizes according to the equation 

OH 

s o 
Red 

o- 

+ h2o = h3o+ + 
SO3 c 

which we will abbreviate to 

HIn + H20 = H30+ + In“ 

[H30+][In-] 
Kl = [HInj 

If only a very tiny amount of this indicator is added to a solution, the dis¬ 

sociation of the indicator will not affect the concentration of H30~ at all. 

Quite the reverse happens. The concentration of H30~ in the solution deter¬ 

mines the ratio of In- to HIn by the equation 

[In~] Ki 
[HIn] [H30+] ' 
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Table 6.3 pH-ranges of some acid-base indicators 

Indicator pH-interval 
Color change: 
acid to base 

Thymol blue 1.2-2.8 red-yellow 
Methyl orange 2.1-4.4 orange-yellow 
Methyl red 4.2-6.3 red-yellow 
Bromthymol blue 6.0-7.6 yellow-blue 
Cresol red 7.2-8.8 yellow-red 
Phenolphthalein 8.3-10.0 colorless-red 
Alizarin yellow 10.1-12.0 yellow-red 

The color of the solution will depend on the concentration of H30+, for if 

[H30+] is large, [HIn] » [In-], and the solution will be red, but if [H30+] is 
small, [In-] )>> [HIn], and the solution will be yellow. 

There is a natural limitation on the range of pH-values in which a given 
indicator is useful. The eye can detect changes in color only when the ratio of 

the concentrations of the two colored forms falls in the range 0.1 to 10. In the 
case of phenol red we would have 

solution distinctly red, 

solution orange, 

solution distinctly yellow. 

By referring to the equilibrium-constant expression we see that these three 

ratios correspond to [H30+] equal to 10Ki, K\, and O.lKi respectively. There¬ 

fore the indicator is sensitive to change of pH only in a 100-fold range of H30+ 
concentration which is centered on the value [H30+] = K\. In order to measure 

pH in the range of 7 zb 1, we must use an indicator whose acid ionization 

constant is about 10-7, and likewise for other pH ranges. Table 6.3 gives a list 
of common indicators and the ranges in which they are effective. 

lin 

[HIn] 

[In-] 
[HIn] 

[In-] 
fHInl 

0.1, 

1, 
10, 

6.6 EXACT TREATMENT OF IONIZATION EQUILIBRIA 

There are really only two different types of problem that arise in simple situa¬ 

tions of acid-base equilibria. In one case we are concerned with “pure” solutions 
of a single weak acid or weak base; or, what is the same thing, a solution of a 
salt of a weak acid, or a salt of a weak base. The second case is that of buffer 

solutions, which contain appreciable amounts of both a weak acid and its salt 

or of a weak base and its salt. We have demonstrated intuitive, approximate 
treatments of these two problems, and have emphasized that there are situa- 
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tions in which our approximations fail. In order to make the conditions for the 
validity of the approximations more clear, and to provide a means of handling 
problems for which the approximations fail, we now present an exact method 
of treating acid-base equilibria. 

Consider the ionization of any weak acid HA: 

HA + H20 = H30+ + A-. 

Accompanying this reaction in aqueous solution we always have 

2H20 = H30+ + OH-. 

Our general problem is to calculate the four concentrations, [HA], [A-], [H30+], 

and [OH-], given that a certain amount of acid was dissolved to form a specified 
volume of solution. 

Since we have four unknowns, we must find four equations which can be 

solved simultaneously to give the desired concentrations. Two of these equa¬ 
tions are the equilibrium constants 

[H3o+][A~] 

[HA] 

[H30+][0H-] = Kw. 

(6.14) 

(6.15) 

We will consider the values of Ka and Kw to be given. To obtain a third equation, 
we need only recognize that of the original amount of HA added to the solution, 

all must be present either as undissociated acid HA or as the anion A-. If we 

call [HA]0 the total amount of acid added to the solution divided by the volume, 

we can write 

[HA]0 = [HA] + [A-]. (6.16) 

This equation is called the material balance relation. It simply says that since 
no “A-material” is created or destroyed, the sum of the equilibrium concen¬ 

trations of HA and A- must equal the concentration HA would have had 

if none had dissociated. 
The fourth equation follows from the requirement that the solution be elec¬ 

trically neutral. That is, the total concentration of positive charge must equal 
the total concentration of negative charge: 

[H30+]= [A-] -(- [OH-]. (6.17) 

Equation (6.17) is called the charge balance equation. 
Now let us combine our four equations to find an expression for the con¬ 

centration of H30+ at equilibrium. We will do this by first finding expressions 
for [A-] and [HA] in terms of [H30+], and then substituting these in Eq. (6.14). 
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From the charge balance equation we obtain 

[A"] = [H30+] - [OH"], 

which, by use of Eq. (6.15), becomes 

[A“] = [H,0+] - • (6.18) 

This is the first of the necessary relations. Rearrangement of the material 
balance equation gives us 

[HA] = [HA]0 - [A"]. 

Combining Eq. (6.18) with this results in 

[HA] = [HA]0 - [H30+] + 
K, 

[H30+] 
(6.19) 

Now we have both [A ] and [HA] in terms of known constants and [H30+], 
Substitution of Eqs. (6.18) and (6.19) into Eq. (6.14) produces 

[H3Q+] ([H3O+] - jgjg+j) ^ 

([HA]„ - [H30+) + jj^j) 

(6.20) 

Equation (6.20) is a cubic equation that can be solved for the exact concen¬ 
tration of H30+. Subsequently, all other concentrations can be found from 
Eqs. (6.15), (6.18), and (6.19). 

The direct solution of a cubic equation is never a pleasant procedure, so it is 
of interest to find the conditions under which we can simplify Eq. (6.20). First, 

note that even in solutions of very weak acid, the concentration of H30+ is 

generally greater than 10~6 M. This means that in the numerator of Eq. (6.20), 
the term 

[H*0+i - 

is to a good approximation just equal to [H30+], for if [H30+] > 10-6 M, then 

——— < 10-8 M 
[H30+] < 1U M • 

The same simplification can be made in the denominator of Eq. (6.20), so we get 

[H30+][H30+] 

[HA]0 - [H30+] 
= K0 if [H30+]» 

K„ 

[H30+] 
(6.21) 
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We recognize Eq. (6.21) as a quadratic equation that we encountered in Sec¬ 
tion 6.3. The conditions for its validity are now clear. 

Equation (6.21) can be simplified further, for if [H30+] [HA]0, it becomes 

[H3Q+]2 

[HA]0 
(6.22) 

which is the familiar simplest approximation to the acid ionization problem. 
In any problem of weak acid ionization we might first use Eq. (6.22) to obtain 

an approximate value for [H30+]. This approximate answer can be used to 

decide whether the approximations are valid, and if not, Eq. (6.21) or Eq. (6.20) 
may be solved by successive approximations. 

Example 6.1 Develop the exact expression for the concentration of OH in equilibrium 
with a weak base BOH. We have 

[B+][OH~ 
= Kb, [H30+][0H-] = K 

[BOH] 

and the material balance equation is 

[BOH]0 = [B+]+ [BOH], 

while charge balance requires that 

[B+]+[H30+] = [OH-]. 

Rearrangement of the charge balance equation gives 

)+1 _ IYVU—1 IU A+l — Kv [B+] = [OH-] - [H30+] = [OH-] 
[OH- 

From this expression and the material balance equation we get 

Kw 
[BOH] = [BOH]0 - [OH-] + 

[OH- 

These equations for [BOH] and [B+] convert the ionization-constant expression to 

( [OH"]-— ) [OH- 
[OH-]/ 

(' 
[BOH]0 - [OH"] + 

K* 

[OH' 

= Kh 

which is an exact cubic equation for [OH ]. 
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Now let us develop an exact expression for the concentration of H30 + in an 
arbitrary mixture of an acid HA and its salt NaA. The equations 

[H30+][A~] 
[HA] 

[H30+][0H-] = Kw, 

(6.14) 

(6.15) 

still apply, but now the material balance expression is 

[HA]0 + [NaA]0 = [HA] + [A ], (6.23) 

where [NaA]0 is the number of moles of salt added to the solution, divided by 
the volume of the solution. Equation (6.23) says that all the “A-material” 
added must be present either as HA or A-. The charge balance equation for 
this system is 

[Na+] + [H30+] = [A“] + [OH-]. (6.24) 

Upon substitution of A„,/[H30+] for [OH-], and slight rearrangement, the 
charge balance equation becomes 

[A-] = [Na+J + [H30+] - • (6.25) 

Equation (6.25) says that the concentration of A- is equal to that of Na+, 

except for the two correction terms [H30+] and XU)/[H30+]. These latter 

terms are often, but not always, relatively small. The material balance equation 

[HA] = [HA]0 + [NaA]0 - [A-] 

can be altered by substitution of Eq. (6.25) for [A-] to give 

[HA] = [HA]0 + [NaA]0 - [Na+] - [H30+] + • 

But since the salt NaA is totally dissociated, [NaA]0 = [Na+], and 

[HA] = [HA]0 - [H30+] + ■ 

Substitution of Eqs. (6.25) and (6.26) into Eq. (6.14) results in 

[H,0+]([N,+] + [H,0+l-[J^) ^ 

((HAlo - [HsO+J + 

which is an exact cubic equation for [H30+]. 

(6.26) 

(6.27) 

238 IONIC EQUILIBRIA IN AQUEOUS SOLUTIONS | 6.6 



Equation (6.27) reduces to a simple expression if both [Na+] and [HA]0 are 
large. That is, when 

[HA]0, [Na+] » [H30+] 

and 

[HA]0, [Na+] » 
[H30+] 

= [OH-], 

then Eq. (6.27) becomes 

[H30 

[H3Q+][Na+] 

[HA]0 

+1 _ [HA]o v _ [acid] 
[Na+] 

Ka = 
[salt] 

Ka, 

which is the familiar simple expression for the concentration of H30+ in a 

buffer solution. We see that in order for our simple expression to be valid, both 
[Na+] and [HA]0 must be larger than both [H30+] and [OH-] = ivu./[H30+]. 

When only one or two of these conditions are satisfied, Eq. (6.27) may be 
simplified accordingly. 

It is interesting to note that when the concentration of Na+ is set equal to 
zero in Eq. (6.27) we obtain Eq. (6.20), which is the exact expression for the con¬ 

centration of H30+ in a solution of a pure acid. Likewise, setting [HA]0 = 0 

gives us an exact expression of the H30+ concentration in a pure solution of 
the salt NaA. Neither of these conclusions should be surprising, but they 

reaffirm our confidence that Eq. (6.27) is correct regardless of the concentrations 
of acid and salt. 

6.7 ACID-BASE TITRATIONS 

The acid-base titration is one of the most important techniques of analytical 

chemistry. The general procedure is to determine the amount of, let us say, 
an acid by adding an equivalent measured amount of a base, or vice versa. 

In order to see how to design a good acid-base titration experiment, it is useful 
to calculate the concentration of H30+ at various stages in the titration of 

50.00 ml of 1.000 M HC1 with 50.00 ml of 1.000 M NaOH. 

To make our results applicable to all such titrations, we shall express the 
progress of the titration by giving the value of /, the fraction of the original 
acid that has been neutralized. If the original number of moles of HC1 is denoted 

by no, f is given by 

, _ number of moles of base added 

J ~ n0 

At the start of the titration / = 0, and / = 1 corresponds to a completely 

titrated acid, or the equivalence point of the titration. 
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Before the titration starts, [H30+] = 1 M, and pH = 0. To calculate 
[H30+] for 0 < / < 1, we let 

V = original volume of the acid, 

v = volume of the base added. 

Then, since both acid and base have the same concentration, / = v/V, and the 
amount of acid at any stage in the titration is 

To obtain the concentration of H30+, we divide by the total volume of the 
solution 

This expression is derived assuming that all of the H30+ comes from the ioniza¬ 

tion of HC1, and thus it gives [H30+] = 0 at the equivalence point. Actually, 

very near the equivalence point an appreciable amount of the H30+ comes 
from the ionization of water, and at the equivalence point we have [H30+] = 

[OH-] = 10-7 M. Therefore a more accurate expression for [H30+] is 

[H30+] = [H30+] (from acid) + [H30+] (from water) 

After the equivalence point is passed, we are essentially adding OH- to a 

certain volume of pure water, and the concentration of OH- can be calculated 
accordingly. 

Question. Why is it legitimate to neglect the term K'„,/[H30+] when f is small? 

The clearest representation of what happens during the titration is given by 
the titration curve, a plot of pH as a function of /, which is shown in Fig. 6.1. 

These curves are drawn from calculations with the equations we have just 
derived. The most striking feature of the titration curve is the rapid change of 

pH in the vicinity of the equivalence point. In going from / = 0.999 to / = 
1.001, the pH changes by nearly 8 units, or [H30+] changes by a factor of ten 

million. Therefore, in an actual experiment any acid-base indicator that changes 

color anywhere between pH 4 and pH 10 will allow us to locate the equivalence 
point to within one part in one thousand, or one-tenth of a percent. This 

situation becomes slightly less favorable as the reagents become more dilute, as 
Fig. 6.1 shows. 
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In practical situations, many titrations involve the reaction of a weak acid 

with a strong base, or of a weak base with a strong acid. Therefore it is impor¬ 
tant to examine the titration curves for these cases. 

Titration of 1-M and 0.01 -M HCI with 1 -M 
and 0.01 -M NaOH respectively. 

FIG. 6.1 

We assume that we are titrating 50.00 ml of 0.1000-M acetic acid with 0.1000 

M NaOH. Once again we express the progress of the titration in terms of /, 
the fraction of the acid titrated, where 

, moles of base added 

f~-- 

and n0 is the original number of moles of acid in the solution. At the start of 
the titration / = 0, and we have a 0.1000 M solution of a pure acid. The value 

of [H30+] is given by 

[H3Q+]2 

0.100 
= Ka = 1.85 X 10-5, 

[H30+] = 1.36 X 10-3, 

pH = 2.87. 

As the titration progresses, 0 < / < 1, and we have appreciable quantities of 
the acid and its anion present in solution. Under these circumstances, 

[H30+] = ||^pj Kai (6.28) 

as we learned from our discussion of buffer solutions. But the amount of OAc 

at any point in the titration is 

OAc- = nj, 
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and its concentration is 

FIG. 6.2 

[OAc~] 
nof 

V + v ’ 

where V is the original volume of the acid, and v is the volume of base added. 

Similarly, the amount of HOAc at any time is 

HO Ac = n0( 1 - /) 

and 

[HOAc] = n0 • 

Substitution into Eq. (6.28) gives 

[H30+] = Ka, 0 < / < 1. (6.29) 

Thus the concentration of H30+ depends only on Ka and the fraction titrated, 

and not on the original concentration of the acid. 

Titration of 0.1 -M acetic acid with 0.1 -M 
sodium hydroxide. 

/, fraction titrated 

Equation (6.29) is not valid when/ = 1, since it was derived neglecting the 

hydrolysis of the anion OAc-. When / = 1, the acid has been completely 
converted to a solution of 0.0500 M NaOAc, which hydrolyzes according to 

We know that 

and that 

OAc" + H20 = HOAc + OH-. 

[OH-] [HOAc] 

[OAc-] h 
^ = 5.54 X 10-10, 

[HOAc] = [OH-], 

[OAc~] = 0.0500 M. 
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Therefore [OH-]2 = 5 X KT2 X 5.54 X 10_1°, 

[OH-] = 5.26 X nr6, 

[H30+] = 1.90 x 10-9, 

pH - 8.72. 

We see that because of hydrolysis the solution is not neutral at the equiva¬ 

lence point. Beyond the equivalence point the concentration of H30+ can be 
calculated assuming that we are adding base to a solution of pure water. 

The calculations we have just outlined lead to the titration curve shown in 
Fig. 6.2. It is clear that in this weak acid-strong base titration, the pH changes 

more slowly in the vicinity of the equivalence point than was the case in the 
strong acid-strong base titration. Thus it is always more difficult to locate the 

equivalence point in titrations of a weak acid than in those of a strong acid. 

6.8 MULTISTAGE EQUILIBRIA 

In the problems of acid-base equilibrium that we have treated so far, we have 
dealt with solutions in which there was only one weak acid or weak base 

present, apart from water itself. However, situations in which there is more 
than one weak acid or base in solution are important, and arise naturally when, 

for example, an acid can ionize in two or more ways: 

H2C03 -f- h2o 

hcot + h2o 

[H30+][HC0r 
[H2C03] = K,, 

hcot + h3o+ 

cor + h3o+, 

[H30+][C0r 

K! = 4.2 X 10 

Ko — 4.8 X 10 

— 7 

-11 

[Hcor 
= Ks 

[H3o+]2[cor 
[H2co3] 

KxK2 

Thus a solution of carbonic acid is really a mixture of two acids: H2C03 and 

HCOr- The constant K1 is called the first ionization constant of carbonic 
acid, and K2 is the second ionization constant. 

As an example of how a mixture of weak acids is treated mathematically, 
let us calculate the H30+ concentration in a solution obtained by dissolving 

0.02 mole of C02 (H2C03) in one liter of water. Because of the possible com¬ 
plications of this system, we had best base our treatment on the exact material 

and charge balance equations: 

[H2CO3]0 = [H2C03] + [HCOil + [COT], (6.30) 

[H30+] = [HCOil + 2[COr] + [OH-]. (6.31) 

The coefficient of [COr] in the charge balance equation is 2, because we are 
equating positive and negative charge concentrations, and the concentration of 

charge contributed by the carbonate ion is twice the concentration of the ion 

itself. 
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To obtain an expression for [H30+], we select the charge balance equation 
and by substitution try to express [H30+] as a function of the known equilibrium 

constants and of other concentrations that can be guessed. Using the fact that 

H2C03 is a weak acid, we expect it to be very slightly dissociated, and therefore 
to have a concentration near to 0.02 M. Consequently we will try to express 

[H30+] as a function of [H2C03]. Use of the equilibrium constants gives us 

[hco3-] 
[H2CQ3] 

[H30+] Al’ [cor] = [H2CQ3] 

[HsO+]* 
k,k2 

[OH-] = 
[H3o+]' 

Substitution of these relations in Eq. (6.31) leads to 

[H30+] 
[H2CQ3] [H2C03] , Kw 

[H30+] Al + 2 [H30+P + [H30+] 

[H2CQ3] / 2K2 \ 

[H3o+] [h3o+]7 + [H3o+] ■ 

(6.32) 

(6.33) 

Equation (6.31) and its direct descendant, Eq. (6.32), have a simple physical 

interpretation. They say that the observed [H30+] is equal to the sum of 
three separate contributions: 

(1) those molecules of H2C03 that have ionized once, represented by 

[HCOSI = 
[H2CQ3] . 

[H30+] Al’ 

(2) those molecules of H2C03 that have ionized twice, which give a con¬ 
tribution to [H30+] equal to 

2[COF] = 2 
[H2CQ3] 
[H30+P 

k,k2 ) 

(3) the contribution to [H30+] that comes from the ionization of water, 
which is equal to 

[OH-] = 
[H30+] ' 

It is important to keep the origin of each of the terms in Eqs. (6.32) and (6.33) 
in mind in order to find a way of simplifying Eq. (6.33). 

Equation (6.33) is an exact cubic equation for [H30+] including that con¬ 

tributed by the ionization of water, and we have argued that in pure solutions 
of weak acids the ionization of water is a relatively unimportant source of 
H30+. Therefore, we shall neglect IfU)/[H30+] as a first approximation. 

The term 2K1.K2[H2C03]/[H30+]2 represents H30+ contributed by acid 
molecules that have ionized twice to form C03. We can guess that this double 
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ionization is less important than the single ionization to HCO^", just by com¬ 

paring the values of Kj and K2. In the first place, K2 « K\, so the removal of 

the second proton is more difficult than removal of the first. In the second 
place, K\ itself is small, so the concentration of HCO^ will be small, and there 

will be relatively few HCOjf ions that can dissociate to form CO^. Therefore, 
we might expect to be able to neglect the second term on the right-hand side 
of Eqs. (6.32) and (6.33). 

We can justify this approximation by another argument. Consider the factor 

2K2 \ 
[H30+]y 

in Eq. (6.33). The second term in this factor represents the contribution of the 
second ionization of H2CO3 to the concentration of H30+. Is 2K2/[H30+] 

small compared to unity? We know that the solution is acidic, so that [H30+] > 
10-7 M. Therefore 

2 K2 JX 4.8 X HP11 
[h3o+] < 10-7 

10~3 « 1. 

Thus we see that if the solution is at all acidic, the contribution of the second 

ionization to the concentration of H30+ is quite small, and Eq. (6.33) reduces to 

[Hs0+1 = **• <6-34> 

But this is exactly what we would have obtained if we had started with the 
expression 

[H30+][HCQ51 _ K 
[H2C03] Al’ 

and said that [H30+] =. [HCOjj"]. In other words, if the second ionization 
constant is small enough, we can calculate the H30+ concentration by pretend¬ 

ing that we are dealing with a monobasic acid. 
Now let us check to see if this approximation is justified. Solving Eq. (6.34) 

for [H2C03] = 0.02 M gives us 

[H30+] = ([H2C03]K!)1/2 = (0.02 X 4.2 X 10-7)1'2 

= 9.2 X 10“5 M. 

Therefore, 

2K2 2 X 4.8 X 10-11 

[H30+] ~ 9.2 X 10-5 
1.0 X 10“6, 

which is much less than unity, so our simplification of Eq. (6.33) is justified. 
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Our neglect of the second ionization of H2C03 in calculating [H30+] does 

not mean that the concentration of COjf is truly zero. It can be calculated most 
easily from 

[H3o+]2[cor] 
[H2C03] 

KxK2 2.0 X IQ"17. 

We know that 

and so 

[H30+] = 9.2 X 10-5, 

[H2C03] = 2 X 10~2, 

[COr] 
2 X 10~2 

85 X 10-io X 2.0 X 10-17 

= 4.7 X 10-11 M. 

Therefore very little carbonate ion exists at equilibrium. 

We should reemphasize that the validity of neglecting the contribution of the 
second ionization to the concentration of H30+ depends on the fact that K2 « 

Ki. Should this inequality not hold, we would have to solve Eq. (6.33) by a 
method of successive approximations. 

Question. Succinic acid (CH2)2(COOH)2 is a dibasic acid with Ki = 6.5 X 10-5 and 
K2 — 3.3 X 10-6. Determine whether it is justifiable to neglect the second ionization of 
the acid in calculating the H30+ concentration in an aqueous solution of 0.1 M succinic 
acid. 

Let us set up the expression for [H30+] in a solution prepared by mixing 

comparable amounts of H2C03 and NaHC03. The charge balance equation for 
such a solution is 

[H30+] + [Na+] = [HCOi1 + 2[COT] + [OH“]. (6.35) 

At this point, we must realize that both [H2C03] and [HC03] may be large, 

and either might be guessed from the specifications of how the solution was 

made up. Therefore, we may choose to express [H30+] either in terms of 
[H2C03] or of [HCO^]- Choosing the former, we obtain from Eq. (6.35) 

[H30+] + [Na+] 
[H2C03] 0 [H2C03] 

[H30+] Ai"*"*[H30+]* 
KxK2 + 

1Y~W 

[iwT 
(6.36) 

We can now proceed to simplify this expression. On the left-hand side, 

[Na+j » [H30+] if appreciable NaHC03 was used to make up the solution. 
On the right-hand side, the last two terms may be small if K2 « Ki, and if 

[H30+] is greater than 10~7 M. Neglecting the first term on the left-hand side 
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and the last two terms on the right-hand side gives 

(6.37) 

Equation (6.37) is what we would have obtained if we had treated the mixture 

of H2C03 and NaHC03 as a simple buffer solution, neglecting the fact that 
HC03 can ionize to H30+ and COj\ The approximations used to deduce 

Eq. (6.37) may fail, but even so, Eq. (6.37) can be used to give a first approxi¬ 
mation for [H30+], which must then be refined by using Eq. (6.36). 

Question. What is the pH of a buffer solution prepared with one mole of H3PC>4 and 0.5 
mole of NaH2P04 in one liter of water? For H3PC>4, Ki = 7.5 X 10~3, K2 = 6.2 X 10-8, 
and /C3 = 1 X 10-12. 

The calculation of the concentration of H30+ in a pure solution of the salt 
NaHC03 is a problem somewhat different from those we have been treating. 

In such a solution the relevant equilibria are 

HCOT + H20 = H30+ + COT, 

HCOr + H20 = H2C03 + OH-. 

In other words, HC03 can act as either an acid or a base. Therefore, we can 

say that HC03 can react with itself according to 

2Hcor = h2co3 + cor. 
This reaction has an equilibrium constant equal to 

[H2C03][C0r] K 

[Hcor]2 

By multiplying both numerator and denominator by [H30+], and recognizing 

two familiar factors we get 

[H2CQ3][C0r][H30+] 

[H3o+][Hcor][Hcor] K! 

Therefore, if K2 <3C K\, the conversion of HC03 into H2C03 and COr will be 

relatively small. Since K2/K\ ~ 10 4, we can say that most of the HCOr 
remains as such, but that some (10%) does go to form H2C03 and COr* 

Now let us develop an exact expression for the concentration of H30+. The 

charge balance equation for this solution is 

[Na+] + [H30+] - [HCOr] + 2[COr] + [OH-], (6.38) 
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and the material balance equation is 

[NaHCOdo = [Na+] = [H2C03] + [HOOF] + [COT]. (6.39) 

Note carefully that this particular material balance equation is only valid for 
a pure solution of NaHC03. If we subtract Eq. (6.39) from Eq. (6.38), we get 

[H30+] + [H2C03] = [COr] + [OH"]- (6.40) 

We must now express [H2C03] and [CO”] in terms of [HCO^], the largest of 
the concentrations, and therefore the easiest to guess. Using the first and 
second ionization-constant expressions in Eq. (6.40) we obtain 

[Hs0+] + &Q3LHC0.1 
Ni 

^(i+ra) 

[H3o+]2 

[HCOr] J, , Kw 
a2 

[H30+]“s‘ 1 [H30+] 

[HC03 ]K2 + Kw, 

[HCOr]^2 + Kw 

1 + 
[Hcon\ 

K i J 

(6.41) 

Now, [HC03]/Ki » 1 for the usual concentrations of HC03 . Therefore, the 
denominator in Eq. (6.41) is equal to [HCO^J/Nj to a good approximation. 

Also, Kw = 10~14, but A2[HCO^] > HT11, for [HCO^] > 0.5 M, and 

under this condition the numerator in Eq. (6.41) is approximately equal to 
[HCO^]A2. Therefore, Eq. (6.41) becomes 

[H30+]2 ~ _[HC03 ]K2 

[HCO 3-]/Ai 

[h3o+] = Vk^k~2. 

KiK2, 

(6.42) 

Thus, if the concentration of HCOJ" is larger than about 0.1 M, the concentration 
of H30+ in a pure solution of NaHC03 is given by the simple expression (6.42). 

However, even though the concentration of H30+ is independent of the concen¬ 
tration of HC03 , a pure solution of NaHC03 is not a buffer solution. Should 

any strong acid or strong base be added to the solution, the material balance 

expression Eq. (6.39) becomes invalid, and therefore Eq. (6.42) no longer applies. 
A pure solution of NaHC03 or any other acid salt can be regarded as an 

equimolar mixture of a weak acid (HCO^) and a weak base (HCO^)- The 
fact that the acid and the base are the same material has no particular impor¬ 
tance. If this is true, we should be able to treat an equimolar mixture of a weak 

acid such as NH^ and a weak base like OAc- by the method we just applied 
to a pure solution of HCO^-. An equimolar solution of NH^ and OAc- would 

be obtained by dissolving the salt ammonium acetate in water. The ions then 
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hydrolyze according to 

NH+ + H20 = NH3 + H3O+ 

OAc" + H20 = HOAc + OH-. 

The charge balance equation for this system would be 

[NH+] + [H30+] = [OAc-] + [OH-]. (6.43) 

The material balance equation states that the sum of the concentrations of 

“ammonia material” must equal the sum of the concentrations of “acetate 
material”: 

[NH+] + [NH3] = [OAc-] + [HOAc]. (6.44) 

This expression is a consequence of the fact that in ammonium acetate there is 
one ammonium ion for each acetate ion. 

Subtracting Eq. (6.44) from Eq. (6.43) gives 

[H30+] + [HOAc] = [NH3] + [OH-]. (6.45) 

Now we can use the equilibrium constants for the ionization of acetic acid and 
ammonia to obtain 

. , [H30+][0Ac-] ,„tii , [OH-][NHf] Kw [NH+I 

[H0Ac] =-Kl-INHal = -Kl-= ~Kb [H^T]' 

Substitution in Eq. (6.45) then gives 

+ [H3Q+][OAc-] Ku, [NHt] , Kw 

13 J ^ Ka Kb [H30+] ^ [H30+] ’ 

[H30+]2 (l + [NH+] + Kw. 

If the salt is present in appreciable concentration, [OAc ]/Ka» 1 and 

[NH^"]/Kb » 1, we have 

[H30+12 £5^3 = [NHj-]. 
Aa Aft 

rTT ^+l2 KwKa [NHtl 
lHs0 ] -~KT iOA^J’ 

If Ka = Kb, then [NH^] = [OAc ], and 

. 1/2 
[H30+] = • (6-46) 

Equation (6.46) is analogous to Eq. (6.42) and shows that when we have an 
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equimolar mixture of a weak acid and a weak base, the concentration of H30+ 

is fixed, whether or not the acid and base are the same chemical species. 

Questions. What is the principal net reaction by which both NH4 and OAc~ are consumed? 

By using this reaction can you further justify the assertion that [NH4] = [OAc-]? Is near 
equality of Ka and Kb really a necessary condition for this assumption to hold? 

Complex Ion Equilibria 

In our analysis of multistage equilibria we have been exclusively concerned with 
the ionization of dibasic acids. However, the methods we have developed are 

applicable to other equilibria, as the following example will show. 

Mercuric chloride, HgCl2, dissolves in water and remains largely undissociated. 
Nevertheless, small amounts of HgCl+, Hg++, and Cl- are formed by 

HgCl2(aq) = HgCl+ + Cl", K, = 3.3 X 10-7, 

HgCl+ = Hg++ + Cl- K2 = 1.8 X 10“7, 

where 

_ [HgCl+][Cr] [Hg++][CI~] 
1 [HgCl2] ’ [HgCl+] 

Thus the ionization of HgCl2 is analogous to the dissociation of a dibasic acid. 
We can find an expression for [Cl-] in a pure HgCl2 solution by starting 

with the charge balance equation: 

[Cl-] = [HgCl+] + 2[Hg++]. 

Here we are neglecting [H+] and [OH-], which is essentially the same as assum¬ 

ing the solution is neutral or nearly so. The values of K\ and K2 suggest that 
HgCl2 will be only very slightly dissociated, and therefore in a pure solution 

the concentration of HgCl2 should be relatively large and easy to estimate. 
Thus we find expressions for [HgCl+] and [Hg++] in terms of [HgCl2]: 

[HgCl+] = 

[Hg++] = 

#i[HgCl2] 

[Cl-] 

K2[HgCl+] 
[C1-] 

K,K2[ HgCl2] 

[Cl-]2 

Next, we substitute these into the charge balance equation to get 

rp,-! _ #i[HgCl2] K1K2[HgCl2] 
1 J [C1-] + [Cl-]* 

gi[HgCl2] / 2K2\ 

[Cl—] V + [Cl-}) ' 
(6.47) 

Equation (6.47) is a cubic expression for [Cl ] which may be solved if [HgCl2] 
is known. 
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Let us calculate [Cl-] for a solution prepared by dissolving 0.1 mole of HgCl2 

in enough water to make one liter of solution. Then, since Kx is small, [HgCl2] = 
0.1 M. As a first approximation we neglect the term 2K2/[C1-] in Eq. (6.47) 
and get 

[Cl-]2 = XJHgCla] = 3.3 X 10-7 X 10-1, [Cl-] = 1.8 X 10-4 M. 

From this answer it appears that our approximation of letting [HgCl2] equal 

0.1 M is justified. Moreover, since 2A2/[C1-] = 1.8 X 10-3, neglect of this 
term compared to unity is also a good approximation. Thus, even though 

K i and K2 are nearly the same, the second ionization makes a negligible con¬ 
tribution to the chloride ion concentration in this pure solution of HgCl2. 

To complete the problem, we note that 

[Hg++] = K,K2 |pfl 

3.3 X 1.8 X 10-7 X 10-7 X 10-1 
3.3 X 10-8 

1.8 X 10-7d/, 

and since [Hg++] is so small, 

[HgCl+] = [Cl-] = 1.8 X 10-4 M. 

It is clear that this problem is very much analogous to the dissociation of a 
weak dibasic acid. Likewise, an equimolar mixture of HgCl2 and Hg++ [from 

Hg(X03)2] is essentially a pure solution of HgCl+ and is analogous to, and can 

be mathematically treated like, a pure solution of XaHCC>3. In other words, 
fundamentally it does not matter whether we are faced with the stepwise dis¬ 
sociation of a complex species such as HgCl2 or of a weak acid like H2C03- 

The procedures used to find the equilibrium concentrations are virtually 

identical. 

6.9 CONCLUSION 

In this chapter we have developed systematic procedures for calculating con¬ 
centrations of dissolved substances from equilibrium constants. This type of 

analysis is of practical value in a number of fields, in particular, analytical, 
inorganic, and biological chemistry. There is more to be learned from this 

subject than mechanical facility in making equilibrium calculations, however. 
The study of ionic equilibria demonstrates how approximations, made with due 

regard to the physical situation, can ease the business of solving problems. 
This is an extremely important general idea, for the quantitative problems of 

chemistry are difficult, and most often can be solved only by use of intelligent 
approximations. Therefore, the ability to sense the useful and valid approxima¬ 

tions in any problem is a valuable skill that will be used repeatedly, and study 

of ionic equilibria can help develop this ability. 
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PROBLEMS 

6.1 Electrical conductivity measurements give the solubility of barium sulfate, 

BaSC>4, in pure water as 1.05 X 10-5 mole/liter at 25°C. Calculate the solubility 
product of barium sulfate. 

6.2 Experiments show that in a saturated solution of barium fluoride, BaF2, in pure 

water at 25°C, the barium ion concentration is 7.6 X 10-3 mole/liter. What is the 

concentration of fluoride ion in this solution? What is the solubility product of barium 
fluoride? 

6.3 A saturated solution of lanthanum iodate, La(I03)3, in pure water has a concentra¬ 

tion of iodate ion equal to 2.07 X 10-3 mole/liter at 25°C. What is the concentration 

of La+3? What is the solubility product of La(IC>3)3? 

6.4 The solubility product of magnesium hydroxide, Mg(OH)2, is 1.8 X 10-11. 

What is the solubility of Mg(OH)2 in pure water? What is the concentration of OH~ 
in the saturated solution? What is the pH of this solution? 

6.5 The solubility product of lead sulfate, PbSC>4, is 1.8 X 10-8. Calculate the 

solubility of lead sulfate in (a) pure water; (b) 0.10 M Pb(N03)2 solution; (c) 1.0 X 

10~3 M Na2SC>4 solution. 

6.6 The solubility product of calcium fluoride is 1.7 X 10-1°. Calculate the solubility 

of CaF2 in a solution of 4 X 10-4 M Ca(NOs)2 to within 5% accuracy. The method 
of successive approximations is useful here. 

6.7 To a solution that contains 0.10 M Ca++ and 0.10 M Ba++, sodium sulfate is 

added slowly. The solubility products of CaSC>4 and BaSCH are 2.4 X 10-5 and 

1.1 X 10-10 respectively. What is the sulfate ion concentration at the instant the 

first solid precipitates? What is that solid? Neglect dilution and calculate the barium 

ion concentration present when the first precipitation of CaSC>4 occurs. Do you think 

it should be possible to separate Ca++ and Ba++ by selective precipitation of the 
sulfates? 

6.8 The solubility product of silver bromate, AgBrChp is 5.2 X 10-5. When 40.0 ml 

of a solution containing 0.100 .1/ AgN03 is added to 60.0 ml of a 0.200 .1/ NaBr(>3 

solution, a precipitate of AgBrOu is formed. From the stoichiometry of the reaction, 

deduce the final concentration of bromate ion. What is the concentration of Ag + 

remaining in the solution? 
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6.9 Lead iodate, Pb(I03)2, is a sparingly soluble salt with a solubility product of 

2.6 X 10-13. To 35.0 ml of a 0.150 M Pb(NO:j)2 solution, 15.0 ml of a solution of 

0.800 M KIO3 are added, and a precipitate of Pb(IC>3)2 formed. What are the con¬ 
centrations of Pb + + and IO“ left in the solution? 

6.10 Formic acid, HCO2H, loses one proton upon ionization and has a dissociation 

constant of 1.8 X 10-4 at 25°C. Calculate the concentrations of HCO2H, H30+, 

HCO-, and OH- in (a) a solution made by adding 1.00 mole of HCO.,H to enough pure 

water to make 1.00 liter of solution; (b) a solution made by adding 1.00 X 10-2 mole 

of HCO2H to sufficient water to make 1.00 liter of solution. Indicate the approxima¬ 

tions made, and show that they are justified. Obtain answers that are within 5% of 

the exact values. 

6.11 Ammonia, NH3, produces hydroxyl ions in aqueous solution according to the 

reaction 

NH3 + H20 = NH4 + OH- 

which has an equilibrium constant of 1.80 X 10-5. Calculate the concentrations of 

NH3, NH^, H30+, and OH- in (a) a solution prepared from 0.010 mole of ammonia 

and 1.00 liter of water; (b) a solution prepared from 1.00 X 10-4 mole of ammonia and 

enough water to make 1.00 liter of solution. Check the validity of all approximations, 

and refine the answers by successive approximation until you feel you are within 5% 

of the exact answer. 

6.12 Calculate the concentrations of H3O4", HOAc, and OAc-, and OH- in a solution 

that is prepared from 0.150 mole of HC1, 0.100 mole HOAc, and enough water to make 

1.00 liter of solution. The dissociation constant for HOAc is 1.85 X 10-5, and HC1 

is totally dissociated in aqueous solution. 

6.13 In dilute aqueous solution sulfuric acid can be regarded as totally dissociated 

to H30+ and HSO^. The bisulfate ion, HSO^-, is itself a weak acid with a dissociation 

constant of 1.20 X 10-2. Calculate the concentration of H30+, HSO^~, SO|“, and 

OH- in a solution prepared by dissolving 0.100 mole of H2SO4 in enough water to 

make 1.00 liter of solution. 

6.14 To 1 liter of a solution containing 0.150 .1/ NH4CI there is added 0.200 mole of 

solid NaOH. What are the ionic and molecular species that are in major concentration 

when equilibrium is reached? Calculate the concentrations of NH3, OH-, and NH^ 

at equilibrium if the dissociation constant for ammonia is 1.8 X 10-s. 

6.15 Consider aqueous solutions of a strong (totally dissociated) acid such as HC1. 

At high concentrations, the acid itself is the only important source of H30+, but at 

concentrations near 10-7 .1/ and below, the ionization of water contributes appreciably 

to the concentration of H3O4". Use the charge balance expression and the relation 

[H.30+][OH-] = Kw to derive an exact equation for the concentration of H3O4". 

6.16 Calculate the hydrolysis constant for the reaction 

HCO-+ H20 = HC02H+ OH-, 

and find the concentrations of H30+, OH , HC02 , and HC02H in a solution of 
0.15 .1/ HCOaNa. The dissociation constant of formic acid is 1.8 X 10-4. 
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6.17 The dissociation constant of HCN, hydrocyanic acid, is 4.8 X 10-10. What 

is the concentration of H30+, OH-, and HCN in a solution prepared by dissolving 

0.160 mole of NaCN in 450 ml of water at 25°C? 

6.18 Calculate the solubility of FeS in a saturated solution of H2S which has a 

concentration of H30 + equal to 1.0 X 10-3 M. The equilibrium constant for the 

dissociation of H2S by the reaction 

H2S+ 2H20 = 2H30 + + S- 

is 1.1 X 10-21. 

6.19 Calculate the solubility of lead sulfate in a solution of 0.100 M H30 + by taking 

account of the reaction 

HSO^ + H20 = H30 + + SO“. 

The solubility product for PbSCU is 1.8 X 10-8. Be sure to justify all approximations. 

6.20 The solubility of Mg(OH)2 is increased by the addition of ammonium salts due 

to the reaction 

Mg(OH)2(s) + 2NH + = 2NH3 + 2H20 + Mg++. 

Calculate the equilibrium constant for this reaction if the solubility product of 

Mg(OH)2 is 5.5 X 10-12, and the basic dissociation constant of ammonia is 1.8 X 10-5. 

Find the solubility of Mg(OH)2 in a solution that contained 1.00 4/ NH4CI before 
addition of Mg(OH)2. Refine the answer to within 5% of the exact value. 

6.21 A solution is prepared by dissolving 0.200 mole of sodium formate, HC02Na, 

and 0.250 moles of formic acid, HCO2H, in approximately 200(±50) ml of water. 

Calculate the concentrations of H30+ and OH-. The dissociation constant of formic 

acid is 1.8 X 10-4. 

6.22 Into 1.00 liter of a solution of 0.250 M HC1 is placed 0.600 mole of solid sodium 

acetate. Assume that no volume change occurs, and calculate the concentration of 

OAc-, HOAc, H30+, and OH-. 

6.23 A solution of an unknown acid was titrated with base and the equivalence point 

reached when 36.12 ml of 0.100 M NaOH had been added. Then 18.06 ml of 0.100 M 

HC1 were added to the solution and the measured pH was found with a pH meter to 

be 4.92. Calculate the dissociation constant of the unknown acid. 

6.24 Consider a solution of carbonic acid, whose initial concentration is 0.04 M 

H2C03. A certain amount of base is added until the pH of the solution reaches 5. 
The first and second ionization constants of carbonic acid are 4.2 X 10-7 and 4.8 X 
10-11 respectively. Calculate the following concentration ratios: [HCO^"]/[H2C03], 
[CO^]/[HCO^], [CO^]/[H2C03]. Calculate the fraction of the total carbonate material 
that is present as H3C03 at pH 5. Similarly, calculate the fraction of the total car¬ 
bonate material that is present as HCOg" and as COj° at this pH. Repeat the calcula¬ 
tions for pH 7, pH 9, and pH 11, and plot for each species the fraction present as a 
function of pH. 

6.25 From the second ionization constant of carbonic acid, calculate the equilibrium 
constant for the hydrolysis of carbonate ion to the bicarbonate ion, HCO.^. From 
this, compute the bicarbonate and hydroxide ion concentrations in a 0.050 M Na2C03 
solution. Is the hydrolysis of HCOj" to H2C03 important in this instance? Why? 
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6.26 Find the concentrations of H30+ and OH in a solution prepared by adding 
0.250 mole of Na2C03 and 0.300 mole of NaHC03 to 250 ml of water. 

6.27 A carbonate buffer solution is prepared by dissolving 30.0 gm of Na2C03 in 
350 ml of water and adding 150 ml of 1.00 4/ HC1. Calculate the pH of the solution. 

6.28 An unknown student takes an unknown weight of an unknown weak acid, dis¬ 
solves it in an unknown amount of water, and titrates it with a strong base of unknown 
concentration. When he has added 10.00 ml of base he notices that the concentration 
of H30 + is 1.0 X 10-5 4/. He continues the titration until he reaches the equivalence 
point for removal of one proton. At this time his buret reads 22.22 ml. What is the 
dissociation constant of the acid? 

6.29 A solution is prepared by adding 2.05 gm of sodium acetate, NaC2H302, to 
100 ml of 0.100 M HC1 solution. What is the resulting concentration of H30+? 
A subsequent addition of 6.00 ml of 0.100 4/ HC1 is made. What is the new concen¬ 
tration of H30+? 

6.30 Cuprous ion forms an ammonia complex which dissociates in stages, according 
to the reactions 

Cu(NH3)2 = Cu(NH3) + +NH3, Ai = 2 X 10-5, 

Cu(NH3)+ = Cu++ NH3, A2 = 6 X 10-7. 

Consider now a pure solution of Cu(NH3)2C1. (a) Give the relation between the con¬ 
centrations of NH3, Cu(NH3)+, and Cu+. (b) Use this relation to express the concen¬ 
tration of NH3 as a function of the concentration of Cu(NH3)^ and various constants, 
(c) Calculate the concentration of ammonia in a solution of 0.01 4/ Cu(NH3)2C1 to a 
first approximation. Are further approximations necessary to obtain 5% accuracy? 

6.31 The three dissociation constants for the successive ionization of phosphoric 
acid, H3P04, are K\ = 7.5 X 10-3, A2 = 6.2 X 10-8, and A3 = 1 X 10-12. From 
the equilibrium constants, determine the principal species of phosphate material 
(H3P04, H2PO“, HPO=, or PO“3) at the following values of the pH: 1, 5, 10, 14. 
What is the pH of a solution of equimolar H3PC>4 and H2PO^? Is the fraction of 
phosphate material present as HPO^ and PO^"3 important in such a solution? 

6.32 What is the concentration of H30+ in a pure solution of: (a) Na^PCU; 
(b) Na2HP04; (c) 1 4/ Na3P04? 

6.33 What is the concentration of H30 + in a solution prepared by adding to 300 ml 
of 0.500 4/ H3P04 (a) 250 ml of 0.300 4/ NaOH; (b) 500 ml of 0.500 4/ NaOH; 
(c) 40 ml of 1.00 4/ NaOH? 

6.34 A solution contains a mixture of two weak acids, 0.05 4/ HA and 0.01 4/ HB, 
which have dissociation constants of 2 X 10~5 and 6 X 10 5, respectively. Find the 
charge balance equation for this system, and use it to derive an expression which gives 
the concentration of H30+ as a function of the concentrations of HA and HB and 
various constants. What is the concentration of H30+ in this solution? 
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CHAPTER 7 

OXIDA TION-REMJCTION 
REACTIONS 

In Chapter 6 we pointed out that acid-base reactions form a large class of 
chemical processes that have in common the act of proton transfer. There is an 
ecjually large and important group of reactions that all involve electron transfer 
in either an obvious or subtle way. We are referring, of course, to oxidation- 
reduction reactions. Tor instance, 

Zn + Cu++ = Zn++ + Cu (7.1) 

is an example of an oxidation-reduction reaction in which the feature of electron 
transfer is clear, while 

2CO + 02 = 2C02 

is also an oxidation-reduction reaction, but one in which electron transfer is not 
so obvious. 

One might ask how the term “oxidation” became generalized so as to apply 
to reactions in which electrons were transferred, regardless of whether oxygen 
was involved. Once it is recognized that in the oxidation 

Zn -j- ^02 = ZnO, 

each zinc atom has lost two electrons and has become a zinc ion Zn++, and 
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that the same change occurs in 

Zn CI2 = ZnCl2, 

Zn + 2H+(aq) = Zn++(aq) + H2, 

then it seems logical to refer to all processes in which zinc loses electrons as 

oxidations. The same argument can be applied to the reactions of any substance, 
and so it is a useful generalization to say that a chemical substance is oxidized 
when it loses electrons. 

The loss of electrons by one substance must be accompanied by the gain of 
electrons by some other reagent, and this latter process is called reduction. 

In reaction (7.1) the metallic zinc is oxidized to Zn++, and Cu++ is reduced to 
metallic copper. It is common to call the substance that brings about the reduc¬ 

tion of another a reducing agent or a reductant, and the substance responsible 
for oxidizing another is called an oxidizing agent or an oxidant. In reaction (7.1), 

zinc is a reductant (and is oxidized) and Cu++ is an oxidant (and is reduced). 

7.1 OXIDATION STATES 

The oxidation state concept is derived from the necessity to describe the changes 
brought about by oxidation-reduction reactions. For simple monatomic sub¬ 

stances, it is convenient and direct to define the oxidation state or oxidation 
number as the atomic number of the atom minus the number of orbital elec¬ 

trons, or more simply, as the net charge on the atom. Thus the oxidation states 

of S=, Cl-, Cu+, Co++, and Fe+3 are —2, —1, +1, +2, and +3 respectively. 
The oxidation state of an element in any of its allotropic forms is always zero. 

While there is a direct relation between oxidation state and the net charge 

on a monatomic species, the extension of the oxidation state concept to poly¬ 

atomic species is less clear-cut. We might ask what the oxidation state of each 
atom in H20 or XOJ' is, for example. If we insist that the oxidation state is 

the actual charge on an atom in a molecule, then to assign oxidation states would 
at the very least require a detailed knowledge of the exact charge distribution 
in the molecule. This information is virtually never available. However, we 

can extend the oxidation state concept to polyatomic systems if we abandon 

the idea that the oxidation state is the true charge on an atom. We have only 
to decide arbitrarily that in a compound such as NO, the oxygen atom will be 

assigned an oxidation state of —2, just as it is in the compound ZnO. This is 
equivalent to saying that the oxygen atom in NO is arbitrarily assigned 10 of 

the 15 electrons in the molecule. The nitrogen atom must be assigned 5 elec¬ 
trons, 2 less than its atomic number, and consequently it has an oxidation state 

of +2. 
The assignment of —2 as the oxidation state of the oxygen atom in NO was 

arbitrary, and we must not suppose that there is actually a charge of —2 on 

the oxygen atom, and a T2 charge on the nitrogen atom. Indeed, the experi¬ 

mental evidence is to the contrary, and indicates that the 15 electrons are 

7.1 OXIDATION STATES 257 



nearly equally distributed around the two nuclei. However, even though the 
assignment of oxidation numbers in polyatomic molecules is an arbitrary pro¬ 

cedure, and may have very little to do with the actual charge distribution in 

these species, it is still useful, as we shall see. Here then is the set of rules used 

to assign oxidation states in polyatomic molecules: 

1. The oxidation state of all elements in any allotropic form is zero. 

2. The oxidation state of oxygen is —2 in all its compounds except peroxides 

like H202 and Na202. 

3. The oxidation state of hydrogen is +1 in all its compounds except those with 

the metals, where it is — 1. 

4. All other oxidation states are selected so as to make the algebraic sum of the 

oxidation states equal to the net charge on the molecule or ion. 

It is also useful to remember that certain elements almost always display the 

same oxidation state, +1 for the alkali metals, +2 for the alkaline earth metals, 

and —1 for the halogens, except when they are combined with oxygen. 
As an illustration of the application of these rules, let us deduce the oxidation 

states of Cl and N in the ions CIO-, NO^“, and NO^- In the case of CIO-, we 
first assign oxygen an oxidation state of —2, and then deduce the value for 

chlorine by rule 3: 

oxidation state of O -f- oxidation state of Cl = —1, 

—2 + oxidation state of Cl = —1, 

oxidation state of Cl = — 1 + 2 = -fl. 

By a similar procedure we can decide that in NO^~ the oxidation state of nitrogen 

is +3, and in NOJf, it is +5. 
To see one of the uses of oxidation numbers, consider the reaction 

CIO- + noj- = NO^ + Cl-. 

The net charge on the chlorine and nitrogen containing ions is the same in 

products and reactants; so if this reaction is an oxidation-reduction process, 
the feature of electron transfer is not at all obvious. In fact, one might look 

upon this reaction as an oxygen atom transfer from CIO- to NO^\ However, 
by using oxidation numbers we can see that chlorine has been reduced from the 

+1 state in CIO- to the —1 state in Cl-, while nitrogen has been oxidized from 

the +3 state in NO^ to the +5 state in NOJ\ 
Contrast this example with the reaction 

2CC14 + K2Cr04 = 2C12C0 + Cr02Cl2 + 2KC1. 

Is this an oxidation-reduction reaction? The introduction of oxygen into a 

carbon compound certainly makes it look so. To be sure, let us calculate the 
oxidation state of chromium in K2Cr04 and Cr02Cl2. In the first instance we 
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need consider only the ion CrO^- Assignment of —2 to the four oxygen atoms 

means that chromium must have an oxidation number of +6, if the net charge 
on the ion is —2. In chromvl chloride, Cr02Cl2, assignment of —2 to each 
oxygen atom and —1 to each chlorine atom requires that the chromium ion 

again be in the +6 oxidation state. Therefore, chromium has not changed its 
oxidation state in the reaction. By following the convention that the oxidation 
state of chlorine is —1 except when it is combined directly with oxygen, we 

conclude that chlorine has not changed its oxidation state in the reaction. 
Finally, carbon has remained in the same oxidation state, +4 in CC14 and +4 
in Cl2CO. Thus the reaction is not an oxidation-reduction process. 

These two examples show us that one of the important uses of the oxidation 
state concept is to provide an electron bookkeeping device that allows us to 
recognize an oxidation-reduction reaction. A second use of the concept is to 

provide a framework within which chemical similarities may be recognized and 

chemical properties correlated. For example, the acidic properties of the transi¬ 
tion metal ions in the +2 state are quite similar, and the same may be said for 
the —3 ions. However, the +3 ions as a group are distinctly more acidic than 

the +2 ions, and this increase of acidity with oxidation number is found quite 

generally in the chemistry of other elements. In our study of the descriptive 
chemistry of the elements we shall find other examples of the correlation 
between chemical behavior and oxidation state. Finally, the oxidation state 
concept is useful in balancing the equations of oxidation-reduction reactions, 

as we shall see later in this chapter. 

7.2 THE HALF-REACTION CONCEPT 

A most remarkable feature of oxidation-reduction reactions is that they can 

be carried out with the reactants separated in space, and linked only by an 
electrical connection. Consider Fig. 7.1, an illustration of a galvanic cell which 

involves the reaction between metallic zinc and cupric ion: 

Zn(s) + Cu++(aq) —> Cu(s) + Zn++(aq). 

The cell consists of two beakers, one of which contains a solution of Cu++ and 

a copper rod, the other a Zn++ solution and a zinc rod. A connection is made 
between the two solutions by means of a “salt bridge,” a tube containing a 

solution of an electrolyte, generally XH4XO3 or KC1. Flow of the solution 
from the salt bridge is prevented either by plugging the ends of the bridge with 
glass wool, or by using a salt dissolved in a gelatinous material as the bridge 

electrolyte. When the two metallic rods are connected through an ammeter, 
there is immediately evidence that a chemical reaction is occurring. The zinc 

rod starts to dissolve, and copper is deposited on the copper rod. The solution 
of Zn++ becomes more concentrated, and the solution of Cu++ becomes more 

dilute. The ammeter indicates that electrons are flowing from the zinc rod to 

7.2 THE HALF-REACTION CONCEPT 259 



COT 

FIG. 7.1 A galvanic cell. 

Cu++(aq) 
SOjTaq) 

the copper rod. This activity continues as long as the electrical connection and 

the salt bridge are maintained, and visible amounts of reactants remain. 
Now let us analyze what happens in each beaker more carefully. We note 

that electrons flow from the zinc rod through the external circuit, and that 

zinc ions are produced as the zinc rod dissolves. We can summarize these 

observations by writing 

Zn = Zn++(aq) -f- 2e (at the zinc rod). 

Also, we observe that electrons flow to the copper rod as cupric ions leave the 
solution and metallic copper is deposited. We can represent these occurrences by 

2e + Cu++(aq) = Cu (at the copper rod). 

In addition, we must examine the purpose of the salt bridge. Since zinc ions 
are produced as electrons leave the zinc electrode, we have a process which tends 

to produce a net positive charge in the left beaker. Similarly, the arrival of 
electrons at the copper electrode and their reaction with cupric ions tends to 

produce a net negative charge in the right beaker. The purpose of the salt 
bridge is to prevent any net charge accumulation in either beaker by allowing 

negative ions to leave the right beaker, diffuse through the bridge, and enter the 
left beaker. At the same time, there can be a diffusion of positive ions from left 

to right. If this diffusional exchange of ions did not occur, the net charge 
accumulating in the beakers would immediately stop the electron flow through 

the external circuit, and the oxidation-reduction reaction would stop. Thus, 
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while the salt bridge does not participate chemically in the cell reaction, it is 
necessary if the cell is to operate. 

The analysis of the operation of this galvanic cell quite naturally suggests 
that the overall oxidation-reduction reaction can be separated into two half¬ 
reactions: 

Zn = Zn++ + 2e“ oxidation 
2e— + Cu++ = Cu reduction 

Zn + Cu++ = Zn++ + Cu 

Many other oxidation-reduction reactions can be carried out successfully in 

galvanic cells, and it is natural to think of these cell processes as separated 
into the half-reactions which occur at the two electrodes. However, any oxida¬ 

tion-reduction reaction occurring under any circumstances can be conceptually 
separated into half-reactions. The benefits are these: 

1. The half-reaction concept can aid greatly in the balancing of oxidation- 

reduction equations. 

2. Half-reactions form the framework used to compare the strength of various 

oxidizing and reducing agents. 

In the next two sections we shall examine these items in detail. 

7.3 BALANCING OXIDATION-REDUCTION REACTIONS 

The “half-reaction method” of balancing oxidation-reduction equations con¬ 

sists of four steps: 

1. Identifying the species being oxidized or reduced. 

2. Writing separate half-reactions for the oxidation and reduction processes. 

3. Balancing these half-reactions with respect to atoms and electrical charge. 

4. Combining the balanced half-reactions to form the overall net oxidation- 

reduction reaction. 

We shall illustrate these steps by balancing the equation for the reaction 

H2O2 I —> I2 + H2O, 

which occurs in an acidic aqueous solution. 
Use of oxidation numbers tells us immediately that the iodide ion is oxidized 

from the —1 state to elemental iodine, whose oxidation number is zero. Similarly, 

the oxidation state of oxygen in H2O2 is —1, while in H20 it is —2, so that 

hydrogen peroxide is being reduced to water. Therefore, we have 

I- —> I2, oxidation, 

H2O2 —> H20, reduction. 
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With the oxidation and reduction processes identified, and “skeleton” half¬ 

reactions written, we pass to the third step of the balancing procedure. We can 

balance the oxidation of iodide chemically by writing 

21- -> I2, 

but this is still not a balanced equation, since the net charge on the reactants 
and products is not the same. However, the oxidation process amounts to 

removing one electron from each of two iodide ions, so we have 

21 = I2 -|- 2e , 

as a half-reaction balanced with respect to atoms and net charge. 
We can start balancing the reduction process by writing 

H202 —> 2H20, 

which balances with respect to oxygen atoms, but not with respect to hydrogen 
atoms. We must add some form of hydrogen to the left-hand side; the problem 

is to decide on the appropriate reagent. Examination of the overall reaction 

shows that hydrogen appears only in the -f 1 state in both reactants and products. 
Since hydrogen is not oxidized or reduced in the reaction, any hydrogen we 

introduce in balancing the half-reactions must be in the +1 state. Since the 

reaction occurs in acidic aqueous solution, protons are available, so we can 

write* 

2H+ + H202 -> 2H20, 

which balances the half-reaction chemically, but not electrically, since the net 

charge on each side is not the same. We can remedy this by adding two elec¬ 
trons to the left-hand side to obtain 

2e -f- 2H+ -)- H202 — 2H20, 

which is the balanced half-reaction for the reduction process. 

Before we carry out step 4, we note that in balancing the separate half¬ 

reactions, we made use of the general requirements of atom and charge conserva¬ 
tion, but did not use the oxidation number concept. Let us see whether the 

numbers of electrons introduced into these half-reactions on the basis of charge 

balance are consistent with the changes in oxidation numbers. In the oxidation 
of iodide ion to iodine, the oxidation number change is from —1 to 0 for each 

of two iodine atoms, and this is consistent with the two electrons appearing on 
the right-hand side of the half-reaction. In the reduction of hydrogen peroxide, 

each of two oxygen atoms is reduced from the —1 to the —2 state, which means 

* Here we are reverting to the practice of writing the aqueous proton simply as H+ 
instead of H30+. This procedure simplifies the appearance of oxidation-reduction 
equations by decreasing the number of water molecules that must be written. 
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that two electrons are needed for each hydrogen peroxide molecule, as we have 

found already. Therefore the half-reactions we have written are consistent with 
the principles of atom and charge conservation and our conventions regarding 
oxidation states. 

To write a balanced net reaction, we must combine the two half-reactions so 
that electrons do not appear as reactants or products. This can be done very 

simply in our present example; we merely add the two half-reactions as they 
stand: 

21- = I2 + 2e~ 
2e~ + 2H+ + H2Q2 = 2H2Q 

2H+ —)— 21 -f- H202 = 2H20 -f- I2 

Since each half-reaction was balanced chemically and electrically, so is the net 
reaction. 

The use of half-reactions permits us to balance equations using only the 
principles of atom and charge conservation, and to reserve oxidation numbers 

for use as a check on our work. As a more challenging example of the procedure, 
consider 

Benzaldehyde Benzoic acid 

It might be rather tedious to compute the oxidation numbers in benzaldehyde 
and benzoic acid, and we do not need to do so in order to balance the equation. 

We start with 
C6H5CHO -» C6H5COOH 

and balance chemically by writing 

C6H5CHO + H20 -> C6H5COOH + 2H+, 

which is a way of introducing the oxygen atom in the —2 state required on the 
left-hand side. The charge balance requirement results in two electrons appear¬ 

ing on the right-hand side, so the completed half-reaction is 

C6H5CHO + H20 = C6H5COOH + 2H+ + 2e“. 

To check, we note that the sum of the oxidation numbers of seven carbon atoms 
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in C6H5CHO must be —(6 — 2) = —4, since there are six hydrogen atoms in 

the 41 state and one oxygen atom in the —2 state, and the molecule is un¬ 
charged. Similarly, the sum of the oxidation numbers of the seven carbon atoms 

in C6H5COOH is —(6 — 4) = —2, since there are two oxygen atoms in the —2 

state in benzoic acid. Therefore the net change in the oxidation numbers of the 
carbon atoms is —2 + 4 = +2, which means that the molecule loses two 

electrons as it is oxidized. This is consistent with the way in which our half¬ 

reaction is written. 

To complete the example, we must balance 

Cr204 -> 2Cr+3. 

Introducing H+ on the left and H20 on the right gives 

14H+ 4- Cr204 -> 2Cr+3 4- 7H20. 

To balance the half-reaction electrically we need 6 electrons on the left-hand 

side, so we get 

6e- + 14H+ + Cr204 = 2Cr+3 4- 7H20. 

Finally, to eliminate electrons from the overall reactions we must add the two 

half-reactions as follows: 

3 X [C6H5CHO + H20 = C6H5COOH + 2H+ + 2e-] 

1 X [6e~ 4- 14H+ 4- Cr204 = 2Cr+3 + 7H2Q]_ 

3C6H5CHO + Cr204 4- 8H+ = 3C6H5COOH + 2Cr+3 + 4H20 

Our two examples have shown that in order to achieve material balance 

with respect to oxygen in the —2 state and hydrogen in the 4-1 state, we may 
introduce protons and water molecules as needed on either side of the half¬ 

reactions. This is true as long as the reaction being balanced is taking place in 
acidic aqueous solution. However, for reactions which occur in basic solution, 

the procedure is slightly different, as we shall see from our next example. We 

shall balance 

CIO- + CrO^~ —> CrOiT + Cl- (basic solution). 

The half-reaction involving chlorine is 

CIO- -> Cl-. 

Oxygen in the —2 state must appear in the products, and since we are dealing 

with a basic solution we might introduce it either as OH- or H20. In order to 
avoid deciding which should be used, we first use oxidation numbers to decide 

how many electrons must appear, then use charge balance to decide where and 
how much OH- must be used, and finally complete the balancing by adding 

H20 where required by the atom conservation principle. 
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Thus, we say that the reduction of chlorine from the +1 state in CIO to 

the —1 state in Cl- requires two electrons on the left-hand side of the equation: 

2e“ + CIO- -> Cl“. 

It is now clear that to achieve charge balance, we must add OH- to the right- 
hand side: 

2e“ + CIO- -* Cl“ + 20H-. 

Finally, chemical balance is reached by adding water to the left-hand side, 
which gives 

2e“ + H20 + CIO" = Cl- + 20H-. 

It is true that we might have started with 

CIO- -> Cl- 

and immediately achieved chemical balance by adding a water molecule to the 
left, and two hydroxide ions on the right: 

CIO" + H20 -» Cl- + 20H- 

Then by charge balance two electrons are required on the left, and the balanced 

half-reaction results, without the use of oxidation numbers. However, the 
immediate introduction of OH- and H20 is often a confusing procedure, and, 

as we have pointed out, it can be simplified by using oxidation numbers in the 
balancing process. 

To finish the problem, we balance 

CrOjf —* CrO^, 

by noting that the chromium atom changes from the +3 to the +6 state, so 

three electrons are required on the right: 

CrOJ' -* CrOT + 3e-. 

Charge balance requires that 40H- must appear on the left to give 

40H- + CrO^ -* CrOT + 3e_, 

while material balance requires 2H20 on the right: 

40H- + CrOr = CrOT + 2H20 + 3e~. 

To obtain the net reaction, we combine the half-reactions by writing 

3 X [2e + H20 + CIO- = Cl- + 20H-] 

2 X [4QH~ + CrOr = CrOT + 2H2Q + 3e~] 

20H- + 3C10- + 2CrOr = 3C1“ + 2CrOr + H20 
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As our final example, we choose a disproportionation reaction, where one 
substance is both oxidized and reduced: 

P4 + OH" -> PH3 + H2P02“. 

The oxidation process is 

P4 -> 4H2POr. 

In the hypophosphite anion, H2PO^, phosphorus is in the TT oxidation state, 
so that four electrons must be produced in the half-reaction as written: 

P4 —* 4H2P02 -|- 4e . 

We need only add 80H~ to the left-hand side to achieve charge and chemical 
balance: 

80H- + P4 = 4H2POJ“ + 4e” 

The reduction reaction is 

P4 -+ 4PH3. 

Since phosphorus changes from the 0 state to the —3 state, 12 electrons are 
needed on the left-hand side and 12 hydroxide ions must be added to the right- 
hand side of the equation. This gives us 

12e“ + 12H20 + P4 = 4PH3 + 120H~ 

when the reaction is balanced chemically. To obtain the net reaction we write 

3 X [80H~ + P4 = 4H2POr + 4e'] 
1 X [12e~ + 12H2Q + P4 - 4PH3 + 12QH~] 

120H- + 4P4 + 12H20 = 12H2PO^ + 4PH3 

The four examples we have discussed illustrate most of the difficulties that 
can arise in balancing oxidation-reduction equations. 

7.4 GALVANIC CELLS 

In Section 7.2 we used the qualitative features of galvanic cells to show the 

natural origin of the half-reaction concept. In this section we shall discuss 
electrochemical cells more thoroughly to see how they can be used to give us a 
quantitative comparison of the strengths of oxidizing and reducing agents. 

First let us examine a few of the common types of electrodes that are used in 

galvanic cells. Very often the electrodes are metals that are “active” in the 
operation of the cell. That is, the metallic electrodes are dissolved or formed 

as the cell reaction proceeds. As an example, we already have the zinc and 
copper rod electrodes which are respectively consumed and formed as the 
reaction 

Zn + Cu++ = Zn++ + Cu 

runs from left to right. 
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Also common are inert or “sensing” electrodes which are left unchanged by 
the net cell reaction. For example, consider the cell shown in Fig. 7.2. In the 

left beaker there is a mixture of ferrous and ferric ion solutions and a platinum 
strip, while in the right beaker there is the familiar copper electrode in contact 

with a solution of cupric ion. As the cell operates, copper metal is oxidized and 
ferric ion is reduced: 

Cu + 2Fe+3 = 2Fe++ + Cu++. 

Thus at the platinum electrode, ferric ions acquire electrons and become ferrous 
ions, while the electrode remains unchanged. In order to remain unchanged by 

the cell reaction, the electrode must be made of inert material; platinum and 
carbon are the two substances most commonly used. 

A galvanic cell. The half-cell on the 
left makes use of a platinum strip as 
an inert sensing electrode. 

FIG. 7.2 

A third common type is called a “gas electrode” and is actually quite closely 
related to the inert electrode just discussed. Figure 7.3 shows a hydrogen gas 
electrode operating in conjunction with a copper half-cell. The overall cell 
reaction in this case is 

H2(g) + Cu++(aq) = Cu(s) + 2H+(aq). 

The hydrogen gas electrode is a piece of platinum whose surface is saturated 

by hydrogen gas at 1-atm pressure. The surface of the electrode serves as a 
place where hydrogen molecules can be converted to protons by the reaction 

H2(g) = 2H+(aq) + 2e“. 
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Depending on the direction of the overall cell reaction, the reverse process may 

also occur at the gas electrode. Thus the platinum metal itself is left unchanged, 
and serves to deliver or remove electrons as needed. In order to increase the 

rate at which oxidation or reduction can occur, the surface area of the gas 
electrode is increased by the deposition of finely divided platinum. 

Now we return to the cell made up of the zinc and copper half-cells shown in 

Fig. 7.1, and this time imagine the electrodes connected to the terminals of a 
voltmeter. A few experiments would show that at a constant temperature, the 

voltage of the cell is a function of the ratio of the concentrations of the zinc and 
cupric ions. If the temperature is 25°C, and the concentrations are equal, the 

voltmeter reads 1.10 volts. If the zinc ion concentration is increased, or the 

concentration of cupric ion decreased, the voltage decreases, and vice versa. 

FIG. 7.3 A galvanic cell in which the 
half-cell on the left uses a 
hydrogen gas electrode. 

H2 — 

H+(aq) 
SOjtaq) 

Let us now imagine the copper-cupric ion half-cell replaced by a half-cell 
consisting of a silver wire immersed in a solution of silver nitrate. Once again 

experiments would show us that the voltage of the cell depends on the ratio of 

the ion concentrations, and when these are equal, the cell potential is 1.56 volts. 
This is substantially larger than the voltage produced by the zinc-copper cell 

operating under the same concentration conditions. Thus we see that the 
voltage of a galvanic cell is characteristic both of the chemical substances in¬ 

volved in the cell reaction and of their concentrations. To facilitate comparison 
of different galvanic cells, each should be characterized by a voltage measured 

under some set of standard conditions of concentration and temperature. The 

268 OXIDATION-REDUCTION REACTIONS | 7.4 



standard conditions that have been chosen are 1-71/ concentration* for all dis¬ 

solved materials, 1-atm pressure for all gases, and for solids, their most stable 
form at 25°C. The voltage measured under these conditions is called the stand¬ 
ard cell potential, and is given the symbol AS0. 

The standard cell potential is a very useful and important quantity. In the 
first place, AS0 in part determines the amount of work that the galvanic cell 

can do when it is operating under standard conditions. Imagine that the ter¬ 
minals of the cell are connected to an electric motor of 100% efficiency. Then, 

when a current i flows through the voltage difference AS0 for a time t, the work 
performed is 

AS0 X i X t = electrical work, 

and since the product of current and time is the total charge q passed, 

AS0 X q = electrical work. 

Thus the work which an electrochemical cell can do is given by the product of 

its voltage and the amount of charge it can pass. When a cell operates under 

standard conditions, its voltage AS0 depends only on the chemical nature of 
the reactants and products. On the other hand, the amount of charge q that a 
given cell can deliver depends on the amount (not the concentration) of material 

available for the cell reaction. Therefore, of the factors that determine the 
ability of an electrochemical cell to do work, only AS0 is directly related to the 

chemical nature of the reacting species. 
The most important aspect of the standard cell potential is that it can be 

taken as a quantitative measure of the tendency of reactants in their standard 
states to form products in their standard states. In short, A8° represents the 

driving force of the chemical reaction. Figure 7.4 demonstrates the sense of this 
statement. A zinc-copper standard cell, whose AS0 is 1.10 volts, is connected to 

an independent, variable voltage supply such that the variable voltage opposes 
the cell voltage. An ammeter indicates the direction of the flow of electrons. 

When the variable voltage is less than 1.10 volts, the ammeter shows that 

electrons flow from the zinc electrode through the external circuit to the copper 

electrode. Therefore the spontaneous cell reaction under these conditions is 

Zn + Cu++ -> Cu + Zn++, 

just as it is when the electrodes are connected by a direct wire, or when metallic 

zinc is added to a solution of cupric ion. 
If the variable voltage is increased, we find that when it reaches 1.10 volts, 

no current flows through the ammeter, and no net cell reaction occurs. The 

chemical “driving force” causing reactants to go to products is opposed by an 

* Actually, not 1 molar but 1 molal. However, the difference between the two is small 
and can be neglected for our purposes. 
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Variable Variable 

fig. 7.4 The effect of opposing a cell with an external variable voltage. In (a) the external voltage 
is less than the cell voltage and electron flow is in the clockwise direction. In (b) the 
external voltage exceeds the cell voltage and the electron flow is reversed. 

external electromotive force of equal magnitude. As the variable voltage is 

increased further and becomes greater than 1.10 volts, the ammeter shows that 
the direction of the electron flow is from the copper electrode to the zinc elec¬ 

trode. Therefore, copper is being converted to cupric ion, and zinc ion to zinc 
metal, so the cell reaction is 

Cu + Zn++ —► Cu++ + Zn. 

This is just the reverse of the spontaneous reaction of a short-circuited cell. 
It seems reasonable to take the cell potential as a measure of the chemical 

driving force of the reaction, for when the cell is opposed by a numerically 

greater electromotive force, the spontaneous cell reaction is reversed, and an 

“electrolysis” occurs. However, we must be careful to remember that at best 

the standard cell potential measures the tendency of reactants in their standard 
states to form products in their standard states, and that the driving force of the 
reaction for any other states of the reactants and products will in general be 
different. 

We have been emphasizing the significance of the magnitude of the standard 
cell potentials, and now we must introduce the convention concerning the sign 
of A8°. If a reaction proceeds spontaneously from left to right as written, its 
AS0 is given a positive sign, as in 

Zn + Cu++ = Cu + Zn++, A8° = +1.10 volts. 
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If the spontaneous direction is from right to left, AS0 is given a negative sign. 
Therefore we would have 

Cu -f Zn+ + = Cu++ + Zn, AS0 = —1.10 volts. 

Thus we can say that the more positive AS0 is, the greater is the tendency of 
the reaction to proceed from left to right. 

In the case of the copper-zinc cell, the value of AS0 can be accepted as a 
measure of the tendency of zinc metal to lose electrons and become zinc ion, 
and of cupric ion to accept electrons and become copper metal. In other words, 

AS0 is a simultaneous representation of the strength of zinc metal as a reductant, 
and of the strength of cupric ion as an oxidant. However, in order to compare 

the strengths of various oxidizing agents or reducing agents, it would be helpful 
if we could obtain a measure of the tendency of a given half-reaction to proceed. 

That is, we would like to have available standard half-cell potentials, rather than 
the values of A8°. 

We can properly regard any value of AS0 as the sum of two half-cell poten¬ 

tials, one associated with each of the half-reactions in the cell. But because 
every galvanic cell involves tivo half-reactions, we can never measure absolute 

values of the individual half-cell potentials, only the sum of two of them. How¬ 
ever, it is still possible to obtain numerical values for the half-cell potentials 
just by arbitrarily assigning one half-reaction a potential of zero. This pro¬ 

cedure is completely analogous to choosing Greenwich, England, as the zero of 

longitude, for although only differences in longitude can be measured, once one 
point is assigned a definite longitude, all other points also assume definite 
numerical values. Accordingly, it has been decided to assign the hydrogen 

gas-hydrogen ion half-reaction, 

H2(l atm) = 2H+(1 M) + 2e-, 

a half-cell potential 8° of zero volts, when the reactants and products are in 
their standard states. 

To assign half-cell potentials to other half-reactions we proceed in the follow¬ 

ing manner. We first measure the magnitude of the standard voltage generated 
when each half-cell is combined with the hydrogen half-cell. Thus, when the 
zinc-zinc ion half-cell operates with the standard hydrogen electrode, we note 

that the measured voltage is 0.76 volt, and that electrons flow from the zinc 
electrode to the hydrogen electrode. Hence the spontaneous cell reaction is 

Zn(s) + 2H+(1 M) Zn++(1 M) + H2(l atm). 

Similarly, measurement of the voltage of the copper-cupric ion half-cell working 

with the hydrogen electrode shows 0.34 volt, and that electrons flow from the 
hydrogen electrode to the copper electrode. The direction of the spontaneous 
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cell reaction must be 

Cu++(1 M) + H2(l atm) -> Cu + 2H+(1 M). 

The information we now have allows us to say that the absolute magnitude 
of the zinc-zinc ion half-cell potential is 0.76 volt, and that the absolute mag¬ 

nitude of the copper-cupric ion half-cell potential is 0.34 volt. But should these 

voltages be given the same sign? The answer is no, for the following reasons. 
We wish, in the case of half-cell potentials, to use the idea that the more positive 

the potential, the greater the driving force is for the reaction to proceed from 

left to right. Therefore, if we adopt the convention that all half-reactions be 
written as reductions, as in 

Zn++ + 2e~ = Zn, 

2H+ + 2e~ = H2, 

Cu++ + 2e_ = Cu, 

then the magnitude and sign of the half-cell potentials must reflect the relative 

tendencies of the reactions to proceed from left to right. Now, the experiments 
mentioned above tell us that in the zinc-hydrogen cell, zinc metal spontaneously 
reduces hydrogen ion. Therefore, the half-cell potential of the hydrogen ion- 

hydrogen reaction must be more positive than that of the zinc ion-zinc reaction, 

since when the two reactions are combined, it is the former that proceeds from 
left to right. Consequently we have 

Zn++ + 2e“ = Zn, 8° = -0.76 volt 

for the sign and magnitude of the zinc half-cell potential. 

Similarly, experiments with the copper-hydrogen cell show that cupric ion 
is a better oxidant than hydrogen ion, or that the Cu++, Cu half-reaction has a 

greater tendency to proceed from left to right than does the H+, H2 half-reaction. 

Accordingly, the half-cell potential of the cupric ion-copper reaction must be 
more positive than that of the hydrogen ion-hydrogen gas reaction, and by our 
measurements we have 

Cu++ + 2e~ = Cu, 8° = +0.34 volt. 

Our table of half-cell potentials now reads 

Zn++ + 2e = Zn, 

2H+ + 2e“ = H2, 

Cu++ + 2e“ = Cu, 

8° = —0.76 volt, 

8° = 0.00 volt, 

8° = +0.34 volt, 

with increasing voltage indicating increasing tendency of the half-reaction to 
proceed from left to right. 
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We can check the consistency of our assignments by calculating the standard 
potential of the reaction 

Zn + Cu++ = Zn++ + Cu 

from the standard half-cell potentials 

Zn++ + 2e“ = Zn, 8° = -0.76 volt, 

Cu++ + 2e~ = Cu, 8° = +0.34 volt. 

We must combine these reactions such that zinc metal appears on the left-hand 

side of the equation, and electrons are eliminated. Therefore, we reverse the 
direction of the first half-reaction, and accordingly reverse the sign of its half-cell 
potential: 

Zn = Zn++ + 2e~ 8° = +0.76 
2e~ + Cu++ = Cu_ g° = +0.34 

Zn + Cu++ = Cu + Zn++ AS0 = 1.10 volts 

The resulting A8° is numerically equal to the experimentally measured cell 
potential. Furthermore, the positive sign of the calculated A8° tells us that the 

spontaneous direction of the reaction is from left to right as written; this is also 
found experimentally. Thus our sign convention is internally consistent. 

Another example can illustrate the construction of a table of half-cell poten¬ 
tials, and lead us to an important point concerning the combination of half¬ 

reactions and half-cell potentials. When a standard cell is constructed from 
the hydrogen electrode and a silver wire electrode immersed in 1 M Ag+, it 

generates 0.80 volt, and the hydrogen electrode is negative. Consequently, as 
the cell operates, electrons must be produced at the hydrogen electrode and 

consumed at the silver electrode. The spontaneous cell reaction must be 

H2 + 2Ag+ -* 2Ag + 2H+. 

The direction of the spontaneous cell reaction tells us that silver ion is a 

better oxidant than hydrogen ion. Thus the half-reaction 

Ag+ + e“ = Ag 

has greater tendency to proceed as written than does 

2H+ + 2e” = H2. 

Therefore the half-cell potential for the silver ion-silver reaction must be 

+0.80 volt. 
Let us now combine the Ag+, Ag half-reaction with the Cu++, Cu half- 

reaction to obtain the voltage of the corresponding galvanic cell. We have 

Cu++ + 2e“ = Cu, 8° = +0.34 volt, 

Ag+ + e- = Ag, 8° - +0.80 volt. 
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To eliminate electrons in the overall reaction, the direction of the Cu++, Cu 

half-reaction must be reversed, and the Ag+, Ag half-reaction itself must be 
multiplied by two: 

Cu = Cu++ + 2e“ -0.34 
2e~ + 2Ag = 2Ag_ +0.80 

Cu + 2Ag+ = Cu++ + 2Ag A8° = 0.46 volt 

This calculated voltage agrees with that obtained by direct measurement from 
the cell itself, and its sign correctly indicates that copper metal should reduce 
silver ion as the cell operates. 

Note carefully that the sign of the Cu++, Cu half-cell potential was changed 
when the direction of the half-reaction was reversed, but when the Ag+, Ag 

half-reaction was multiplied by two, the half-cell potential icas not. The reason 

for this is that the voltage is associated only with the driving force of a reaction, 
and is intimately connected with the direction in which a reaction proceeds. 
On the other hand, multiplying an equation by two is an operation which has 

to do only with the amounts of materials available for reaction, and not with 
the driving force or half-cell potential. 

Now we can summarize the conventions regarding half-cell potentials: 

1. The standard hydrogen electrode is assigned a potential of exactly zero volts. 

2. When all half-reactions are written as reductions, that is, in the form 

Oxidant + ne~ = reductant, 

the reactions that proceed to the right more readily than the H+, H2 reaction 

are assigned a positive voltage, and those that proceed with a smaller driving 
force are given negative half-cell voltages. 

3. The size (in the algebraic sense) of the half-cell potential is a quantitative 

measure of the tendency of the half-reaction to proceed from left to right. 

4. If the direction in which a half-reaction is written is reversed, the sign of its 

half-cell potential is reversed. However, when a half-reaction is multiplied 
by a positive number, its voltage is unchanged. 

We have in this discussion adopted the convention that tabulated half- 

reaCtions are written as reductions proceeding from left to right. This conven¬ 
tion, long traditional in European countries, has been recommended and largely 

adopted for international use. The convention used in the United States until 

recently has been to write half-reactions as oxidations, as for example, 

Zn = Zn++ + 2e—, 8° = 0.763, 

2C1“ = Cl2 + 2e~, 8° = -1.36. 

Because the direction of writing the reaction has changed, the sign of 8° has 

been reversed. Half-reactions tabulated in this way will be encountered fre¬ 
quently in older books. Reactions written according to either convention con- 
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Table 7.1 Standard reduction potentials at 25°C 

Half-reaction 8° (volt) Half-reaction 8° (volt) 

Acid solution Hg2Cl2 + 2e— = 2Hg + Cl~ 0.2676 

Li+ + e~ = Li -3.045 Cu++ + 2e- = Cu 0.337 

Ca++ + 2e~ = Ca -2.866 Fe(CN)o3 + e- - Fe(CN)o4 0.36 

Na+ + e- = Na -2.714 Cu+ + e~ = Cu 0.521 

La+3 + 3e_ = La -2.52 l2(s) + 2e-= 21- 0.535 

Mg++ + 2e~ = Mg -2.36 la +2e- = 3l- 0.536 

AIFe3 + 3e~ = Al + 6F~ -2.07 PtCII1 + 2e- = Pt + 4CI— 0.73 

AI+3 + 3e- = Al -1.66 Fe+3 + e- = Fe++ 0.77 

SiF<f + 4e- = Si + 6F~ -1.24 Hg++ + 2e- = 2Hg 0.788 

V++ + 2e- = V -1.19 Ag+ + e— = Ag 0.799 
Mn++ + 2e- = Mn -1.18 2Hg++ + 2e~ = Hg++ 0.920 
Zn++ + 2e~ = Zn -0.763 Br2 + 2e- = 2Br- 1.087 
Cr+3 + 3e- = Cr -0.744 IO3 + 6H+ + 5e— = i|2 + 3H20 1.19 
Fe++ + 2e- = Fe -0.44 02 + 2H+ + 4e- = 2H20(I) 1.23 
Cr+3 + e- = Cr++ -0.41 Cr20 f + 14H+ + 6e~ = 2Cr+3 + 7H20 1.33 
PbS04 + 2e~ = Pb + SOJ -0.359 Cl2 + 2e~ = 2CI— 1.36 
Co++ + 2e- = Co -0.277 Pb02 + 4H+ + 2e~ = Pb++ + 2H20 1.45 
Ni++ + 2e_ = Ni -0.250 Au+3 + 3e~ - Au 1.50 
Pb++ + 2e~ = Pb -0.126 MnOj + 8H+ + 5e~ = Mn++ + 4H20 1.51 

D+ + e- = iD2 -0.0034 O3 + 2H+ + 2e~ = 02 + H20 2.07 

H+ + e- = iH2 0 (definition) F2 + 2e- = 2F- 2.87 

Cu++ + e- = Cu+ 0.153 H4XeOo + 2H+ + 2e- = Xe03 + 3H20 3.0 

Half-reaction 8° (volt) 

Basic solution 

H2AIO3 + H20 + 3e- = Al + 40H- -2.33 

Cr02 + 2H20 + 3e- = Cr + 40H~ -1.27 

ZnOf + 2H20 + 2e-= Zn + 40H- -1.21 

Sn(OH)e + 2e-= HSnOa + H20 + 30H- -0.93 

HSnOz + H20 + 2e-= Sn + 30H- -0.91 

HPbOa + H20 + 2e-= Pb + 30H- -0.54 

Co(OH)3 + e- = Co(OH)2 + OH- 0.17 

IO3 + 3H20 + 6e- = I-+ 60H- 0.26 

CIO3 + H20 + 2e- = CIO2 + 20H- 0.33 

CIO4 + H20 + 2e~ = CIO3 + 20H- 0.36 

02 + H20 + 4e~ = 40H- 0.40 

HO2 + H20 + 2e- = 30H- 0.88 

CIO- + H20 + 2e~ = Cl- + 20H- 0.89 

HXeOj + 3H20 + 6e~ = Xe + 70H- 0.9 

7.4 | GALVANIC CELLS 275 



tain the same amount of information. We have adopted the international 
convention in anticipation of its increasingly common use. However, in using 

any table of half-cell potentials, one should at the outset ascertain the conven¬ 
tion that is being employed. 

Table 7.1 gives the half-cell potentials of a number of reactions. Such a 

table not only gives us a quantitative comparison of the strengths of oxidizing 
and reducing agents, it is a very compact way of storing chemical information. 

If the values of S° for 50 half-cells are tabulated, it is possible to calculate from 
these the values of AS0 for (50 X 49)/2 reactions. 

Example 7.1 By using Table 7.1, arrange the following substances in order of increas¬ 
ing strength as reductants: Zn, Pb, Al. Also, of Ag+, CI2, O3, which is the strongest 

oxidant, and which is the weakest oxidant? 

To find the order of increasing reducing strength, we note that any reductant in 

Table 7.1 is stronger than all others below it. Therefore, reducing strength increases 
in the order Pb, Zn, Al. 

Oxidizing agents appear on the left-hand side of the half-reactions in Table 7.1, 

and any oxidant is stronger than all those above it. Therefore O3 is the strongest of 
the three oxidizing agents, and Ag+ is the weakest. 

7.5 THE NERNST EQUATION 

Until now, we have been exclusively concerned with galvanic cells operating 

under standard concentration conditions, and have associated the sign and mag¬ 
nitude of AS0 with the driving force for chemical reaction. We must be careful 

about this use of AS0, however. Remember that AS0 tells us only whether 

products in their standard states will be formed spontaneously from reactants 
in their standard states. For example, the fact that for the reaction 

Co(s) + Ni++(aq) = Co++(aq) -f Ni(s), 

AS0 = 0.03 volt tells us only that if both Ni++ and Co++ are present at 1 -M 

concentrations, nickel metal will be formed, and cobalt will be converted to 
the ion. However, experiment shows that if the concentration of Ni++ is 

0.01 M, and that of Co++ is 1 il/, then the direction of the spontaneous reaction 

is reversed. Therefore, before we can predict the direction of spontaneous 
reaction for anything other than standard concentration conditions, we must 
learn how the voltage of a galvanic cell depends on concentration. 

Experimental measurements of cell voltage as a function of reagent concen¬ 
tration show that for any general reaction 

aA + bB = cC -f c/D, 

the cell voltage AS is given by 

AS = AS0 
0.059 [C]c[D]d 

n g [A]“[BP' 
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Here A8° is the standard cell potential, n is the number of electrons transferred 

in the reaction as written, and the logarithm is taken to the base 10. The factor 
0.059 is common to all cells operating at a temperature of 25°C. This expression, 

called the Nernst equation, is substantiated by a wealth of experimental data, 

and also can be derived from the more fundamental principles of thermo¬ 
dynamics, as we shall see in Chapter 8. 

Let us apply the Nernst equation to a specific example, the reaction 

We have 
Co + Ni++ = Co++ + Ni, AS0 = 0.03 volt. 

AS = 0.03 
0.059 [Co++] 

2 l0g lNi++J ’ 
(7.2) 

where we have substituted 0.03 for AS0, and since two electrons are transferred 
in the reaction as written, n — 2. Although metallic nickel and cobalt are 

involved in the net reaction, they are not included in the concentration term, 

since their concentrations are constant. Thus in writing the concentration term 
in the Nernst equation, we follow the same conventions as in writing equilib¬ 

rium-constant expressions. 
If the reaction had been written 

2Co + 2Ni++ = 2Co++ + 2Ni, AS0 = 0.03 volt, 

then n would equal 4, and the appropriate Nernst equation would be 

AS = 0.03 
0-059. [Co++]2 

4 g [Ni++]2 

= 0.03 
0.059 [Co++] 

2 °g [Ni++] ' 

We see from this that the form of the Nernst equation is consistent with the 
idea that the voltage associated with a reaction is unaffected by multiplying 

that reaction by a positive number. 
The Nernst equation shows that the cell voltage is related to the logarithm 

of the reagent concentrations. In the particularly simple situation represented 

by Eq. (7.2), when the concentration ratio [Co++]/[Ni++] changes by a factor 
of 10, the cell voltage changes by an amount equal to 0.059/2, or 0.03 volt. If 

the reactant concentration is increased, or the product concentration decreased, 

the cell voltage becomes more positive. For example, if [Ni++] = 1 M and 

[Co++] = 0.1 M, then 

AS = 0.03 - log 0.1 = 0.03 + 0.03 
£ 

— 0.06 volt. 
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Therefore, if we continue to associate the magnitude of the cell voltage with the 
tendency for the reaction to proceed, we can decide that the driving force for 

Co + Ni++(1 M) = Co++(0.1 M) + Ni 

is greater than for 

Co + Ni++(1 M) = Co++(l M) + Ni. 

We can also calculate AS when [Co++] = 1 M and [Ni++] = 0.01 M: 

AS = 0.03 - log = 0.03 - 0.059 

= —0.03 volt. 

The negative value of AS means that the reaction 

Co + Ni++(0.01 M) = Co++(l M) + Ni 

proceeds spontaneously from right to left. This example shows that with a 

table of half-cell potentials and the Nernst equation, we should be able to pre¬ 
dict the spontaneous direction of a reaction under any concentration conditions. 

The Nernst equation suggests that we should be able to generate a voltage 
by a concentration difference alone, even though the standard potential of a 
cell might be zero. As an example, consider the cell shown in Fig. 7.5. One 
half-cell consists of a 1 M Ag+ solution and a silver wire electrode, while in the 
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other half-cell a silver wire dips into 0.01 M Ag+. Such an arrangement is 
called a concentration cell. Experiment shows that a voltage is generated, and 

that the electrode immersed in the more dilute solution is negative. Therefore, 
the half-reactions that occur must be 

Ag(s) = Ag+(0.01 M) + e- (in the dilute solution), 

e- + Ag+(1 M) = Ag(s) (in the concentrated solution), 

and the net cell reaction is 

Ag+(1 M) -> Ag+(0.01 M). 

That is, the spontaneous action of the cell tends to equalize the two concen¬ 
trations. The standard voltage of the cell reaction is zero, but the voltage 
generated in the present circumstances is 

AS = 0 — 
0.059. 0.01 
~~r~og ~r 

= 0.12 volt. 

The fact that there is a voltage, and thus a driving force for “reaction,” 

should not be surprising. We know that if a concentrated solution is put in 
physical contact with a dilute solution, the two will mix spontaneously by 
diffusion to form a solution of uniform intermediate concentration. It is this 

natural tendency for the two solutions to mix that- is measured by the voltage 
of this concentration cell. 

Cell Potentials and Equilibrium Constants 

It is informative to use the Nernst equation to predict what will happen to 

the voltage of a galvanic cell as its reactants are consumed and its products 
formed by the cell reaction. To be specific, let us imagine a nickel-cobalt cell 

whose voltage initially is 0.03 volt to be short circuited by a direct connection 
between the two electrodes. Then the reaction 

Co + Ni++ = Co++ + Ni 

proceeds spontaneously, and the concentration of Ni++ decreases while the 
concentration of Co++ increases. We can also imagine that a voltmeter is 
periodically inserted in the circuit to measure the cell potential as the reaction 

proceeds. The Nernst equation tells us that as the concentration of Ni++ 
diminishes and that of Co++ increases, the measured cell potential will decrease, 

and this is found experimentally. 
Now, electrons will flow through the external circuit and the reaction will 

continue as long as there is a voltage difference between the two electrodes. 

However, as reactants are consumed and products formed, this voltage difference 
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becomes steadily smaller and eventually becomes zero. At this point electron 
flow and net chemical reaction cease, and the concentrations of reactants and 
products remain constant indefinitely. These are conditions characteristic of 
chemical equilibrium, and indeed when AS = 0, concentrations of Co++ and 
Ni++ have been reached such that the reaction 

Co(s) + Ni++(aq) = Co++(aq) + Ni(s) 

is at equilibrium. 
The same sort of analysis can be carried through for any reaction, so for the 

general process 
aA + 6B = cC + dD, 

we can say that at equilibrium, 

AS = 0 = AS0 (7.3) 

where the subscript on the concentration term indicates that all concentrations 
are those found at equilibrium. 

The concentration term in Eq. (7.3) is equal to the equilibrium constant K 

for the reaction 
[C]c[D]d 
[A]a[B]6 

Therefore, Eq. (7.3) becomes 

0 
o 0.059 , jr 

AS0-log K, 
n 

log K = 
nAS° 

0.059 

K = jq«Ae0/0.059 (7.4) 

Equation (7.4) is particularly interesting and important, because it is an 
exact relation between K and AS0, the two factors that we have used to measure 
the tendency of reactions to proceed toward the products. We see that if AS0 is 
positive, K will be greater than unity, and the larger AS0 is, the larger is K. 
Our criteria that a large K, or a large positive AS0, indicate a strong tendency 
for reactants to be converted to products are therefore consistent with each 

other. 
We have taken a negative value of AS0 to mean that reactants in their 

standard states will not proceed spontaneously to form products in their 
standard states. However, a negative AS0 does not mean that no products 
whatsoever will be formed from reactants. As Eq. (7.4) shows, a negative AS0 
means only that the equilibrium constant for the reaction is less than unity, 
so that from reactants in their standard states, products in some concentration 
less than the standard value will be formed. 

280 OXIDATION-REDUCTION REACTIONS 7.5 



Example 7.2 Calculate AS0 and K for the reaction 

2Fe+3+ 31- = 2Fe++ + Cf. 
From Table 7.1 we get 

e~+ Fe+3 = Fe++, 8° = 0.771, 

2e-+I- = 3I- 8° = 0.536. 

We combine these half-reactions by subtracting the second from twice the first to get 

2Fe+3 + 31- = 2Fe+++ I- 

To obtain A8°, we subtract 8° of the second half-reaction from 8° of the first: 

A8° = 0.771 - 0.536 = 0.235 volt. 
Therefore, 

K = lOnAs°/0 059 = 1q(2)(0.235)/0.059 = 9 3 1()7 

Thus a rather modest positive cell voltage corresponds to a large equilibrium constant. 

Example 7.3 The A8° for the reaction 

Fe+ Zn++ = Zn+ Fe++ 

is —0.32 volt. What is the equilibrium concentration of Fe++ reached when a piece 

of iron is placed in a 1 M Zn++ solution? The equilibrium constant is 

K = jQnAs°/0.059 

1.4 X 10-11. 

1q2(—0.32)/0.059 

Since 

K = 
[Fe~* *~] 

[Zn++] ’ 

then when [Zn++] = 1 M, it follows that [Fe++] = 1.4 X 10 11 M. 

These examples show that connecting A8° and K allows us to measure equilib¬ 

rium constants that are very large or very small, by carrying out experiments 

in which all reagents have the convenient concentration of 1 M, or 1-atm 

pressure. 

The value of the solubility product constant can be found by measurement 

of the voltage of a type of concentration cell. Suppose, for example, that a 

cell is constructed from a standard silver-silver ion half-cell, and another half¬ 

cell consisting of a silver wire immersed in a solution which contains 10~3 M Cl- 

and is saturated with respect to solid silver chloride. This combination is a 

silver-ion concentration cell, since in the second half-cell, the silver-ion con¬ 

centration is 

[Ag+] = ^ = 103 Ksp, 
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where Asp is the solubility product constant for silver chloride, 

voltage generated by the cell will be 

A8 = 0 - 

= 0 - 

0.059 

1 

0.059 

1 

log 

log 

[Ag+]2 

[Ag+] i 

103 Asp 

1 

Therefore the 

= —3 X 0.059 log Asp, 

since AS0 = 0 for a concentration cell. For this particular cell the measured 

value of A8 is +1.69 volt, so 

1.69 = -3 X 0.059 log Ksp, 

A8p = 2.8 X 1(T10. 

Once again we see that measurement of cell voltages is a convenient way to 

obtain equilibrium constants that would be virtually impossible to evaluate by 

direct chemical analysis. 

7.6 OXIDATION-REDUCTION TITRATIONS 

Oxidation-reduction titrations are important in analytical chemistry, and a 

discussion of them provides considerable insight into the operation of galvanic 

cells as well as the use of the Nernst equation. As an example, let us consider 

the titration of ferrous ion by ceric ion: 

Fe++ + Ce+4 -> Fe+3 + Ce+3. (7.5) 

This titration can be carried out with the apparatus shown in Fig. 7.6. The 

ceric ion is added from the buret to a beaker containing the ferrous ion. Into 

this beaker are placed a salt bridge and a platinum wire, so that it may be 

operated as a half-cell against the standard hydrogen electrode. Because the 

voltage of the standard hydrogen half-cell is zero by definition, the voltmeter 

gives the half-cell potential of the solution being titrated. 

Either of the two half-reactions 

Ce+4 + e- = Ce+3, (7.6a) 

Fe+3 + e" = Fe++ (7.6b) 

can take place at the platinum electrode. Which of them actually determines 

the potential of the platinum wire? To answer, we first assume that after each 

amount of Ce+4 is added from the buret, reaction (7.5) takes place and rapidly 

reaches a position of equilibrium. Now, equilibrium between Fe++, Fe+3, 

Ce+3 and Ce+4 means that the half-cell potentials of reactions (7.6) are 

identical. Therefore we may regard the beaker either as a Fe+3, Fe++ half-cell 

or as a Ce+4, Ce+3 half-cell, whichever is more convenient. 
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Let us see how the half-cell potential changes as the reaction proceeds. If 

we think of the beaker as a Fe+3, Fe++ half-cell, its voltage is given by 

8 = Spe 
0.059, [Fe++] 

“T" l0g TFe+3J' 

and this is also the voltage read by the voltmeter. At the start of the titration 

[Fe+3] = 0, so the cell potential should be infinite. In fact, it never reaches 

this value, because trace impurities and the electrical operation of the cell itself 

make [Fe+3] nonzero, but even so, the initial voltage is large. 

Apparatus for perform¬ 
ing an oxidation-reduc¬ 
tion titration by mea¬ 
suring the half-cell 
potential of the titrated 
solution. 

FIG. 7.6 

Suppose now that a fraction / of the ferrous ion has been titrated. If C0 and 

V are the initial concentration of ferrous ion and the initial volume of the 

solution respectively, the amount of ferrous ion left is C0F(1 — /), and the 

amount of ferric ion produced is C0Vf. The resulting volume of the solution is 

V -f- v, where v is the volume of ceric solution added. Therefore the voltage is 

8 = 8pe - 0.059 log 

8fo - 0.059 log 

coF(l - f)/(V + V) 
C0Vf/(V + v) 

1 -/ 

/ 
(7.7) 

That is, the cell voltage depends only on the fraction titrated. Accordingly, we 

can use Eq. (7.7) to construct the titration curve of 8 vs. / shown in Fig. 7.7, 

as long as 0 < / < 1. Note that when / is equal to 0.5, 8 = 8pe- 
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Just as for acid-base titrations, the equivalence point of an oxidation-reduc¬ 

tion titration requires special treatment. The reason for this is that in our 
present example, when / equals unity, the concentration of ferrous ion is not 

really zero, but is actually some small value determined by the equilibrium 
between it and the other ions. However, even though some Fe++ remains 

unconverted at the equivalence point, there must be an exactly equivalent 

amount of Ce+4 present in solution, if / is truly unity. Therefore, at the equiva¬ 

lence point 
[Ce+4] = [Fe++], (7.8a) 

[Ce+3] = [Fe+3]. (7.8b) 

FIG. 7.7 Half-cell potential as a function of f, the 
fraction of Fe++ titrated with Ce+4. 

Since these two relations hold simultaneously only at the equivalence point, 

we can use them to find the corresponding potential. First, we remember that 

the half-cell potential can always be written in two ways: 

[T?P++1 
S = Sre 0.059 log 

rfv+3i 
= sSe - 0.059 log • 

Adding these expressions gives 

28 = Spe + See — 0.059 log [jre+3][Ce+4] ' (7-9) 

But Eqs. (7.8) tell us that 

[Ce+4] [Fe++] 
[Ce+3] [Fe+3] ’ 

[Fe++][Ce+3] 
[Fe+3][Ce+4] 
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at the equivalence point. Therefore, under the same circumstance Eq. (7.9) 

becomes 

2Sep = s£e+ sge ~ 0.059 log 1, 

Sep - i(SFe + See). (7.10) 

Thus, Sep, the half-cell potential at the equivalence point, is the average of the 
two standard half-cell potentials. Equation (7.10) is valid for any situation 

which involves two half-reactions with the same number of electrons. 

To calculate the half-cell potential when / is greater than unity, it is con¬ 

venient to use the expression written in terms of the ceric-cerous half-reactions: 

S = See 0.059 log ‘ (7-11) 

The reason for this is that after the equivalence point has been passed, the 
concentrations of both Ce+4 and Ce+3 are large and easy to calculate approxi¬ 

mately. In fact, the amount of Ce+3 present is virtually constant, because 
essentially all the Fe++ has been titrated. On the other hand, it is not con¬ 

venient to use the Nernst equation written in terms of the Fe++, Fe+3 half-cell 
potential, because the concentration of Fe+ + is very small and not constant, 

and must be carefully calculated using the equilibrium constant for the reaction 

and the concentrations of the other ions. Equation (7.11) allows a much more 

direct calculation of the half-cell potential. 
Examination of the titration curve shows that the electrode potential changes 

very rapidly in the vicinity of the equivalence point. In fact, between / = 0.999 
and / = 1.001, the voltage change is 0.48 volt. It would seem, then, that the 

equivalence point could be located with great precision by following the progress 

of the titration by a voltmeter. In fact, elaborations of this idea provide the 
most elegant and convenient ways of carrying out oxidation-reduction titrations. 

From this titration curve we can see that in order to have a large change in 
voltage near the equivalence point, a minimum requirement is that the cell 

voltages at / = 0.5 and at / = 1 be as different as possible. Thus the quantity 

Si - So.5 = KfiFe + See) - S£e 

= i(Sce — Spe) 

= Ag°/2 

must be as large as possible. Now, AS0 is just the standard potential associated 

with the titration reaction, so since 

Ag^/0• 059 

our requirement for a large voltage change near the equivalence point is that 

the equilibrium constant for the titration reaction must be large. For the 
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ferrous ion-ceric ion reaction we find K to be 

K = io°-84/0-059 

= 1.7 X 1014, 

which is large indeed. 
When the two half-reactions involved in the titration reaction have different 

numbers of electrons, the expression for the potential at the equivalence point 

is somewhat different from Eq. (7.10). Let us illustrate this for the reaction 

5Fe++ + MnOr + 8H + = 5Fe+3 + Mn++ + 8H20, 

which involves the following half-reactions: 

Fe+3 + e_ = Fe++, 

MnOr + 8H+ + 5e_ = Mn++ + 4H20. 

As we noted before, the half-cell potential for the titration mixture can be 

written in two ways: 

8 = 8Fe — 0.059 log 
[Fe++] 

[Fe+3] 
(7.12) 

o 0.059, 
= SMn-~=~ log 

[Mn ++i 

[MnOr][H+]8 
(7.13) 

At the equivalence point we must have 

5[MnOn = [Fe++], 

5[Mn++] = [Fe+3], 

and therefore it follows that 

[Fe++] 

[Fe+3] 
[MnOr] 
[Mn++] ' 

Substitution of this into Eq. (7.12) gives 

8 ep 8pe — 0.059 log 
[MnOF] 

[Mn++] 
(7.14) 

Now we multiply Eq. (7.13) by 5, add the result to Eq. (7.14), and get 

Sep d- 58 ep 

68ep 

Sep 

Sfe 4" 5S 
0 
Mn 0.059 log 

[Mn++] [MnOr] 

[MnOF] [Mn++][H+]8 
} 

SFe + 58mix -f- 0.059 log [H+]8, 

S°e + 5Smh _j_ 0.059 , [H+]8 
6 6 
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This expression shows that when the numbers of electrons in the two half- 

reactions are different, the potential at the equivalence point is the weighted 
average of the two half-cell potentials. Also, we can see that the potential at 
the equivalence point may be determined by the concentrations of any species 
that appear in the net titration reaction. 

7.7 ELECTROLYSIS 

Our exclusive concern has been with situations in which the spontaneous 

reaction occurring in an electrochemical cell provides a source of voltage and 
electrical power. The opposite case is that of electrolysis, where the application 

of an external source of voltage is used to carry out a chemical change. Electro¬ 
lytic processes are of great importance in industry today, and as we shall see 

in Chapter 10, were influential in the development of ideas about the electrical 
nature of matter. 

Perhaps the simplest of electrolytic processes occurs when two copper strips 
connected to opposite terminals of a voltage source are both dipped into an 

aqueous solution of copper sulfate. A current passes and at the copper strip 

connected to the negative terminal, more metallic copper is deposited, while 
at the other electrode copper metal is oxidized to Cu++. The electrode at 

which reduction occurs is always called the cathode, while the anode is always 

the electrode at which oxidation takes place. Thus we have 

Cu++ + 2e— = Cu at the cathode, 

Cu = Cu++ + 2e~ at the anode. 

If the anode of such a cell is made out of impure copper (99.0%), it is possible 

to deposit at the cathode copper of a purity of 99.98%. Thus this and other 
electrolytic refining processes find considerable use in the preparation of large 

quantities of pure metals. 
Electrolytic techniques make possible the recovery of the most active of the 

elements from their compounds. A glance at a table of standard electrode 
potentials shows that such ions as Na+, Mg++, and Al+3 are extremely difficult 

to reduce: 
Na+ + e“ = Na, 6° = -2.714 volts, 

Mg++ + 2e~ = Mg, 8° = -2.37 volts, 

Al+3 + 3e~ = Al, 8° = —1.G6 volts. 

In fact, there is no readily available chemical reagent that can reduce these ions 
to the metals in large quantities. As a result the commercial preparation of 

the active metals involves electrolytic reduction at the cathode, as for instance 

in the electrolysis of fused MgCl2: 

Mg++ + 2e~ —* Mg at the cathode, 

2C1— —> Cl2 -fi 2e— at the anode. 
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Only about 6 volts need be applied to effect such a reaction, but even this 

voltage makes the cathode of an electrolytic cell an extremely powerful reducing 

agent. _ , 
The quantitative aspect of electrolysis is straightforward: the number ot 

moles of material oxidized or reduced at an electrode is related by the stoichiom¬ 

etry of the electrode reaction to the amount of electricity passed through^the 

cell For example, 1 mole of electrons will reduce and deposit 1 mole of Ag , or 

0.5 mole of Cu++, or 0.33 mole of A1+3, as suggested by the following electrode 

reactions: 
Ag+ + e~ = Ag, 

Cu++ + 2e“ = Cu, 

Al+3 + 3e“ = Al. 

While it is convenient to “count” atoms by weighing substances, the number of 

moles of electrons delivered to an electrode is most easily measured in terms^of 

total electrical charge. Since the charge of one electron is 1.6021 X 10 

coulomb (coul), the charge on 1 mole of electrons is 

1.6021 X 10-19 coul/electron X 6.0225 X 1023 electrons/mole = 96,487 coul. 

This quantity of electricity is called the faraday and given the symbol T Thus 

1 faraday of electricity will reduce 1 mole of Ag+ or 0.5 mole of Cu to the 

metal. , 
The number of coulombs of charge passed through a cell in an electrolysis 

can be calculated from the measured current and the length of time the current 

flows. Since 
1 ampere (amp) = 1 coul/sec, 

we have 
coulombs passed = current (in amp) X time (in sec). 

With this in mind, we can calculate, for example, that if a solution of CuS04 is 

electrolyzed for 7.00 min with a current of 0.60 amp, the number of coulombs 

delivered is 

coulombs = amperes X seconds = 0.60 X 7.00 X 60 

= 252 coul. 

This corresponds to 

252 coul_ 

96,487 coul/faraday 
= 2.61 X 10-3 faraday. 

Consequently, 1.30 X 10-3 mole of copper metal is deposited in this elec¬ 

trolysis. In the commercial production of metals like magnesium the currents 

employed are approximately 50,000 amp. This current corresponds to about 

0.5 faraday/sec, or to roughly 0.25 mole of magnesium metal deposited per 

second. 
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7.8 ELECTROCHEMICAL APPLICATIONS 

Even a casual examination of the natural world reveals an almost overwhelming 

number of examples of natural processes in which oxidation-reduction reactions 

play a central role. Indeed, photosynthesis, the basic process which sustains 

life on earth, is the light induced reduction of carbon dioxide and water to 

carbohydrate plant material, accompanied by the oxidation of some of the 

oxygen in these compounds to the elemental state. The metabolism of foods by 

animals is nearly the exact reverse of this process: oxidation of carbohydrates 

and other food materials to carbon dioxide and water. In detail, the fundamental 

life processes are executed by a very large number of oxidation-reduction 

reactions which interact with one another in a subtle manner. An indication of 

the nature of some of these biologically significant oxidation-reduction reactions 

will be found in Chapter 18. For the present, however, we shall investigate the 

application of the electrochemical principles to the apparently simpler phenomena 

of the corrosion of metals, and the storage and production of energy by galvanic 

cells. 

In the United States, more than $107 a year is lost to corrosion—the loss of 

material due to chemical attack. The mechanism of this loss is in some circum¬ 

stances simply the solution process. However, in the case of the oxidative 

corrosion of metals, the mechanism involved is electrochemical in nature, and 

is very closely related to the galvanic cell phenomena discussed in Section 7.4. 

2Fe+a +60H-—>Fe203 +3H20 

Corrosion of a wet iron spike by atmospheric oxygen. Oxidation of iron takes place 
principally at the highly stressed areas near the point. 

To analyze the corrosion mechanism of iron, consider Fig. 7.8, where an iron 

spike is shown with its partially wet surface exposed to atmospheric oxygen. 

The iron spike is a highly imperfect solid: it consists of randomly oriented 

microcrystals which have imperfect lattices and which incorporate impurity 

atoms. The iron atoms near the boundaries of these microcrystals or grains are 

Corrosion 

FIG. 7.8 

7.8 | ELECTROCHEMICAL APPLICATIONS 289 



relatively weakly bound, and at some sites they may easily enter the aqueous 

phase as ions: 

Fe(s) = Fe++(aq) + 2e~ 

Thus certain of these grain boundaries serve as anodes, where iron is oxidized 

to ferrous ion. This process cannot long continue unless something is done to 

remove the electrons. Since iron is a good electrical conductor, these extra 

electrons can travel to sites on the iron surface which can facilitate a reduction 

reaction. If dissolved oxygen is in the aqueous phase, the reaction 

i02 + H20 + 2e~ = 2011- 

can occur at microscopic cathodes distributed on the surface. The net result 

is the production of Fe-^ and OH , with the disappearance of metallic iron 

and oxygen. Further direct oxidation of the ferrous ion is possible: 

2Fe++ + i02 + H20 = 2Fe+3 + 20H“ 

Finally, if Fe+3 can diffuse to the region of the cathode where OH is in abun¬ 

dance, the reaction 

2Fe+3 + 60H- = Fe203 + 3H20 

can occur, and the insoluble solid iron oxide, or rust, is precipitated. 

In ordinary iron objects, the cathode and anode regions are so close that the 

unaided eye cannot distinguish them, and rust apparently forms everywhere 

on a wet surface. However, even in these circumstances it is observed that 

corrosion is much more rapid if the aqueous phase contains dissolved electrolytes. 

The reason for this is quite straightforward: These dissolved electrolytes play 

the same role as does the salt bridge in a galvanic cell. The charge separation 

that would result from production of Fe++ at the anode regions and formation of 

OH- at the cathode region would slow and eventually stop the oxidation- 

reduction reaction. By providing a uniform reservoir of ions of both electrical 

charges, the dissolved salts prevent excess charge from accumulating at either 

electrode and thereby speed the electrochemical corrosion. 

There are a number of ways to inhibit or prevent corrosion. The most obvious 

is to cover a susceptible metal with a polymeric coating like paint, which is 

relatively impervious to moisture and oxygen. In some circumstances, the 

protective coating may be a noble metal such as gold, which cannot be spon¬ 

taneously oxidized by air. More commonly, the coating is a metal which protects 

itself and the substrate by formation of an impervious oxide layer. In this way, 

such metals as zinc, tin, nickel, or chromium can prevent the corrosion of iron. 

For some items such as large underground tanks or pipelines, overall coating 

or plating is either impractical or not fully effective. In these cases it is possible 

to prevent corrosion by using a sacrificial anode. A block of easily oxidized metal 
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such as zinc or magnesium is placed in the earth and connected electrically 

to the object to be protected. The zinc block serves as an anode, and as it 

dissolves by the reaction 

Zn(s) = Zn++(aq) + 2e , 

it supplies electrons to the iron object, and prevents any part of it from being 

oxidized. Instead, the whole object acts as a cathode, where oxygen is reduced 

to OH-. When the sacrificial anode is consumed, it can be replaced, and the 

protection continued. 

Batteries and Fuel Cells 

Galvanic cells provide a compact, safe way of storing energy so that it can be 

delivered in a particularly useful manner: as an electrical current driven by a 

voltage difference. A large number of pairs of half-reactions have been used for 

practical applications, with the choice of reactions being influenced by such 

considerations as the availability and expense of materials, mechanical stability, 

operating temperature, total energy stored per unit weight, and safety factors. 

The most common type of battery has been the Leclanche “dry” cell. A zinc 

can forms the anode, and is consumed as the cell operates. A carbon rod in 

contact with manganese dioxide serves as the cathode, and an electrolyte of zinc 

and ammonium chlorides in water mixed with enough starch to prevent spillage 

is used. As the cell operates, the reaction 

Zn + 2Mn02 + H20 = Zn(OH)2 + Mn203 

occurs, and produces approximately 1.2 volts. This Leclanche cell is an example 

of a “primary ” cell: one that can be used once, but cannot be restored by reversing 

the current flow. Another example of a primary battery is the so-called mercury 

cell, which uses the reaction 

Zn -f- HgO = ZnO + Hg 

carried out in a potassium hydroxide paste electrolyte. It also produces approx¬ 

imately 1.2 volts. 

Secondary batteries can be conveniently recharged, or restored to nearly 

new condition by reversing the current flow. The best known example of this 

type of device is the lead storage cell, which involves the reaction 

Pb(s) + Pb02(s) + 4H+(aq) + 2SOT(aq) = 2PbS04(s) + 2H20. 

In operation, metallic lead is oxidized to lead sulfate at the anode, and lead 

dioxide is reduced to lead sulfate at the cathode. Since sulfuric acid is consumed 

7.8 | ELECTROCHEMICAL APPLICATIONS 291 



in this process, the specific gravity of the electrolyte decreases as the cell operates, 

and is a convenient indicator of the charge state of the battery. Each cell of a 

commercial lead storage battery generates slightly more than 2 volts, and the 

common automobile battery consists of six such cells connected in series. To 

recharge the battery, an opposing voltage somewhat greater than 12 volts is 

applied to the electrodes, and the cell reaction is reversed, with lead sulfate being 

converted lead and lead dioxide. The restoration of the electrodes in the re¬ 

charge process is never perfect, and metallic needles and other mechanically 

unstable growths appear on the electrodes. Eventually these growths produce 

internal short circuits and the cell operation ceases. 

The major virtues of the lead storage battery are its reliability, lifetime, and 

relative simplicity. However, its liquid electrolyte is a disadvantage, as is the 

great weight of lead which is required to deliver a substantial current . Con¬ 

sequently, other secondary batteries are in use and under development. The 

nickel-cadmium cell, which operates on the reaction 

Cd + Ni203 + 3H20 = Cd(OH)2 + 2Ni(OH)2 

and produces 1.3 volts, is used extensively to power small electronic devices. 

The alkali metal-sulfur cells, which use reactions like 

2Li + S = Li2S, 

produce relatively high voltages (1.9 — 2.3 volts) and have the major advantage 

that they are light in weight. Unfortunately, they operate only at elevated 

temperatures (above 350°C) and are not suitable for applications that require 

long standby and rapid starts. 
The cells mentioned so far involve the oxidation of metallic electrodes by a 

variety of oxidizing agents. While the metallic electrode is a convenient portable 

source of small amounts of energy, it is not suitable for very large scale energy 

production. For such purposes, it would be very advantageous to have a cell 

that produces electricity by the oxidation of a readily available gaseous fuel, 

such as natural gas (CH4), carbon monoxide, or hydrogen. Some notable progress 

has been made in this direction, and a few practical tuel cells have been developed. 

Fuel cells have a great intrinsic advantage in the high efficiency with which 

they can convert the energy released in combustion of a fuel into useful work. 

In an ordinary electric power plant, fuel (usually oil) is burned to produce the 

steam necessary to drive a turbine, which in turn runs an electric generator. 

The overall efficiency of converting the energy of combustion to useful work 

has been raised to 35-40 percent, and significantly higher efficiencies cannot 

be expected. In Chapter 8, we shall find that the percentage efficiency r, of steam 

turbines and other such heat engines is intrinsically limited to values given by 
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the expression 

71 < 100 
Th - Tc 

Th 
1 

where Th is the Kelvin temperature at which steam enters the turbine, and Tc 

is the lowrer temperature at which steam leaves the turbine. In practice, Th 
and Tc are approximately 800°K and 400°K, respectively, and the maximum 

efficiency expected is only roughly 50 percent. In contrast, a fuel cell is not a 

heat engine, and does not have this intrinsic efficiency limitation. Practical 

fuel cells convert the energy of fuel combustion to useful work with an efficiency 

of 75 percent, with the principal limitation being the heat dissipated due to the 

internal resistance of the cell itself. 

A schematic diagram of an H2-O2 fuel cell operating with an aqueous KOH electrolyte. 

Because of their very high efficiency and the nonpolluting nature of their 

operation, it would appear that fuel cells would be very desirable energy con¬ 

verters. Unfortunately, their application has been limited by the difficulty of 

finding suitable fuel-electrode-electrolyte combinations which allow rapid 

oxidation of the fuel. The most successful cell uses hydrogen as the fuel; a 

schematic diagram which illustrates its operation is shown in Fig. 7.9. Hydrogen 

at 40 atm pressure is forced into a porous nickel electrode, where it is oxidized 
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to water in the presence of an aqueous potassium hydroxide electrolyte. The 

half-reaction is 

Ha(g) + 20H—(aq) = 2H2O + 2e . 

The cathode of the cell is nickel covered with nickel oxide, which catalyzes the 

reduction of oxygen: 

i02(g) + H20 + 2e“ 20H"(aq). 

Thus the overall cell reaction is the combustion of hydrogen and oxygen to 

liquid water. By using a very concentrated aqueous KOH electrolyte, the 

operating pressure of the cell can be lowered to nearly 1 atm, if the current 

demands are not great. Such low-pressure fuel cells have been used as power 

sources on some of the larger manned spacecraft. 

While hydrocarbons have been oxidized to carbon dioxide and water at 

platinum electrodes, the cost of such cells precludes their widespread use. The 

most practical way to use hydrocarbons or coal in fuel cells at present is to 

provide a conversion stage in which hydrogen is generated by reaction with 

steam: 

C(s) + H20 = CO + H2, 

CnH2n+2 + nH20 = nCO + (2n + 1) H2, 

CO + H20 = C02 + H2. 

The hydrogen produced in this manner can be used after purification to power 

a conventional fuel cell. More extensive applications of fuel cells await the 

development of large coal-to-hydrogen converters or inexpensive electrodes which 

permit the direct use of carbonaceous fuels. 

7.9 CONCLUSION 

The concepts discussed in this chapter will be used throughout our study ol 

chemistry. For example, a classification scheme that organizes and simplifies 

much of the descriptive chemistry of the elements is based on oxidation numbers. 

Furthermore, many of the practical operations of analytical chemistry and of 

the chemical industry involve oxidation-reduction reactions. Perhaps most 

important, however, is the discovery that galvanic cell potentials provide a 

convenient way of assessing quantitatively the tendency of reactions to proceed 

as written. What is particularly significant is that through the use of half-cell 
potentials, we have a way of expressing the intrinsic ability of individual re¬ 

agents to perform as oxidants or reductants. Thus we are nearer to the goal of 

expressing and understanding what is meant by chemical reactivity. Anothei 

step toward this goal involves the study of thermodynamics, which is the 

subject of Chapter 8. 
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PROBLEMS 

7.1 Complete and balance the following reactions which occur in acidic aqueous 

solution. 

I2 + H2S = H+ + I-+S(s) 

I_+ H2SO4 (hot, concentrated) = I2 + SO2 

Ag+ NO" = Ag++ NO 

CuS + NO3- = Cu++ + SO= + NO 

S2°3=+ X2 = I“+S4°6= 

Zn+ NO3- = Zn+++ NH+ 

hs2o3- = S + HSO^ 

* CIO3- + As2S3 = Cl- + H2AsO - + SO = 

Cr2Of + C2H40 = C2H402 + Cr+3 

MnO= = Mn02 + MnO~ 

7.2 Complete and balance the following reactions which occur in basic aqueous 

solution. 
A1+ NO3-+ OH- = Al(OH)-+ NH3 

Pb02+ Cl- = C10-+ Pb(OH)3- 

N2H4 + Cu(OH)2 = N2 + Cu 

* Ag2S + CN- + 02 = S + Ag(CN)- 

C10-+ Fe(OH)3 = C1-+ FeO“ 

HO-+ Cr(OH)- = CrO-+ OH- 

Cu(NH3)+++ s20= = S03=+ Cu+ nh3 

C102 + OH- = CIO- + CIO3- 

v+ h2o = hv6o-3+ h2 

y Mn(CN)-44- 02 = Mn(CN)-3 
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7.3 Consult the table of standard electrode potentials, and select an oxidizing agent 

capable of transforming (a) Cl- to CI2, (b) Pb to Pb ++, and (c) Fe + + to Fe+3. 
Similarly, select a reducing agent that can convert (d) Fe + + to Fe, (e) Ag+ to Ag, 

and (f) Mn++ to Mn. 

7.4 Which of the following oxidizing agents become stronger as the concentration of 

H+ increases? Which are unchanged and which become weaker ? (a) Cl2, (b) Cr207 , 

(c) Fe+3, (d) MnO". 

7.5 Compare the following standard electrode potentials for the ferrous-ferric ions 

and their cyanide complexes: 

Fe+3 + e~ = Fe++, 8° = 0.77 volt, 

Fe(CN)<T3 + e“ = Fe(CN)<T4, 8° = 0.48 volt, 

On this basis, which ion, Fe++ or Fe+3, is stabilized more by complexing with CN-? 

7.6 From the appropriate values of 8° drawn from Table 7.1, calculate A8n and the 

equilibrium constant for the reaction 

Hg+++ Hg = Hg^+. 

7.7 By use of appropriate half-cell potentials, calculate A8° and the equilibrium 

constant for the reaction 
Fe+3+ I- = Fe+++ £l2. 

State what you expect to happen when equal volumes of 2 M Fe + j and 2II- are 

mixed. 

7.8 A half-cell (A) consisting of a strip of nickel dipping into a 1 -M solution df Ni + +, 

and a half-cell (B) consisting of a strip of zinc dipping into a 1 -M solution of Zn + + 

were successively connected with a standard hydrogen half-cell. Ihe magnitudes of 

the individual half-cell potentials were then determined as 

(A) Ni+++ 2e“ = Ni, |S°| = 0.25 volt, 

(B) Zn++ + 2e~ = Zn, |6°| = 0.77 volt. 

(a) When both the half-cells (A) and (B) were connected with the hydrogen half-cell, 

the metallic electrode (Ni or Zn) was found to be negative. \\ hat is the correct sign 

of the electrode potentials? (b) Of the substances Ni, Ni++, Zn, Zn ++, which is the 

strongest oxidant? Which is the strongest reductant? (c) Will a noticeable reaction 

occur when metallic nickel is placed in a 1 -M solution of Zn + "*"? metallic zinc is dipped 

into a 1 -M solution of Ni++? (d) Zinc forms a complex ion with hydroxide ion, 

Zn(OH) =. If hydroxide ion were added to half-cell (B), would its electrode potential 

as written become more positive, less positive, or be unaffected? (e) If the half-cells 

(A) and (B) were connected together, which electrode would be negative? What would 

the cell voltage be? 

7.9 An electrochemical cell is constructed of one half-cell in which a platinum wire 

dips into a solution containing 1 -M Fe+3 and 1 -M Fe+2; the other half-cell consists 

of thallium metal immersed in 1 -M Tl+ solution. Given the following standard 

electrode potentials, 

T1+ + e- = Tl, 8° = -0.34, 

Fe+3 + e~ = Fe + +, 8° = 0.77, 
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supply the desired information. (a) Which electrode is the negative terminal? 

(b) Which electrode is the cathode? (c) What is the cell voltage? (d) Write the 

reaction that proceeds from left to right as the cell operates spontaneously, (e) What 

is the equilibrium constant of this reaction? (f) How will the voltage of the cell be 

changed by decreasing the concentration of Tl+? 

7.10 A galvanic cell consists of a strip of cobalt metal, Co, dipping into 1 -M Co + + 

solution, and another half-cell in which a piece of platinum dips into a 1 -M solution of 

Cl-. Chlorine gas at 1-atrn pressure is bubbled into this solution. The observed cell 

voltage is 1.63 volts, and as the cell operates the cobalt electrode is negative. Given 

only that the standard potential for the chlorine-chloride ion half-cell is 

^Cl2+e- = Cl-, 8° = 1.36 volts, 

supply the desired information, (a) What is the spontaneous cell reaction? (b) What 

is the standard potential of the cobalt electrode? (c) Would the cell voltage increase 

or decrease if the pressure of chlorine gas increased? (d) What would the cell voltage 

be if the concentration of Co++ were reduced to 0.01 M ? 

7.11 A cell consists of a standard Ag, Ag+ half-cell (1 -M Ag+) combined with another 

half-cell in which a silver wire dips into a solution of 1 -M Br- which is saturated and 

in contact with solid AgBr. The electrode of this latter cell is negative, and the cell 

generates 0.77 volt. What is the concentration of Ag+ in equilibrium with 1 -M Br- 

and solid AgBr? What is the apparent solubility product of AgBr? 

7.12 Two hydrogen-hydrogen ion half-cells are connected to make a single galvanic 

cell. In one of the half-cells the pH is 1.0, but the pH in the other half-cell is not known. 

The measured voltage delivered by the combination is 0.16 volt, and the electrode in 

the half-cell of known concentration is positive. Is the unknown concentration of H + 

greater or less than 0.1 M? What is the unknown concentration of H+? 

7.13 From the following standard electrode potentials, 

Cu++ + 2e- = Cu, 8° = 0.34, 

Cu+++ e- = Cu+, 8° = 0.15, 

calculate the equilibrium constant of the reaction 

Cu+ Cu++ = 2Cu+. 

Would you expect to be able to form appreciable amounts of Cu+ by reaction of 

Cu with Cu++? Consider that CuCl is a sparingly soluble salt with Kap = 3.2 X10-7. 

Calculate the equilibrium constant for the reaction 

Cu+ Cu+++ 2C1- = 2CuCl(s). 

7.14 Consider the titration reaction 

V(OH) + + Cr++ + 2H + = YO++ + Cr+3 + 3H20, 

which involves the half-reactions 

V(OH) + + 2H++ e~ = VO+++ 3H20, 8° = 1.00 volt, 

Cr+3 + e- = Cr++, 8° = —0.41 volt. 

Imagine that the titration is conducted by adding a solution of V(OH)/ from a buret 

to a solution of Cr++ in a beaker which is connected by a salt bridge to a standard 

hydrogen electrode assembly. A platinum wire dips into the solution to be titrated, 

and a voltmeter measures the potential of the solution with respect to the standard 
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hydrogen electrode, (a) Write an expression in terms of the concentrations of chro¬ 

mium species only that gives the potential of the titrated solution at any point during 

the titration, (b) Write a similar expression, but entirely in terms of the concentra¬ 

tions of vanadium species and hydrogen ion only, (c) What is the relation between 

these two expressions at any point in the titration? (d) What is the voltage reading 

when 0.91 of the initial Cr++ has been converted to Cr+3? (e) What is the relation 

between Cr++ and V(OH)4+, and between Cr+3 and VO++ at the equivalence point 

of the titration? (f) Derive an expression that shows how the voltage at the equiv¬ 

alence point depends on the two standard potentials and the concentration of H . 

7.15 Electrolytic cells containing as electrolytes zinc sulfate, silver nitrate, and copper 

sulfate were connected in series. A steady current ot 1.50 amp was passed through 

them until 1.45 gm of silver were deposited at the cathode of the second cell. How 

long did the current flow? What weights of copper and of zinc were deposited0 

7.16 In the electrolysis of sodium sulfate, the reaction that occurs at the anode can 

be written 
2H20 -* 4H++ 02 + 4e“. 

If a steady current of 2.40 amp is passed through aqueous sodium sulfate tor 1 hr, 

what volume of oxygen measured at 25°C and 1-atm pressure is evolved? 
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CHAPTER 8 

CHEMICAL 
THERM OH YNAMICS 

The previous three chapters have been concerned with the quantitative descrip¬ 

tion of reacting systems. We have found two related ways of expressing the 

tendency of reactants to be converted to products: by use of the equilibrium 

constant K for the reaction, or by means of its standard cell potential AS0. 

While we can describe the extent to which a reaction proceeds, as yet we have 

no insight into why some reactions have large equilibrium constants, while 

those of other reactions are small. A study of chemical thermodynamics will 

lead us to an understanding of chemical reactivity by showing how the equilib¬ 

rium constant of a reaction is related to the properties of individual reactants 

and products. The role of thermodynamics in understanding chemistry can be 

illustrated by the following diagram: 

Thermo- 
<-> 

dynamics 

Note that thermodynamics only relates the properties of bulk matter to its 

behavior in physical and chemical processes. Its great strength is that it accom¬ 

plishes this without making any assumptions about the molecular structure of 

matter. Because thermodynamics deals only with the macroscopic, observable 

properties of matter, without assumptions of its atomic nature, it is a subject 

of very general applicability, and immense reliability. 

Equilibrium 

constants 

Properties 

of pure 

substances 

in bulk 

Statistical 

mechanics 

Properties 

of 

molecules 



Thermodynamic reasoning is based on three laws. Two of these, the ones of 

most immediate application to our experience, are: 

The energy of the universe is constant. 

The entropy of the universe is increasing. 

These laws are not derived. They are deduced from our experiments with the 

behavior of matter in bulk, and summarize the universal features of all our 

experience. Their generality has been demonstrated repeatedly, and we expect 

conclusions based on them to hold true in whatever new experiments we perform. 

In order to use these laws, we must know what energy and entropy are—how 

they are measured and related to other properties of matter. Once we have 

accomplished this, we will be able to show how a number of things we have 

regarded as isolated empirical facts can actually be derived from these more 

fundamental laws of thermodynamics. For example, we will be able to prove 

that for a general reaction between ideal reagents 

aA + hB = cC + dD, 

there should be an equilibrium constant of the form 

rc [C]C[D]d 
[AMBP 

(8.1) 

That is, the existence of Eq. (8.1) is not just an isolated experimental fact; it 

is a consequence of the laws of thermodynamics and the properties of ideal 

gases and solutions. Furthermore, we shall find that we can associate a quantity 

with each compound and element, called its standard free energy, and that the 

equilibrium constant of any reaction can be expressed in terms of the free 

energies of reactants and products. Thus thermodynamics shows how the value 

of any equilibrium constant is related to the properties of individual pure 

reactants and products. This application alone makes thermodynamics an 

immensely helpful subject to the chemist. 

8.1 SYSTEMS, STATES, AND STATE FUNCTIONS 

In performing a controlled experiment, we select the part of the universe of 

interest to us, and attempt to isolate it from any uncontrolled disturbances. 

This object, whose properties we wish to study, is called the system. All other 

parts of the universe, whose properties are not of immediate interest, are called 

the surroundings. The surroundings may influence the properties of the system 

by, for example, determining its temperature or pressure, but in a carefully 

designed experiment these influences will be controlled and measurable. 

Thermodynamics is concerned with the equilibrium states of systems. An 

equilibrium state is one in which the macroscopic properties of the system, such 
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as its temperature, density, and chemical composition, are well defined and do 

not change with time. Thus thermodynamics is not concerned with the rate 

at which chemical or physical processes occur, nor does it attempt to describe 

systems while these changes are going on. Thermodynamic reasoning can be 

used to tell us whether it is possible, in principle, to go from one particular 

state of the reactants to some particular state of the products of a reaction, but 

it cannot tell us whether that change can be accomplished in a finite time. 

This information may seem limited but it is still very valuable. If application 

of thermodynamics shows that a particular reaction is impossible, there is no 

point to attempting to make it proceed. If thermodynamics shows the reaction 

is possible, in principle, then it may be worth the effort to accomplish it in 

practice. A notable example of this use of thermodynamics occurred in the 

efforts to convert graphite to diamond. Many attempts to accomplish this 

conversion in the laboratory failed, but thermodynamics showed the reaction 

was possible under certain conditions of high temperature and pressure. This 

assurance encouraged researchers to continue their efforts, which eventually 

were successful. 

The description of thermodynamic systems is made by giving the values of 

certain quantities called state functions. A state function is a property of a 

system which has some definite value for each state, and which is independent 

of the manner in which the state is reached. Pressure, volume, and temperature 

are state functions, and there are five others which are important in thermo¬ 

dynamic arguments. State functions have two very important properties. 

First, assigning values to a few state functions (usually two or three) auto¬ 

matically fixes the values of all others. Second, when the state of a system is 

changed, the changes of the state functions depend only on the initial and final 

states of the system, and not on how the change is accomplished. 

As an illustration of the first property of state functions, consider the con¬ 

sequence of assigning values to the volume V and the temperature T of one 

mole of an ideal gas. We know that then the pressure must assume the value 

P = RT/V. Thus the value of one state function is automatically determined 

by specifying the values of the volume and temperature. All other state func¬ 

tions also assume definite values, although the algebraic relation between them 

and volume and temperature may be complicated. 

To demonstrate the second property of state functions, we need only consider 

a change in the state of an ideal gas from Pi = 1 atm, V\ = 22.4 liters, 

Ti = 273°K to a final state in which P2 = 10 atm, V2 = 4.48 liters, and 

T2 = 546°K. Then we say that the pressure change* AP is given by 

AP = P2 — Pi — 9 atm, 

* The symbol A always stands for the operation of subtracting the initial value of a 
quantity from its final value. Thus AP = P/ — P, = P2 — Pi. 
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and the volume change is 

AF = F2 — Vi = 17.9 liters, 

while the temperature change is 

AT = T2 - Tl = 273°K. 

That is, the change in each of these state functions depends only on their values 

in the initial and final states of the system, and not on how the change was 

accomplished. It does not matter that during the change the pressure might 

have risen to 100 atm and the volume decreased to 0.224 liter. Changes in 

state functions are determined only by the initial and final states of the system, 

and not by the path taken between them. 

This property of state functions is by no means trivial, even though it may 

seem obvious. Quantities whose values are not independent of how a change 

occurs are not state functions. For example, the angular separation between 

two points on the earth is a fixed constant which depends on the coordinates of 

the two points. On the other hand, the distance one covers in traveling between 

the points depends on the route one takes. Thus separation is a state function, 

but distance traveled is not. State functions are important in thermodynamics 

because the subject deals only with equilibrium states, and not with how a 

change in state occurs. Therefore thermodynamic decisions as to whether a 

particular change is possible must be based on the accompanying changes of 

state functions, for only these are independent of the way changes occur. 

8.2 WORK AND HEAT 

In mechanics, work is defined as the product of a force times a displacement. 

That is 

mechanical work s force X distance, 

xv = f X r, 

where / is a constant force applied in the direction of the displacement r. Work 

is the means by which the energy of a mechanical system is changed. .Thus, if 

we raise a mass m to a height h against the gravitational acceleration g, we 

apply a force mg over a distance h and do work 

w = mg X h 

on the mass. We also say that we have changed the (potential) energy of the 

mass from an arbitiary amount taken as zero at the surface of the earth to a 

new value mgh at the height h. 
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If we apply a constant acceleration a to a free particle of mass m over a 

distance r2 — r j, the work done on the particle is w = ma(r2 — rj). But 

where (v2 + tq)/2 is the average velocity over the distance r2 — r1; and t is 

the time taken to travel this distance. Also, we have 

so we get 

v2 — Vi = at, 

/ \ (v 2 — fi) 
w = ma[r2 — rq) = m---- X 

mv 1 mv\ 
~ ~2 2~ 

(8.2) 

The right-hand side of Eq. (8.2) is just the final kinetic energy of the particle 

minus the initial kinetic energy. Once again, the work done on a simple mechan¬ 

ical system is equal to the change in its energy. 

-r2-- 

q-4«—(q—q)-*- 

Area A 

Expansion of a gas against an external force fex FIG. 8.1 

A particularly important form of work is that associated with a pressure- 

volume change. Consider Fig. 8.1, which shows a gas confined by a piston 

expanding against a constant external force/ex- We can again calculate the work 

as the product of the force and the displacement. However, in this and in all 

future applications, we want the symbol w to assume a special significance: iv is 

the work done on the system by the surroundings. When a gas expands against an 

external force /ex, it actually does work on the surroundings, so w, the work done 

on the gas, should be a negative quantity for this process. We therefore should 

write 

w = —fe*(r2 — rO 

for the work done on the gas during the expansion. Note that since r2 is greater 

than rj, and /ex is always taken to be positive, w is in fact negative for the 

expansion. This is consistent with our choice of meaning for the symbol w. 
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To find an expression for w in terms of pressure and volume, we can introduce 

the area A of the piston to give 

w = -^XA(r2-n). (8.3) 
A 

But A(r2 — ri) = AF, the volume change for the gas. Also/ex/A is the force 

per unit area, or the external pressure, against which the gas expands. Ihus 

Eq. (8.3) becomes 

w = —Pex AF if pressure is constant. (8.4) 

For a more general pressure-volume change in which pressure is not constant, 

we can calculate the work by first saying that an infinitesimal volume change 

dV produces an infinitesimal amount of work dw. Thus 

dw = —Pex dV. 

During this infinitesimal volume change, the pressure remains virtually constant 

at Pex■ The work done in a finite displacement is the sum of such infinitesimals, 

or 

w = ~f Jv i 

Pex dV. (8-5) 

This is a general formula which allows us to compute the work, if we know how 

Pex depends on V. If the external pressure is constant throughout the expansion, 

we can take it outside the integral sign and write 

w 
rv 

-Pex / 
Jv, 

dV = -Pex(V2 - Vi) = -Pex AF, 

and we recover Eq. (8.4). 

Note that it is the external pressure that is used in calculating the work. 

No matter what the gas pressure is, a volume change does no work unless the 

system is linked to the surroundings by an external force represented by Pex. 

If this external force is zero, there is no mechanical link between the system and 

its surroundings, and no mechanical work can be done on or by the system. 

Consideration of Eq. (8.5) shows that the work done in a process depends on 

how the change from Vi to V2 is accomplished. We can see this more clearly 

by referring to Fig. 8.2. There are two particularly simple paths by which a 

system may change its state from Pj, Vi, to P2, V2. In part (a), we first change 

the volume from V\ to V2 at a constant pressure P\. Then we change the 

pressure from Pi to P2, keeping the volume constant. In part (b) we simply 

304 CHEMICAL THERMODYNAMICS | 8.2 



reverse the order of changes. In Fig. 8.2 the work done in following each of 
the paths is represented as the area under each of the curves followed from the 
initial to the final state. It is clear from this drawing that the work done depends 
on the path followed, even though the initial and final states are the same. 
Consequently, we must conclude that work is not a state function, for its value 
depends on the path taken between states. 

Work is the only means by which energy can be transferred to and from the 
simple hypothetical systems of mechanics. However, we must recognize that 
there is another way in which energy can be exchanged with systems of the real 
world. If a temperature difference exists between a system and its surroundings, 
energy may be transferred by “heat flow”—radiation or conduction. 

P P 

Work done in going from the initial to the final state depends on the path followed. fig. 8.2 

The concept of heat is clouded by an historically based tendency to think of 
heat as “something” that “flows.” In truth, heat is not a substance. It is, like 
work, a method by which systems exchange energy. The proof of this was given 
by James Joule who showed that the same change in state (i.e., a certain rise in 
temperature) can be accomplished either by doing work on a body, or by heat¬ 
ing it. Furthermore, the amount of heat, measured in calories, and the amount 
of work, measured in joules, necessary to effect any given change always stand 
in a fixed ratio. That is, one calorie of heat always produces the same change 
in the state of a system as do 4.18 joules of work. Thus heat and work are 
both methods of changing the energy of a system, and 1 calorie = 4.18 joules. 
To distinguish between them, we need only say that work is energy transferred 
by virtue of a mechanical link between systems, and that heat is energy trans¬ 
ferred due to a temperature difference. 

Our discussion of the nature of heat allows one more conclusion. Heat is not 
a state function. This must be so, for as Joule showed, the same change in 
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state may be brought about by using either heat or work. That means that the 

amount of heat used to make the state change depends on how the change in 

state is made. For the path in which work alone is used, the heat used is zero. 

For the path in which heat alone is used, the heat used is, of course, not zero. 

Thus the heat used depends on the path between states, and heat is not a state 

function. 

8.3 THE FIRST LAW OF THERMODYNAMICS 

Our discussion has suggested that there is a very important difference between 

heat and work on one hand, and energy on the other. Heat and work refer to 

processes—events in which displacements occur or temperature changes. In 

contrast, energy is a property that can be associated with a single equilibrium 

state of a system. It appears then that energy is a state function. 

This can be seen most clearly by thinking about the energy of simple mechan¬ 

ical systems, for example, a free particle of mass m moving in a vacuum with 

velocity v. We know that such a system has a kinetic energy \mv2. If it is at 

a height h above the surface of the earth, we say its potential energy relative 

to the earth’s surface is mgh. We see that the kinetic and potential energies of 

this simple system are functions of its state, that is, its velocity and position. 

Thus the energy of a simple mechanical system is definitely a state function. 

Any macroscopic amount of a chemical substance can be regarded as a col¬ 

lection of simple mechanical systems. Is it possible to associate an internal 

energy with a chemical system, and is this energy a state function? To answer 

this, let us consider two different states of a system, and two different paths, 

a and b, which connect them. If we say that in going from state 1 to state 2 

along path a, we must put into the system an amount of energy AEa, and if by 

making the same state change by following path b, we must put into the system 

an energy AEb, then if internal energy is a state function, 

A Ea = A Eb. 

This must be true, since the change in a state function is independent of the 

path taken between states. 

But suppose that energy is not a state function, and that for the sake of 

argument AEb > AEa. What would be the consequences? We could take the 

system from 1 to 2 along path a; this requires us to put in an amount of energy 

AEa- Then we could return the system to state 1 by path b. This would allow 

us to extract an amount of energy A Eb- As a result of these operations, we would 

obtain a net amount of energy AEb — AEa, and the system would be unchanged. 

There would be nothing to prevent us from repeating the process and obtaining 

more energy. 

As attractive as this creation of energy is, all attempts to achieve it have 

failed. The failure has been so well documented that it is accepted as a general 

truth and expressed as the law of conservation of energy: energy may be neither 
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created nor destroyed, only transferred or changed from one form to another. 

As a consequence of the law of conservation of energy, we must conclude that 

AEa = AEb for our example, and that the energy change must be independent 

of the path taken between states. In other words, internal energy is a state 
function, and the basis for this conclusion is the overwhelming experimental 

evidence that energy is conserved. 
Now consider the effect of adding energy to a system as an amount of heat q. 

If energy is conserved, and if the system does no work, q must appear as a 
change in the internal energy of the system AE. Thus 

AE = q (no work done). 

If, in a separate experiment, we do work on a system but do not allow it to 

transfer heat to or from its surroundings, then the work done must appear as 
an internal energy change of the system. In this case 

AE = w (no heat transferred). 

In general, we can expect to find processes in which heat is added to, and work 

is done on, a system. The foregoing examples lead us to the expression 

A E — q + w, 

internal energy _ heat added 

change to system 

work done 

on system ’ 

(8.6) 

Equation (8.6) is a mathematical statement of the first law of thermodynamics. 

We can say, then, that the first law of thermodynamics is just the law of con¬ 

servation of energy, in which specific account of heat effects has been taken. 

Note carefully that both the heat added to a system and the work done on the 

system are assigned positive symbols. This is a convention which is now followed 

by most textbooks on thermodynamics and physical chemistry. In the past, 
however, many books followed the convention that w was the work done by 

the system. If this definition of w is made, then the first law of thermodynamics 

must be written 

AE = q — w (older convention), 

and the pressure volume work is given by 

w = f P dV (older convention). 

Therefore, when another book is consulted, it is important to ascertain which 

convention is being followed, in order to avoid confusion. 

We have remarked that thermodynamics deals only with macroscopic prop¬ 

erties of matter, and does not use the results of the atomic theory in any way. 
However, in order to understand the significance of the thermodynamic state 
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functions most fully, it is often helpful to use the results of the atomic and 

kinetic theories. Thus we may ask for an explanation, in terms of atomic 

properties, of what internal energy is. The internal energy of a system results 

from the kinetic energies of its molecules, the potential energy associated with 

forces between molecules, and the kinetic and potential energies of the electrons 

and nuclei in molecules. This may not be a complete list of contributions to 

the internal energy, and in fact we should add to it the energy associated with 

the existence of the mass of the system. When the internal energy of a system 

changes, some or all of these contributing energies change. The virtue of 

thermodynamics is that it shows us how to use the internal energy concept, 

without requiring that we analyze the individual contributions to the internal 

energy of a system. 

Measurement of AE 

Suppose we have a chemical process in which reactants at 25°C are completely 

converted to products at the same temperature. This is a change in the state of 

a chemical system, and there must be a definite value of AE associated with it. 

The value of AE is of interest, for it tells how' the internal energies of reactants 

and products differ. It is a quantitative comparison between the mechanical 

stabilities of reactants and products. How can we measure the AE of a chemical 

reaction? 

To answer, we need only refer to Eq. (8.6), 

AE = q-\- w, (8-6) 

and recognize that when a chemical reaction occurs, under ordinary circum¬ 

stances the only way the system can do work is by a pressure-volume change. 

Thus 

w —/;■ 
JV1 

P dV, AE -f+r Jv 1 

PdV. (8.7) 

But if the reaction were run in a closed container so that the volume of the 

system wras constant at V wre would have 

AE 
-«+/’ 

J v. 
P dV 

= q -f- 0 (constant F) 

= Qv. (8.8) 

We see that AE is numerically equal to the heat absorbed by the system when 

the process occurs at constant volume. The subscript in Eq. (8.8) emphasizes 

this point. 
To measure AE, we need only carry out a reaction at constant volume and 

measure the heat evolved or absorbed. If heat is evolved, qv is a negative 
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number, and the internal energy of the products is lower than that of the 

reactants. Reactions in which heat is evolved are said to be exothermic. If heat 
is absorbed by the system during the reaction, qv is positive, AE is positive, 

and the products have a greater internal energy than the reactants. Reactions 
in which heat is absorbed by the system are said to be endothermic. 

Enthalpy 

Commonly, chemical reactions are run not at constant volume, but at a constant 

pressure of 1 atm. Consequently, the heat absorbed under these conditions is 
not equal to AE or qv- In order to discuss thermal effects for reactions run at 

constant pressure, it is convenient to define a new function of state by the 
equation 

H = E + PV. (8.9) 

The enthalpy H, defined by Eq. (8.9), is definitely a state function, since its 
value depends only on the values of E, P, and V. Note also that enthalpy 
must have the units of energy. 

A change in enthalpy can be expressed as 

AH = AE + A (PV) 

= qw-{-A(PV). (8.10) 

Let us restrict our attention to changes that occur only at constant pressure. 

For such changes, 

w = —P AVI 
} constant pressure only. 

A (PV) = P AV I 

Using these relations in Eq. (8.10) gives us 

AH = q - P AV + P AV 

= qp- (8.11) 

Thus the enthalpy change is equal to the heat absorbed qp when a reaction is 

carried out at constant pressure. For an exothermic process AH is negative, 
and for an endothermic process AH is positive. 

How different are AH and AE? We have 

AH = AE + A(PV). (8.12) 

For reactions in which only liquids and solids are involved, very little volume 

change occurs, because the densities of all condensed substances containing the 

same atoms are similar. If the reactions are run at the relatively low pressure 

of 1 atm, A (PV) is very small, so we have 

AH = AE (reactions involving only solids and liquids). 
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On the other hand, if gases are produced or consumed during the reaction, 

AH and AE can be quite different. Since for ideal gases, 

PV - nRT, 

it follows that at a constant temperature, 

A {PV) = AnRT, 

where An is the change in the number of moles of gas due to chemical reaction. 

Thus we obtain from Eq. (8.12), 

AH = AE + AnRT (constant T). (8.13) 

When AH and AE are expressed in units of calories, we must use R = 1.987 

cal/mole-deg in Eq. (8.13). 

Example 8.1 When 1 mole of ice melts at 0°C and a constant pressure of 1 atm, 
1440 cal of heat are absorbed by the system. The molar volumes of ice and water are 
0.0196 and 0.0180 liter, respectively. Calculate AII and AE. 

Since AH = qP we have 
AH = 1440 cal = 4770 J. 

To find A E by Eq. (8.12), we must evaluate A (PV). 

Since P = 1 atm, we have 

A (PV) = P AV = P(V2 - Ti) = (1)(0.0180 - 0.0196) 

= —1.6 X 10-3 liter-atm = —0.039 cal = 0.16 J. 

Since AH = 1440 cal, the difference between AH and AE is negligible, and we can 

say that AE = 1440 cal or 4770 J. 

Example 8.2 For the reaction 

C(graphite) + 5O2 = CO 

at 298°K and 1 atm, AH = —26,416 cal. What is AE, if the molar volume of graphite 

is 0.0053 liter? 
We see that the net change in the number of moles of gas is An = +£. Thus (AT) 

due to the net production of gas is $ X 22.4 = 11.2 liters. This is much greater than 
the volume decrease caused by the disappearance of solid graphite; so we can neglect 

the latter and say that 

AH = AE + AnRT, 

-26,416 = AE + £(1.987) (298), 
AE = -26,416 — 296 = -26,712 cal — 111,763 J. 
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8.4 THERMOCHEMISTRY 

We now realize that the AH associated with any change in state can, in principle, 
be found either directly as the heat absorbed by the system at constant pres¬ 

sure, or indirectly from a measured qv and use of Eq. (8.12). A quantity useful 
in discussing chemical reactions is the standard enthalpy change A//0. This is 

the enthalpy change of the system when the reactants in their standard states 

are converted to the products in their standard states. The standard state of 

a substance is its most stable form at 1-atm pressure and at a temperature 
which is usually specified as 298°K. Thus we can write 

C (graphite) + 02(g) = C02(g), 

AH°298 = -94.05 kcal = -393.5 kJ. 

This means that when one mole of carbon is completely converted to one mole 

of carbon dioxide, with reactants and products at 1-atm pressure and 298°K, 
94.05 kcal of heat are evolved, and the standard enthalpy change for the reaction 

is —94.05 kcal. 
The combustion of carbon to carbon dioxide can be carried out quantitatively 

in a calorimeter, and its accompanying AH measured conveniently. The same 

is true for the reaction 

CO(g) + i02(g) = C02(g), 

AH0298 = -67.63 kcal = -283.0 kJ. 

In contrast, the combustion of carbon to carbon monoxide, 

C (graphite) + |02(g) = CO(g), (8.14) 

is difficult to carry out quantitatively. Unless an excess of oxygen is used, the 
combustion of carbon is incomplete, but if an excess of oxygen is used, some of 

the carbon monoxide is oxidized further to carbon dioxide. However, using 

the fact that enthalpy is a state function, we can make the direct measurement 

of AH for reaction (8.14) unnecessary. 

co+ 

Alternative paths for the conversion of fig. 8.3 
carbon and oxygen to carbon dioxide. Since 
enthalpy is a function of state, A/-/i must 
equal the sum of AH2 and AH3. 
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The way to accomplish this is to realize that there are two paths which, in 

principle, can be used to convert graphite and oxygen to carbon dioxide. These 

paths are illustrated in Fig. 8.3. We might carry out the reaction directly by 

step 1, for which the enthalpy AH i is known. Alternatively we could proceed 
from reactants to products by steps 2 and 3, and with these steps are associated 

the enthalpy changes AH2 and AH3. Since H is a state function, AH for the 

conversion of carbon to carbon dioxide is independent of the reaction path. This 

means that 
AH\ — AH2 d- AH 3. 

Both AH 1 and AHz have been measured; therefore 

AH 1 = —94.05 kcal, 

AH3 = —67.63 kcal, 

AH2 = AH 1 - AH3 = -26.42 kcal. 

This is the desired standard enthalpy change for the conversion of carbon to 

carbon monoxide: 

C(s) + 402(g) = CO(g), AH°98 = -26.42 kcal. 

The argument we have just used is a specific example of Hess’ law of constant 

heat summation: the heat evolved or absorbed at constant pressure for any 

chemical change is the same regardless of the path by which the change occurs. 

Our use of Hess’ law is equivalent to the following procedure: We algebraically 

combine the chemical reactions whose enthalpy we know so as to obtain the 

desired reaction. To obtain the enthalpy of the reaction, we algebraically 

combine the known values of AH in the same way as the reactions. Thus 

C(s) + 02(g) = C02(g) AH° = -94.05 kcal 

~[CO(g) + -|02(g) = C02(g)] —[AH0 = -67.63] kcal 

C(s) + *02(g) = CO(g) AH0 = -26.42 kcal 

A slightly more involved calculation is needed to determine the AH° of 

C(s) + 2H2(g) = CH4(g) 

from the measured values of AH0 for 

(a) C(s) + 02(g) = C02(g), AH0 = - 94.1 kcal, 

(b) H2(g) + £02(g) = H20(1), AH° = - 68.3 kcal, 

(c) CH4(g) + 202(g) = C02(g) + 2H20(1), AH° = -212.8 kcal. 

To obtain the desired reaction, we must multiply equation (b) by 2, add equa¬ 

tion (a) to it, and subtract equation (c). The values of AH0 must be combined in 
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exactly the same way. We have 

C(s) -f- 02(g) — 002(g) AH° = — 94.1 kcal 
2 X [H2(g) + i02(g) = H20(1)] 2 X [AH° = — 68.3] kcal 

- [CH4(g) + 202(g) = C02(g) + 2H20(1)] - [AH0 = -212,8] kcal 

C(s) + 2H2(g) = CH4(g) AH° = - 17.9 kcal 

To summarize: a AH is associated with each reaction. When any number of 

reactions are algebraically combined to yield a net reaction, the values of AH 
are combined in exactly the same way to give the AH of the net reaction. 

The use of Hess’ law permits us to avoid performing many difficult calori¬ 

metric experiments. A particularly efficient way to tabulate known thermo¬ 
chemical information is by recording the enthalpy of formation of compounds. 

The enthalpy of formation is the AH of the reaction in which a pure compound 

is formed from its elements, with all substances in their standard states. Thus 
for the reactions 

C(s) + i02(g) = CO(g), AH0 = AHf(CO) = -26.4 kcal, 

H2(g) + *Oa(g) = H20(1), AH° = AH/°(H20,1) = -68.3 kcal, 

H2(g) + 02(g) + C(s) = HCOOH(l), AH0 = AH^HCOOH) = -97.8 kcal, 

the enthalpy changes are the enthalpies of formation of carbon monoxide, 

liquid water, and formic acid, respectively. The enthalpies of formation of 
elements in their standard states are zero, by definition. 

To see why enthalpies of formation are useful, let us try to calculate the 
AH0 of 

HCOOH(l) = CO(g) + H20(1), A H° = ? 

We can use thermochemical information available to us if we imagine that this 
reaction is conducted along a path in which formic acid is first decomposed to 

the elements C, H2, and 02, and these elements are then used to form CO and 
H20. This path is illustrated in Fig. 8.4. 

Since AH° for the net reaction is independent of path, we have from Fig. 

8.4, 

AH 1 ■— AH 2 "F AH 3. 

H2+O2+C 

Alternative paths for the conversion of 
formic acid to carbon monoxide and water. 
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Table 8.1 Enthalpies cf formation, AHj (kcal/mole) at 298°K 

INORGANIC COMPOUNDS 

H20(g) -57.79 CO(g) - 26.41 

H20(l) -68.32 C02(g) - 94.05 

H202(g) -32.53 CaO(s) -151.8 

03(g) 34.0 Ca(OH)2(s) -235.6 

HCI(g) -22.06 CaC03(s) -288.4 

so2(g) -70.96 BaO(s) -133.5 

S03(g) -94.45 BaC03(s) -290.8 

H2S(g) - 4.81 BaS04(s) -345.3 

N20(g) 19.49 Fe203(s) -196.5 

NO(g) 21.60 AI203(s) -399.1 

N02(g) 8.09 CuO(s) - 37.6 

NH3(g) -11.04 ZnO - 83.2 

ORGANIC COMPOUNDS 
Gases 

Methane, CH4 -17.89 Ethylene, C2H4 12.50 

Ethane, C2Hg -20.24 Propylene, C3Hg 4.88 

Propane, C3H8 -24.82 l-butene, C4H8 0.28 

n-butane, C4H10 -29.81 c/s-2-butene, C4H8 - 1.36 

Isobutane, C4H10 -31.45 trans-2-butene, C4H8 - 2.40 

Acetylene, C2H2 54.19 Isobutene, C4H8 - 3.34 

Liquids 

Methanol, CH3OH -57.02 Acetic acid, CH3COOH -116.4 

Ethanol, C2H5OH -66.35 Benzene 11.72 

GASEOUS ATOMS 

H 52.1 C 171.7 

0 59.1 N 112.5 

Cl 29.0 Br 26.7 

But AH 3 is the sum of the enthalpies of formation of CO and of H20: 

AH 3 = AHf° (CO) + A#/°(H20,1). 

Also, AH2 is the negative of the enthalpy of formation of formic acid, since 

step 2 is just the reverse of the formation of formic acid from its elements. Thus 

AH 2 = HCOOH), 

and 

AH! = AH?(CO) + Atf/0(H20,1) - A///0(HCOOH) 

= +3.1 kcal. (8.15) 

We can see from this example that the enthalpy of a reaction can be calcu¬ 

lated from the enthalpies of formation of reactants and products. The general 

expression, of which Eq. (8.15) is a specific example, is 

AH = X AH/(products) — AH/(reactants). (8.15a) 
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The equation is a consequence of the fact that any reaction can proceed, in 

principle, by a path in which the first step is decomposition of reactants to 

the elements, and the second step is formation of the products from these ele¬ 

ments. To the overall AH of reaction, the first step contributes —AH/ for each 

reactant, and the second contributes AHf for each product. 
Besides being a useful quantity in thermochemical calculations, the enthalpy 

of formation is a quantitative expression of the mechanical stability of a com¬ 
pound with respect to its elements. Table 8.1 gives the enthalpy of formation 

of a few common compounds. When A Hf is positive, the compound is ener¬ 

getically less stable than its elements, and when A Hf is negative, the compound 
has lower energy and is more stable than its elements. 

Heat Capacity 

The heat capacity of a substance is the amount of heat required to raise one 
mole of material one Celsius degree. Because heat is not a state function, the 

amount required to produce a given change in state depends on the path 
followed. Therefore two types of heat capacity are used: Cp for changes at 
constant pressure, and Cy for changes at constant volume. The mathematical 
definitions are 

Cp = 
dqp 
dT 

Cv = 
dqv 
dT 

dH 
dT ’ 

dE 
dT' 

(8.16) 

(8.17) 

The amount of heat needed to change the temperature of n moles of material 

from Ti to T2 is therefore 

qP = n Cp dT 

= nCp / dT = nCp AT if Cp is a constant; (8.18) 
JTi 

qv = n f Cv dT 

— nCv / dT = nCy AT if Cv is a constant. (8.19) 

The difference between Cp and Cy can be found very simply. For one mole 

of material, 

d(PV) H = E + PV d_H=d_E d^V) 
^ ’ dT dT ' dT 

Cp = Cy + 
dT 
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Table 8.2 Molar heat capacities at constant 
pressure, Cp (cal/mole-deg) 

h2 6.90 C02 8.96 

02 7.05 ch4 8.60 

n2 6.94 c2h6 12.71 

CO 6.97 nh3 8.63 

Cl2 8.14 H20(g) 5.92 

For solids and liquids, d(PV)/dT is generally small, so CP = CV- For ideal 

gases, PV = RT, and 

d(PV) d(RT) 

dT dT 
C p = Cv + R- 

The gas constant R = 2 cal/mole-deg, and by referring to the heat capacities 

listed in Table 8.2 we can see that R, the difference between Cp and Cv, is an 

appreciable fraction of the heat capacity. 

Temperature dependence of AH 

We have been concerned with the values of AH for reactions at one temperature 

only. It is conceivable that AH for a reaction is a function of temperature. 
In this section we will show how application of the fact that AH is independent 

of reaction path supplies us with an expression for the temperature dependence 

of AH. 
Consider the general reaction 

aA + bB = cC + dD. 

The conversion of reactants to products at a temperature T i can be carried out 

by either of the two paths shown in Fig. 8.5. Let us suppose we know AHi, 
the enthalpy change when reactants and products are at temperature TV We 
wish to find AH2, the enthalpy change when the reaction is run at tempera¬ 

ture T 2. 

(aA+bB) at T2 (cC+dD) at T2 
c — 

A H2 - 1 

FIG. 8.5 Alternative paths for converting reactants 
to products. 

AH' 

— 
A H] 

AH" 

-»-o 
(aA+6B) at 1\ (cC+dD) at T, 
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Referring to Fig. 8.5, we see that since AH is independent of path, 

AH i = AH' + AH 2 + AH", 

where AH' is the enthalpy change associated with changing the temperature 
of the reactants at constant pressure from Tx to T2, and AH" is the enthalpy 

change which results from changing the temperature of the 'products from T2 to 

Tl at a constant pressure. The total heat capacity of the reactants is 

Cp(reactants) = aCp( A) -f- 6Cp(B), 

so for AH' we have 

Similarly, 

and therefore 

AH' = Cp(reactants) dT. 

Cp (products) = cCp(C) + dCp( D), 

AH" = / Cp (products) dT. 
J t2 

Now AH2 is the only unknown, so 

AH2 = AHx - AH" - AH' 

= AH i - Cp (products) dT — / Cp (reactants) dT. 

We can change the sign of the second term on the right-hand side of this equa¬ 
tion if we reverse the limits of integration. Thus 

AH2 — AHi + / Cp(products) dT — / Cp(reactants) dT. 
JTX JT1 

This expression can be made more compact if we define 

A Cp = Cp (products) — Cp (reactants) 

- cCp(C) + dCp(D) - aCp(A) - bCP(B). 

The integrals can be combined to give 

AH2 — AH j -)- A Cp dT. (8.20) 

We see now that the difference in AH at the two temperatures depends on 

the difference of the heat capacities of the products and reactants. Often this 

8.4 THERMOCHEMISTRY 317 



heat-capacity difference is very small, and AH is virtually independent of tem¬ 

perature, particularly over small temperature ranges. 

Example 8.3 Find A//0 at 398°K for the reaction 

C0+ |02 = C02, Ml°298 = -67,640 cal = -283.0 kJ. 

From Table 8.2 we find 

CP( CO) = 6.97, Cp(02) = 7.05, and CV(C02) = 8.96, 

all in cal/mole-deg. Therefore 

ACP = 8.96 — 6.97 — 7.05/2 = —1.53 cal/deg, 

AH%s = A//°98 + ACp(398 - 298) 

= —67,640 — 153 = —67,790 cal = —283.6 kJ. 

Thus the Ml of reaction is only slightly more negative at this higher temperature. 

8.5 CRITERIA FOR SPONTANEOUS CHANGE 

We have derived several relations from the first law of thermodynamics which 

help us make efficient use of calorimetric data. However, we have not yet 
achieved our major purpose—to learn to use the properties of individual sub¬ 

stances to predict the extent to which chemical reactions proceed. It is true 
that we can associate an enthalpy of formation with each compound and with 

them calculate the AH of a reaction. But the value of AH alone is not a sufficient 
criterion to decide whether a reaction will proceed spontaneously from reactants 

to products. Granted that there are many exothermic reactions that have large 
equilibrium constants, it is nevertheless an experimental fact that endothermic 

reactions can also proceed almost to completion. 
There are also physical processes that have a preferred spontaneous direction 

which cannot be rationalized on the basis of the first law of thermodynamics 

alone. An ideal gas expands spontaneously into an evacuated container. It 

does not do this in order to lower its energy, for experiments show that the 

energy of an ideal gas is independent of its volume. The reverse process, a 
spontaneous collection or compression of the gaseous molecules, is allowed by 

the first law of thermodynamics, but it never occurs. As another example, 
consider that we always observe that heat flows from a hot to a cold body. 

This process and its reverse both obey the law of conservation of energy. How¬ 
ever, heat never does flow spontaneously from a cold to a hot body. It is clear, 

then, that the first law of thermodynamics alone does not explain the direc¬ 

tions of spontaneous physical or chemical processes. 
This conclusion should not be a surprise. In previous chapters we have 

remarked that the tendency of molecules to seek a state of minimum energy is 
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insufficient to explain the occurrence of many chemical and physical changes. 
We had to recognize an additional tendency toward maximum molecular chaos. 

In this section we will be concerned with the thermodynamic description of this 
tendency toward molecular chaos, and we will see that the spontaneous direc¬ 

tion of physical and chemical processes can be found by application of the 
second law of thermodynamics. First, some remarks about spontaneous and 
reversible processes are in order. 

Reversibility and Spontaneity 

A reversible process is one which is carried out so that the state functions of a 
system never differ by more than an infinitesimal amount from one moment to 

another. Since the thermodynamic functions change infinitely slowly in revers¬ 

ible processes, they are sometimes said to be quasistatic processes. Another 
characteristic of a reversible change is that the state functions of a system, like 
pressure and temperature, never differ from those of the surroundings by more 

than an infinitesimal amount. For example, to carry out an expansion reversibly 

we must have 

Pint — Pex + dP, 

and for a reversible compression, 

P int = P ex — dP, 

where P,nt is the pressure of the system. Since no more than an infinitesimal 
pressure difference exists between the system and surroundings, the net accel¬ 

eration acting on the system is infinitesimally small, and any change will occur 

quasistatically. Likewise, for a reversible temperature change we must have 
Tex = Tint ± dT, if the heating or cooling is to take place infinitely slowly. 

A spontaneous or irreversible mechanical change takes place at a finite rate. 

If the process involves a change in pressure or temperature, these variables 

differ by a finite amount between the system and its surroundings. Thus there 
is an important practical difference between a reversible and an irreversible 

process. The direction of a reversible process can be reversed at any time, just 
by making an infinitesimal change in the surroundings. That is, a reversible 
compression can be turned into a reversible expansion just by decreasing the 

externally applied pressure by an infinitesimal amount. On the other hand, an 
irreversible process cannot be stopped or reversed by an infinitesimal change in 

external conditions, for any such change cannot overcome the finite differences 
in pressure, temperature, or other thermodynamic functions which are respon¬ 

sible for the irreversible process. 
Another of the important differences between reversible and irreversible 

processes is that the work done on a system in a reversible process is less than in 
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the corresponding irreversible process between the same two states. In the case 

of a reversible compression, Pex and Pint differ by only an infinitesimal amount, 

so we can write 

W rev / Pex dV + dP) dV ^ dV, 

since the product of infinitesimals can be neglected. For an irreversible com¬ 

pression, Pex > Pint, so we have 

Wirrev Pex dV > Pint dV — Wrev 

Note that the choice of the direction of the inequality results from realizing 

that for a compression, F2 < V1; so the integrals (and the work) are positive. 

Since Pex > Pint, the inequality must have the direction indicated. Thus we 

are able to conclude 

Wrev ^ "l^irrev- (8.21) 

As an illustration of Eq. (8.21), consider the reversible, isothermal compres¬ 

sion of an ideal gas. Since for a reversible process Pint — Pex, and P = nRT /V 

for an ideal gas, we obtain 

Wrev 
nRT 

dV 

Wrev -nRT In — . 
Fx 

) 

(8.22) 

Thus the work done on the gas in the reversible compression is the area under 

the P — F isotherm between Fx and V 2, as shown in Fig. 8.6. Since V2 < V1, 

wrev > 0, as must be true if work is done on the gas. 
Let us choose the corresponding irreversible compression to be one in which 

the external pressure is suddenly increased from Pex — Pi = nRl /I 1 to 
Pex = p2 = nRT/V2, without an appreciable change in the volume of the system. 

The compression from V1 to V2 then occurs with a constant external pressure 
Pex = p2 = nRT/V2. This path is also illustrated in Fig. 8.6. The work done 

by the gas in this irreversible compression is 

'UJirrev 

-P JV1 

Pex dV -P2(F2 - Fx) > 0. 

The graphical representation of this work in Fig. 8.6 makes it clear that w rev < 

Wirrev, as was concluded above for the general case. 
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p 

(a) 

P 

(b) 

Work done in the isothermal compression of an ideal gas: (a) reversible path; (b) irrevers- fig. 8.6 
ible path, for which Pex is plotted. 

Now let us compare the work done in the reversible and irreversible expansions 

of a gas. For the reversible case, Pex = -Pint, and 

w r —p JV, 
Pint dV. 

For the irreversible expansion, Pex < Pint, and V2 > Vso 

w; —f Jvt 
Pex dV > f 

J V, 

Pint dV — Wrev- 

The direction of the inequality comes about because the integrals with their 

negative signs are negative quantities, and since Pex < Pint, the integral on the 
left is less negative (greater) than the one on the right. Thus we again conclude 

f^rev ^ 'U-’irrev, 

which is algebraically the same result as we obtained earlier, but now we are 

saying that for an expansion, irrev is more negative than tcirrev- Figure 8.7 
illustrates this point. 

In the application of the second law of thermodynamics, the distinction 

between gjrrev and qTev is important. We can deduce the relation between these 

two quantities from the inequality (8.21). Imagine the same change state, once 
carried out reversibly, and again carried out irreversibly. We can write 

5rev = AE tCrev, 9irrev = AF Wii-rev- 

8.5 | CRITERIA FOR SPONTANEOUS CHANGE 321 



FIG. 8.7 Comparison of work done by a gas in isothermal expansions: (a) reversible path; (b) irre¬ 
versible path, for which Pex is plotted. 

Since the change in state is the same, subtraction of the second of these equations 

from the first gives 

5 rev ?irrev == ^irrev ^rev* 

But by (8.21), w rev tCjrrev; SO 

9rev — ?irrev ^ 0, ?rev ^ 9irrev- (8.23) 

Thus there is a general relation between the heat absorbed by a system in a 

reversible process, and that in the corresponding irreversible process. This 

inequality will be used to deduce the criterion for spontaneous change. 

8.6 ENTROPY AND THE SECOND LAW 

Just as the first law of thermodynamics is a general statement about the 

behavior of the state function, energy, the second law tells us the general be¬ 
havior of another state function called entropy. The entropy change of a system 

for any change in state is defined by 

A S = (8.24) 

In words, Eq. (8.24) says: take the system from state 1 to state 2 by a reversible 

path. To compute the entropy change of the system, divide each infinitesimal 
amount of heat by the temperature T at which it is absorbed by the system, 

and add all these quantities. 
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Entropy changes must always be computed by taking the system from the 

initial state to the final state by means of a reversible path. However, entropy 
is a state function, and thus AS is independent of the path. Although these two 
statements sound contradictory, they are not, since 

dyrev . dqirrev 

~Y~ T ' 

The situation here is similar to that encountered in the calculation of AH\ All 

is independent of the path, but it is only equal to q when a process is carried 

out at constant pressure. The entropy change is also independent of the path, 
but it is equal to f dq/T ordy when the process is carried out reversibly. It is 

J dq/T which depends on how the process is done, and not AS of the system. 
The formal statement of the second law of thermodynamics is: 

The entropy S is a function of state. In a reversible process, the entropy of the universe is 
constant. In an irreversible process, the entropy of the universe increases. 

As we have remarked, the thermodynamic laws are not derived mathematically, 

but are general expressions of experimental findings. To “prove” the first law 

of thermodynamics, that energy is a state function, we showed that to deny its 
validity would be to say that creation of energy is possible, and all other experi¬ 

ence tells us this is not true. To “prove” the second law of thermodynamics, 

we will demonstrate that to deny it implies that gases can spontaneously com¬ 
press themselves, and that heat can flow spontaneously from cold to hot regions. 

Entropy Calculations 

We shall demonstrate the use of Eq. (8.24) by calculating the entropy change 
that accompanies the isothermal expansion of an ideal gas. For an isothermal 

process Eq. (8.24) becomes 

,2 
a cr I dqTev 
AS ~ J, T~ 

1 f2 
— ji J i dqIcy 

q rev 

” T ’ 

where qiev is the heat added to the system in going from state 1 to state 2. 

We now wish to express AS in terms of the initial and final volumes of the gas. 
To do this we make use of the experimental fact that the internal energy of an 
ideal gas depends only on its temperature. Before we use this fact, we might 
remark that it is consistent with the gas-kinetic theory discussed in Chapter 2, 
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where we wrote for an ideal gas, 

E trans — ^ET. 

Thus, if temperature is constant, the translational energy and the total internal 

energy of an ideal gas are constant. For an isothermal expansion, then, 

AE = 0 = q + w. 

If the expansion is both reversible and isothermal, we have by Eq. (8.22) 

Therefore 

2 rev — tCrev nRT In ^ . 
Vx 

nR In Vs 
Vx 

(8.25) 

Note that if V2 > V\, the gas has expanded and its entropy has increased. 

If V 2 < Vi, we have a compression and a decrease in the entropy of the gas. 
Are these last two statements consistent with the second law of thermo¬ 

dynamics? The restriction imposed by the second law is that the entropy 

change of the universe (system and surroundings) must be zero for a reversible 

process. Therefore, to see whether the second law is obeyed, we must find the 

entropy change of the surroundings as well as that of the system. 
In a reversible expansion, the gas absorbs an amount of heat grev> so its 

entropy change is 
Ao _ . 
^°gas — rji 

The surroundings, a thermostat at the temperature T, lose an amount of heat 

equal in magnitude to qrev. Thus the entropy change of the surroundings is 

A Q _ _ 9 rev 
iA^surr rp ’ 

where we are to take qT0V as a positive number, the heat absorbed by the system. 

The total entropy change is 

AS = ASgas AS surr 
qrev   9rev 

~T T 

As the second law requires, AS — 0 for a reversible process. 
Consider now the irreversible isothermal expansion from V\ to I 2- Since S 

is a state function, AS for the gas is independent of the path, so we can say 

AS gas nR In Zl 
Vx 
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How then does the irreversible expansion differ from the reversible process? 
Suppose that the expansion is carried out against zero external force. Then 

w = 0, and since AE = 0 for an isothermal process on an ideal gas, q = 0. 
Therefore no heat is lost by the surroundings, which means that the entropy 
change of the surroundings is zero. For this irreversible expansion, 

A*S = A»Sgas + A5surr 

Fo 
= nR In ~ + 0, 

V1 

which is greater than zero. The entropy of the universe increases, as the second 
law states. 

Now we can examine the possibility of a spontaneous compression of an ideal 
gas from F1 to Fs. The entropy change of the gas would be 

A£gas = nR In ~ , 

which, because Fs < V1, is negative. If the compression is to occur spontane¬ 

ously with no outside influence, then surely A5surr = 0, since the surroundings 
change in no way. Thus for the total entropy change, we obtain 

AS = nR In 
Fs 

F, 
+ 0 < 0. 

Since the total entropy change of the universe is negative, this spontaneous 
compression of a gas is impossible according to the second law. To put it 

another way: to deny the validity of the second law would be to say that 

spontaneous compressions of a gas are possible, when in fact they are never 
observed. 

Let us consider one other application of the entropy criterion for spontaneous 

change. Two blocks of material at different temperatures Th and Tc are brought 
together momentarily. The cold block absorbs a small amount of heat dq, and 

the hot one loses the same amount. The amount of heat transferred is so small 

that the temperatures of the two blocks change by a negligible amount. Does 
this spontaneous heat flow produce an increase in entropy? 

We can find the entropy changes by realizing that if the cold body received 

the heat dq reversibly, its entropy change would be 
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Likewise, if the hot body were to lose the heat dq reversibly, its entropy change 

would be 

dSh T h 1 

where we are still thinking of dq as a positive number, the heat absorbed by the 

cold block. These entropy changes, calculated with the assumptions of revers¬ 

ible transfer of heat, are equal to the entropy changes experienced by the blocks 
when they are brought together momentarily and undergo an irreversible 

transfer of heat dq. Thus the total entropy change of the blocks is 

dS = dSc -f- dSh 

Since Th > Tc, the total entropy change is greater than zero, as the second 

law requires. If heat dq had passed from the cold block to the hot one, the 

entropy change would have been 

dS — dSc -(- dSh 

Thus the unaided flow of heat from a cold to a hot body violates the second 

law of thermodynamics. 
These two examples suggest how we might use the second law to find the 

direction of spontaneous changes. We should compute the entropy change 

associated with a contemplated process. If the entropy change of the system 

and its surroundings is negative, the process will not occur. If the total entropy 

change is positive, the process will occur spontaneously. This is a possible way 
of using the second law, but we shall find that there are other more efficient 

procedures. 

Temperature Dependence of Entropy 

Let us calculate the entropy change which accompanies a finite temperature 

change. We must imagine a reversible process in which the temperature of the 
surroundings is never more than infinitesimally different from the temperature 

of the system. Then, in the expression 
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we can replace clqrev by 

dqrev = nCp dT, 

or 

dqrev = nCv dT, 

depending on whether the process takes place at constant pressure or at constant 

volume. The results are 

AS ^iT (8.26) 

nCv dT 

T 
(8.27) 

If the temperature interval is small, Cp or Cy can be regarded as constant, and 

we obtain 

AS = nCp In > AS = nCv In ~ ■ 
1 1 -'l 

More frequently Cp and CV cannot be taken as constants, and the exact form 
of their temperature dependence must be known before Eqs. (8.26) and (8.27) 

can be integrated. 

8.7 MOLECULAR INTERPRETATION OF ENTROPY 

While thermodynamics makes no assumptions about the structure of matter, 
our understanding of the thermodynamic functions can be deepened if we try 

to interpret them in terms of molecular properties. We have seen that gas 
pressure arises from molecular collisions with the walls of a vessel, that tempera¬ 

ture is a parameter which expresses the average kinetic energy of molecules, 

and that internal energy consists of the kinetic and potential energies of all 

atoms, molecules, electrons, and nuclei in a system. What molecular property 

does entropy reflect? 
To answer this question we must first recognize that there are two ways of 

describing the state of a thermodynamic system: the macroscopic description 

provided by the values of state functions like P, V-, and T, and the microscopic 

description which would involve giving the position and velocity of every atom 
in the system. The complete microscopic description is never used for thermo¬ 

dynamic systems, since just to write down the 3 X 6 X 1023 positional coordi¬ 

nates and the 3 X 6 X 1023 velocity components of a mole of monatomic 
material would require a pile of 8" X 11" paper 10 light years high. Moreover, 

this single microscopic description would be valid only for an instant, since 
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atomic positions and velocities are always changing rapidly. Ihus, as we 
observe any thermodynamic system in an equilibrium macroscopic state, its 

microscopic state is changing at an enormous rate. 
Despite this molecular activity, the properties of a macroscopic state remain 

constant. This must mean that there are very many microscopic states con¬ 

sistent with any macroscopic state. Entropy is a measure of the number of micro¬ 

scopic states associated with a particular macroscopic state. 

To explore this point more thoroughly, let us use a deck of cards as an analog 

to a thermodynamic system. There are two distinct macroscopic states of the 

deck: either it is “ordered,” with the cards in some standard sequence, or it is 
“disordered,” with the cards in a random sequence. The microscopic state of 

the deck can be specified by giving the exact order in which the cards are 

arranged. We can see that there is only one microscopic state which corre¬ 

sponds to the “ordered” macroscopic state. On the other hand, there are many 
microscopic states associated with the “disordered” macroscopic state, because 

there are many random sequences of the cards. Since entropy measures, and 

increases with, the number of microscopic states of the system, we can say 

that the disordered state has higher entropy than the ordered state. 
By using this analysis, we can see why a deck of cards moves from an ordered 

macroscopic state to a disordered state as the cards are shuffled. Since there are 
more microscopic states associated with the disordered macroscopic state, it is 

simply more probable for the deck to end up in the more disordered condition. 

If we apply this reasoning to the behavior of thermodynamic systems, we can 

see that entropy has a natural tendency to increase because this corresponds to 
the movement of systems from conditions of low probability to states of greater 

probability. 
It is now possible to understand why a gas expands spontaneously into a 

vacuum. In the larger volume, each molecule has more positions available than 

in the smaller volume. Consequently, in the larger volume, the gas has more 

microscopic states associated with it than it had in the smaller volume. The 
gas is found to fill the container because that is the most probable condition for 

it to be in. Apparently it is not impossible for the gas molecules to come 
together spontaneously, but it is overwhelmingly improbable for them to do so. 

There is another conceptual matter we must discuss. We have noted that 

there is a general tendency of systems to move toward a state of molecular 
chaos. Why is it that these more disordered states are more probable than 

ordered states? The answer lies in what we really mean by disorder. A dis¬ 
ordered system is one for which we have a relatively small amount of information 

about the exact microscopic state. The reason we lack this detailed knowledge 

is that the system has many microscopic states available to it, and the best we 
can do is guess that it is in some one of them at any instant. If only a few 
microscopic states were possible, we might be able to make an accurate guess 

of which one the system was in, and thus make a detailed description of the 

positions and velocities of the molecules. Thus a “disordered ’ system is one 
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that has a relatively large number of microscopic states available to it, and that 

is why a disordered state is more probable than an ordered state. 
The values of AS associated with phase changes provide a simple illustration 

of the connection between entropy and molecular chaos. When a solid melts 

reversibly at constant pressure, it absorbs an amount of heat equal to AHf, the 

enthalpy of fusion. Thus the entropy change upon fusion is 

AS 
?rev A Hf 

Tf ’ 

which is always positive. For the ice-water transition, AH f = 1440 cal, Tf = 

273°K, and AS = 5.28 cal/deg, or 5.28 entropy units (eu). We also know that 
in a liquid the molecules are in a more disordered state than in a crystalline 

solid, and this is consistent with the increase of entropy upon melting. 

When a liquid is converted to a vapor at constant temperature, it absorbs 
heat, and therefore its entropy increases. We can also recognize that, there is a 
corresponding increase in molecular chaos as a result of the evaporation. If 

the evaporation is carried out reversibly at the boiling temperature Tb to form 
the vapor at 1-atrn pressure, we have 

A p 9rev AHvap 
AS - ~Y - Tb ■ 

For one mole of diethyl ether, AHvap = 6500 cal, Tb = 308°K, and A»S = 

21.1 eu. When similar calculations are made for a variety of other liquids, it 

is found that AS = 21 eu in virtually all cases. This means that the increase 
in molecular disorder upon evaporation is nearly the same for all liquids. 

8.8 ABSOLUTE ENTROPIES AND THE THIRD LAW 

In our use of the enthalpy, we found it helpful to select a certain state of 
matter and assign to it a definite enthalpy of formation. Our choice, that the 

enthalpy of formation of all elements in their standard states is zero, is based 

on convenience alone. Any other state of the elements might have been assigned 
zero enthalpy. In the case of entropy, the situation is somewhat different, for 
the association of entropy with the number of microscopic states available to 

a system suggests a natural choice for the entropy zero. In a perfect crystal at 

absolute zero there is only one possible microscopic state: each atom must be 
at a crystal lattice point, and must have a minimum energy. Thus we can say 
that this is a state of perfect order, or of zero entropy. This important decision 

is expressed in the third law of thermodynamics: 

The entropy of perfect crystals of all pure elements and compounds is zero at the absolute 
zero of temperature. 
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The third law allows us to assign an absolute entropy to each element and 
compound at any temperature, l'rom Eq. (8.26) we have for one mole of 

material, 

Sr-S>=f/^ 

St = /o > (S.2S) 

since S0 = 0, according to the third law of thermodynamics. The heat capacity 
of substances depends on temperature, so in order to find the entropy at 298 Iv 
of a material like diamond, we would have to measure Cp as a function of 
temperature from 0°K to 298°K. Then we could evaluate the integral in 
Eq. (8.28) graphically by plotting CP/T as a function of T, and measuring the 
area under the curve. Such a plot is shown in Fig. 8.8. 

FIG. 8.8 Cp/T as a function of temperature 
for copper metal. The area under 
the curve is equal to the absolute 
molar entropy of copper at 298°K. 

Suppose that we are interested in the standard absolute entropy $298 of a 
substance that melts at some temperature Tf less than 298°K. Then the en¬ 
tropy associated with this phase transition must be included in the calculation 
of the absolute entropy. To do this, we modify Eq. (8.28) to give 

*•“ CCTdT + ^f+CCTdT’ 

where CP and C'P are the heat capacities of the solid and liquid, respectively, 
and AHf is the enthalpy of fusion. If any other phase changes, such as vaporiza¬ 
tion, occur between 0°K and 298°K, their contribution to the entropy must be 

included in a similar fashion. 
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Table 8.3 Absolute entropies, S° (cal/mole-deg) at 298°K 

Solid elements Solid compounds Liquids 

Ag 10.20 BaO 16.8 Br2 36.4 
B 1.7 BaC03 26.8 H20 16.73 
Ba 15.1 BaS04 31.6 Hg 18.17 
C (graph) 1.37 CaO 9.5 
C (diam) 0.6 Ca(OH)2 17.4 
Ca 9.95 CaC03 22.2 
Cu 7.97 CuO 10.4 
Fe 6.49 Fe203 21.5 
S (rh) 7.62 ZnO 10.5 
Zn 9.95 ZnS 13.8 

Monatomic gases Diatomic gases Polyatomic gases 

He 30.13 h2 31.21 h2o 45.1 
Ne 34.95 d2 34.6 C02 51.1 
Ar 36.98 F2 48.6 S02 59.4 
Kr 39.19 Cl2 53.3 H2S 49.1 
Xe 40.53 Br2 58.6 N02 57.5 
H 27.39 CO 47.3 N20 52.6 
F 37.92 NO 50.3 nh3 46.0 
Cl 39.46 n2 45.7 03 56.8 
Br 41.80 02 49.0 
1 43.18 HF 41.5 
N 36.61 HCI 44.6 
C 37.76 HBr 47.4 
0 38.47 HI 49.3 

Organic compounds 

Gases 
Methane, CH4 44.5 Ethylene, C2H4 52.45 
Ethane, C2H6 54.8 Propylene, C3H6 63.80 
Propane, C3H8 64.5 1-butene, C4H8 73.48 
n-butane, C4H10 74.10 c/s-2-butene, C4H8 71.9 
Isobutane, C4H10 70.42 frans-2-butene, C4H8 70.9 
Acetylene, C2H2 49.99 Isobutene, C4H8 70.2 

Liquids 
Methanol, CH3OH 30.3 Acetic acid, CH3COOH 38.2 
Ethanol, C2H5OH 38.4 Benzene, C6H6 48.5 

Table 8.3 gives the absolute entropies of a few elements and compounds. 
Note that the substances of similar molecular structure have nearly the same 

entropy. For example, among the solids the substances having the lowest 

entropies are hard rigid crystals with light atoms. This occurs because the 
entropy or disorder of a crystal is related to the amplitudes of vibration of its 

atoms about their lattice points. In soft crystals composed of heavy atoms the 
amplitude of vibration is relatively large, and in effect each atom moves in a 
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larger volume and has more freedom than is available in a more rigid crystal. 

Just as in the case of gases, this larger volume available to atoms means larger 

entropy. 
We can see also that the entropies of all monatomic gases are nearly the 

same, and tend to increase with atomic mass. The entropies of diatomic gases 

are greater than those of the monatomic gases, and the entropies of the tri¬ 
atomics are higher still. In general, as molecular complexity increases, entropy 

increases, for in a complex molecule the atoms can vibrate about their equilib¬ 

rium positions, and just as in solids, this motion contributes to the number of 
possible microscopic states and to the entropy. It is also true that the ability 

of a polyatomic molecule to rotate about its center of mass contributes to the 

entropy, and this contribution becomes larger as the molecule becomes more 

complex. 
The relation between molecular structure and entropy can be made quanti¬ 

tative; it is possible to calculate the entropy of a substance from the values 

of certain of the mechanical properties of its molecules. This is the subject 
material of statistical mechanics, which was mentioned at the beginning of this 

chapter. We shall discuss some of the quantitative aspects of this procedure 

in Section 8.14. For the present, however, we shall find it useful to remember 

the qualitative relation between entropy and molecular complexity. 
It is possible to calculate the entropy changes that accompany chemical 

reactions by using the table of absolute entropies. For the general reaction, 

aA + 6B = cC + clD, 

AS0 = cS°(C) + dS°(D) - a*S°(A) - bS°(B), 

= ^2S° (products) — (reactants). 

This procedure is of course, similar to the procedure used to find AH° from 

enthalpies of formation. 

Example 8.4 Calculate the AS0 for each of the following reactions: 

(a) £N2(g) + £02(g) = NO(g), 

(b) Ca(s) + £02(g) = CaO(s), 

(c) £H2 = H. 

For reaction (a), we have 

AS0 = S°(NO) - ££°(N2) - £S°(02) 

= 50.3 - £(45.7) - £(49.0) 

= 3.0 eu. 

The entropy change is small, since reactants and products have similar structures. 
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A similar procedure for reaction (b) gives 

AS0 = <S°(CaO) - S°(Ca) - iS°(02) 

= -24.9. 

There is a substantial decrease in entropy here because the oxygen is being converted 

from a form in which there is considerable disorder (O2), to a form in which the atoms 

are well localized at crystal lattice points. For reaction (c), 

AS0 = S°(H) - JS°(Ho) 

= 11.9. 

Now we have an increase in entropy, because when one hydrogen atom is dissociated 

from another, there are more microscopic states available to them than when they 

are linked. 

Our criteria for reversible and irreversible processes are 

8.9 FREE ENERGY 

AS = 0, reversible process, 

AS > 0, irreversible process, 

and we have now seen how to apply them to the processes of gas expansion and 

heat flow. While these relations allow us to decide whether a contemplated 

process will be reversible or irreversible, they are not always very convenient 

to use. In particular, the entropy change referred to is that of the system and 
its surroundings. If the criterion of spontaneity were expressed in terms of the 

properties of the system alone, it would be much easier to use. 

To accomplish this, all we need do is define a new function of state called 

the Gibbs free energy, G: 

G = H - TS. 

To find the criterion of spontaneity in terms of G, we first write down its 

differential 

dG = dH — TdS - S dT. 

Let us restrict our arguments to the conditions most common in chemical 

processes: constant temperature and pressure. In these circumstances 

dT - 0, 

dH = dq, 

dG = dq — T dS (constant P, T). 
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But by the definition of entropy, T dS = dqTev) therefore 

dG = dq — dqTev (constant F, T). 

There are now two possibilities. If a process is reversible, dq = dqrex, so 

dG — 0 (reversible process, constant P, T). (8.29a) 

If a process is irreversible, q < qrev, and dq < dqTev, by our arguments in 

Section 8.5. Therefore, 

dG = dq — dqTev, 

dG < 0 (irreversible process, constant F, T). (8.29b) 

Equations (8.29a) and (8.29b) apply to infinitesimal changes. For finite changes 

they become 

AG = 0, reversible process, (8.30a) 

AG < 0, irreversible process. (8.30b) 

To decide whether a given process will be spontaneous when carried out at 

constant temperature and pressure, we have only to calculate the AG of the 
system alone. If AG is negative, the process will be spontaneous. If AG is zero, 

the initial and final states can exist at equilibrium with each other, with no net 

change. If AG is positive, the process will not occur spontaneously, but its 

reverse will. 

Let us test this criterion on a simple phase change, the evaporation of water 

to form vapor at 1-atm pressure. The free energy change is given by 

G = H — TS, 

AG = AH -T AS, (8.31) 

for a process at constant temperature. For the reaction 

H20(1) = H20(g) (F = 1 atm), 

AH = 9710 cal, and AS = 26 eu. We then have 

AG = 9710 - 26T. (8.32) 

Let us find the temperature that makes AG = 0, for when this is true, liquid 

water and water vapor at 1-atm pressure will be in equilibrium with each other. 

To make AG = 0, we must have 

0 = 9710 - 26T, 

T = 373°Iv. 

This temperature is, of course, the normal boiling point of water, the tempera¬ 

ture at which the liquid and vapor at 1-atm pressure are in equilibrium. 
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To find the conditions under which the evaporation of water to the vapor 
at 1 atm is spontaneous, we return to Eq. (8.32) and require that AG < 0. 
This will occur if 

Q710 
T > ^ > 373°K. 

2b 

Therefore, at temperatures greater than 100°C, the formation of water vapor 
at 1-atm pressure is spontaneous. Thus the conclusion reached by thermo¬ 

dynamic argument is consistent with our intuitive expectation that water 

heated above its boiling temperature will evaporate irreversibly to vapor at 
1-atm pressure. 

Finally, we note from Eq. (8.32) that if T < 373°K, then AG is positive. 
This means that at temperatures below the normal boiling point, the evapora¬ 

tion of water to form the vapor at 1-atm -pressure will not occur. On the other 

hand, for the reverse process, water vapor at 1 atm going to liquid water, AG is 

negative when T < 373°K. Thus the condensation of a supersaturated vapor 
is a spontaneous irreversible process. 

8.10 FREE ENERGY AND EQUILIBRIUM CONSTANTS 

To decide whether a certain change of state is spontaneous, we have only to 
evaluate the accompanying free-energy change and apply Eq. (8.30). Note, 

however, that entropy and, consequently, free energy depend on pressure. 
Therefore we must be careful to specify the pressure or, in general, the concen¬ 

tration conditions for which a free-energy change is evaluated. Hence, it is 
convenient to tabulate the standard free-energy change AG° of a process, where 

AG° is the free-energy change that accompanies the conversion of reactants in 
their standard states to products in their standard states. 

In discussing thermochemical problems, we associated a standard enthalpy 

of formation with each compound in its standard state. In a similar manner we 
can define a standard free energy of formation AG/ as the free-energy change 

that occurs when one mole of a compound in its standard state is formed from 

its elements in their standard states. It is not difficult to obtain values of AG/, 

since this quantity is related to AH® and AS/ by 

AG/° = AH/° - T AS/0, 

where all the thermodynamic quantities are evaluated at a single temperature T. 

Table 8.4 gives the values of AG° at 298°K for several compounds. The stand¬ 

ard free energy of formation of all elements is defined to be zero. 
Once we have the value of AG° for each compound, we can compute the 

standard free-energy change for any reaction 

aA -|- bB = cC -\- dD 

8.10 FREE ENERGY AND EQUILIBRIUM CONSTANTS 335 



Table 8.4 Free energy of formation, AG]? (kcal/mole) at 298°K 

GASES SOLIDS 

h2o -54.64 BaO -126.3 

h2o2 -24.7 BaSO-i -350.2 

03 39.06 BaC03 -272.2 

HCI -22.77 CaO -144.4 

S02 -71.79 c--co3 -269.8 

so3 -88.52 Ca(OH)2 -214.3 

h2s - 7.89 Fe203 -177.1 
n2o 24.9 Al203 -376.8 

NO 20.72 CuO - 30.4 

no2 12.39 Cu20 - 34.98 

nh3 - 3.97 Si02 -192.4 

CO -32.81 ZnO - 76.05 

co2 -94.26 Pb02 - 52.34 

ORGANIC COMPOUNDS 

Methane, CH3 -12.14 
Gases 

Ethylene, C2H4 16.28 

Ethane, C2H6 - 7.86 Propylene, C3He 14.90 

Propane, C3Hs - 5.61 1-butene, C4H8 17.09 

n-butane, C4H10 - 3.75 c/s-2-butene, C4H8 15.74 

Isobutane, C4H10 - 4.3 trans-2-butene, C4H8 15.05 

Acetylene, C2H2 50.00 Isobutene, C4H8 13.88 

Methanol, CH3OH -39.73 
Liquids 

Acetic acid, CH3COOH -93.8 

Ethanol, C2HsOH -41.77 Benzene, CeHo 29.76 

GASEOUS ATOMS 

H 48.57 1 16.77 

F 14.2 C 160.84 

Cl 25.19 N 81.47 

Br 19.69 0 54.99 

by the expression 

AG° = c A<?,°(C) + d AG>°(D) - a AG>°(A) - b AG,°(B). 

In general, 

AG° = 22 AG/° (products) — X) A Gy° (reactants). (8.33) 

If AG° for a chemical reaction is negative, the reactants in their standard 
states will be converted spontaneously to products in their standard states. If 

AG0 is positive, this conversion will not be spontaneous; however, the cor¬ 

responding reverse reaction will be. 
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Just because AG° for a reaction is positive does not mean that no products 

are formed from reactants in their standard states. Some products can be 

formed, but not in concentrations as great as that of the standard state. Our 
problem now is to find out how the magnitude of AG° is related to the actual 

amounts of reactants and products present when a reaction reaches equilibrium. 

To accomplish this, we must have an expression for the dependence of free 
energy on pressure. From the definition of free energy, 

G=H — TS = E + PV — TS, 
we obtain 

dG = dE + P dV + V dP - T dS - S dT. 

But for a situation in which only pressure-volume work can be done, dE = 
dq- P dV, so 

dG = dq + V dP - T dS - S dT. 

Equating T dS and dq then gives us 

dG=VdP — S dT. 

For a pressure change at constant temperature, 

dG = V dP. (8.34) 

In the following discussion, quantities that apply to one mole of material 
will be denoted by a bar superscript, as in V = RT/P. Then for one mole of 

an ideal gas, Eq. (8.34) becomes 

- RT 
dU = ~ dP. 

Let us integrate this expression, taking as one limit of pressure P° = 1 atm, 
the standard pressure. Then the corresponding limit for V will be GQ, the 

standard free energy of one mole of the ideal gas. We get 

RT 
P 

dP, 

V -Z}° = RT In 
P 
po RT In P, 

where Ti is the molar free energy at any pressure P (in atm) and 7j° is the 
standard free energy. If, instead of 1 mole, n moles are considered, we get 

nV= nV° + nRT In P. (8.35) 
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Equation (8.35) is just what we need to relate AG° to the equilibrium con¬ 

stant. The next step is to calculate AG for the general reaction between ideal 

gases, 

aA(PA) + 6B(Pb) = cC(Pc) + dD(PD), 

wrhere Pa, Pb, etc., are the pressures of the reactants and products. We have 

AG = y)(?(products) — ^G(reactants) 

= cV(C) + dG{D) - aU(A) - bV(B). 

Use of Eq. (8.35) gives 

AG = [cV°(C) + dG°(D) - aU°(A) - bV\B)] + cRT In Pc 

+ d RT In Pd — a RT hi P\ — b RT In Pb- 

The bracketed terms are equal to AG°, and the remaining terms can be com¬ 

bined to give 

AG = AG" + RT In ' (8-36) 

This is an important equation. It relates the free-energy change for any ideal 

gas reaction involving arbitrary pressures of reactants and products to the 

standard free-energy change and the pressures of the reagents. 

Suppose that the pressures in Eq. (8.36) are those that exist when reactants 
and products are in equilibrium with each other. Then AG = 0, since initial 
and final states are in equilibrium, and 

0 = AG° + RT In 
0Pc)cCPD)d 

L^aWb)6 eq 

Because the pressures are those that exist at equilibrium, the term in brackets 

is equal to the equilibrium constant K, so 

AG° = —RT In K. (8.37) 

Equation (8.37) is the quantitative relation between the standard free-energy 

change and the equilibrium constant that we have been seeking. 

The importance of Eq. (8.37) cannot be overstated. In the first place, it 
constitutes a proof that there is such a thing as the equilibrium constant. That 

is, since G is a state function, AG° must be a fixed constant whose value depends 
only on the temperature and the nature of the reactants and products in their 

standard states. Therefore Eq. (8.37) says that at a fixed temperature, the 

concentration ratio 

(Pc)e(Pp)d K 
(PaHPb)” 

is a fixed constant at equilibrium. 
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The second important feature of Eq. (8.37) is that it supplies the bridge 
between properties of individual substances and the extent to which reactions 

proceed. The standard free-energy change can be calculated from the values 
of AGf for reactants and products, and these quantities can be obtained from 

the values of A7/° and S°. Therefore Eq. (8.37) is the final step in the calcula¬ 

tion of chemical reactivity from the “thermal” properties, AHf and S°, of pure 
substances. 

Finally, Eq. (8.37) permits us to make a more thorough interpretation of the 
meaning of the sign of AG°. The use of antilogarithms gives 

K = e-AG0/ffr = io-AG°/2.3flr (8.38) 

We can see now that if AG° < 0, the exponent will be positive, K will be 

greater than unity, and will increase as AG° becomes more negative. Thus 
reactions with the largest negative values of A (7° will tend to proceed to com¬ 

pletion to the greatest extent. Conversely, if A (7° > 0, K will be less than 
unity, and although some products will be present at equilibrium, most material 

will be in the form of reactants. The special and rare case in which AC0 = 0 
corresponds to an equilibrium constant of unity. 

Writing Eq. (8.38) in a slightly expanded form gives more insight into the 
“driving forces” of chemical reactions. We use 

AG° = AH 0 — T AS0, 

which with Eq. (8.38) gives us 

= e&S°IRe-AH°IRT 

__ iQAS°/2.3/fiq-AH°/2.3RT 

We see that the larger AS 0 is, the larger K is. Thus the tendency toward maxi¬ 
mum molecular chaos directly influences the magnitude of the equilibrium 

constant. It is also clear that the more negative AH° is, the larger K is. In 

this way, the tendency of atoms to seek the state of lowest energy helps deter¬ 

mine the equilibrium constant. 
Since the standard state for gases was chosen as 1 atm, the concentration 

unit to be used in the equilibrium constants of gaseous reactions is the atmo¬ 
sphere. However, application of the general relation Eq. (8.37) is not restricted 

to gases. To deal with reactions in solution, the free energy of any “ideal” 

solute can be expressed as 

Tr = RT In > 

where C is any appropriate concentration unit, and C° is the standard con¬ 
centration, for example 1 M. Using this equation, a derivation can be carried 

through to yield Eq. (8.37) with K expressed in concentration units. Thus, 

(8.39) 

(8.40a) 

(8.40b) 
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provided care is taken to specify correct concentration units, Eq. (8.37) can be 
applied to any reaction taking place under ideal conditions in solution or in 

the gas phase. 

Example 8.5 Calculate the standard free energy of formation for ozone at 298°K 
from the values of A//° and S° given in Tables 8.1 and 8.3. The formation reaction is 

|02(g) = 03(g). 

We will calculate AG°(03) by the expression 

AGf = AH° - TAS/. 

The value of A//° obtained directly from Table 8.1 is A//®(03) = 34.0 kcal. The 
entropy of formation must be calculated from 

AS/ = S°(03) - fS°(02) 

= 56.8 - g(49.0), 

AS/(03) = —16.7 cal/mole-deg. 

Therefore 

A Gf = 34,000 - (298)(—16.7) 

= 34,000 + 4980 

= 39,000 cal/mole. 

Example 8.6 Calculate AG° and K for the reaction 

NO + 03 = N02+ 02. 

Is the size of the equilibrium constant principally a consequence of the A//0 or of the 
A<S° for this reaction? For AG° we have from Table 8.4, 

AG° = AGy(N02) + AG/°(02) - AG/°(NO) - AG/°(03) 

= 12.39 + 0 — 20.7 - 39.0 

= —47.3 kcal. 

By Eq. (8.38) 
_ iq-AG°/2.3R7’ _ JO"*-(47,300)/1360 = 5 X 1034. 

The equilibrium constant greatly favors the products. By Eq. (8.40a) 

_ gAS°/Re-AH°/RT 

We can evaluate the contribution of enthalpy and entropy to the equilibrium separately: 

AH° = Ai7/(N02) + AH/(02) - A///°(NO) - AH?(03) 

= 8.09+0 - 21.60 - 34.0 

= —47.5 kcal. 
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For AiS° we have 

AS0 = 5°(N02) + S°(02) - *S°(NO) - S°(03) 

= 57.5 + 49.0 - 50.3 — 56.8 

= —0.6cal/deg. 

Thus by Eq. (8.40b) 
_ 2Q+AS°/2.3Kjq-AH°/2.3R7’ 

= 10-°-1310+34-8 

The entropy change for the reaction is very small, since the geometrical molecular 
structures of products and reactants are very similar. Thus the real “driving force” 
for this reaction is the fact that the products are energetically more stable than the 
reactants. 

8.11 ELECTROCHEMICAL CELLS 

We have already at our disposal one method of obtaining standard free-energy 

changes for chemical reactions: the use of Eq. (8.39). In this section we will 
show that measurement of the standard cell potential AS0 can give us AG° for 

a reaction. This should not be surprising, since we know that AG° and the 

standard cell potential are both related to the equilibrium constant; they 
certainly should be related to each other. 

To establish the relation between AG° and AS0, we must first find the con¬ 
nection between free energy and electrical work. From the definition of free 

energy we get 

dG = dH - T dS - S dT 

= dq + dw + P dV + V dP - T dS - S dT. 

Once again we restrict our argument to a reversible process at constant tem¬ 

perature and pressure, and let dq = T dS. This gives us 

dG = dw + P dV. 

The term P dV is the work done by volume changes, while dw represents all 
the work done by the system. If the system is an electrochemical cell, dw 
includes pressure-volume work and the electrical work, so we can say 

W = WPV + Welec, 

dG= dw + P dV 

= dwpv + dwelec + P dV 

= dwe lec; 

AG = -l-Weiec (P, T constant). (8.41) 

Thus AG for a process is the reversible electrical work done on the system. 
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Our second step is to express the electrical work as the product of an amount 

of charge times the voltage difference through which it is transferred. For n 
moles of electrons, this is given by 

t^elec — 71 X if X A8, 

where 5 is the faraday, the charge on one mole of electrons. The minus sign 

appears here for the same reason it appears in the expression for the pressure- 

volume work. If the system is capable of producing a potential difference AS 

between electrodes, it does work on the surroundings as the charge n passes. 

Hence w, the work done on the system must be negative, and the minus sign 

accomplishes this. Therefore the relation between AG and AS is 

AG = — n<5 AS. (8.42) 

If the change is between standard states, then 

AG°= — n5AS°. (8.43) 

Equation (8.43) shows that measurement of the standard cell potential can 

give us the value of AG° directly. This measurement is in fact one of the most 

convenient ways to obtain free energies of formation. If A G° is known for all 

substances in the cell reaction except one, measurement of AS0 gives AG°, and 

then use of Eq. (8.33) allows calculation of the unknown AG/. 

In Chapter 7, we introduced the Nernst equation, 

AS = AS 
o 0.059 

n 
log Q, 

where Q is the quotient formed by the product of the concentrations of the 

products, each raised to its stoichiometric coefficient, divided by a similar 

product of reactant concentrations. We can now derive the Nernst equation 

from the more general relation Eq. (8.36). First we rewrite Eq. (8.36) in terms 

of concentrations: 

or 

AG = AG°+ RT In 
[Cc]c[CD]d 

[CaMCbP 

AG = AG°+ RT InQ. 

We introduce Eqs. (8.42) and (8.43) to give 

AS = AS0 - ~ In Q. 
n<5 

Converting to base-ten logarithms results in 

AS = AS°-^|^logG. 
n\y 
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To evaluate the constant terms we let 

and find that 

R = 1.98 cal/mole-deg, 

T = 298°K, 

= 23,061 cal/volt,* 

A8 = AS0 
0.059 

n 
log Q, 

which is the usual form of the Nernst equation. 

Equation (8.42) shows that the voltmeter connected to an electrochemical 

cell is really a free-energy meter. A cell reaction proceeds so long as A8 or AG 
is not zero. When A8 = 0, the cell has “run down” or reached equilibrium; 

that is, the reactants and products have reached concentrations at which their 

free energies are the same. 

8.12 TEMPERATURE DEPENDENCE OF EQUILIBRIA 

While Le Chatelier’s principle provides a qualitative guide for predicting how 

equilibria are affected by changes in temperature, we can obtain a quantitative 

relation between K and T by using the thermodynamic concepts available to 

us. To derive this expression, we combine two fundamental relations, Eqs. 

(8.37) and (8.39), 

AG° = -RT InK, (8.37) 

AG° = AH0 - T AS0, (8.39) 

to give 

In K — -—' (8.44) 

This equation says that if AH0 and AS0 are constants independent of tem¬ 

perature, In A is a linear function of l/T. But are AH° and A*S° independent 

of temperature? Equation (8.20) shows that if the difference in the heat 

capacities of reactants and products is very small, then AH° is essentially 

independent of temperature. Likewise, since AS° at any temperature T can 

be expressed as 

AS0 = AS$gS + f —dT, 
J 298 * 1 

* This value is derived by writing 

£F = 96,487 coul = 96,487 volt-coul/volt 

= 96,487 joules/volt, 

1 cal = 4.1840 joules, 

= 96,487/4.1840 = 23,061 cal/volt. 
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if ACp = 0, AS 0 is also independent of temperature. If we accept this approxi¬ 

mation, then Eq. (8.44) teaches us that for an exothermic reaction, K decreases 

as T increases, and for an endothermic reaction, K increases as T increases. 

These facts are consistent with the qualitative conclusions based on Le Chatelier’s 

principle. 

Not only does the sign of AH° indicate the direction in which K changes; 

for a given temperature variation, the magnitude of AH 0 determines how rapidly 

K changes as a function of temperature. According to Eq. (8.44), plotting In K 
as a function of 1/T should give a straight line whose slope is —AH°/R. Thus 

the more negative AH 0 is, the faster In K should decrease as T increases, and 

vice versa. Figure 8.9 demonstrates the validity of these conclusions. 

FIG. 8.9 Log K versus 1/T for two reactions, 
(a) C02(g) + H2(g) = CO(g) + H20(g), 
AH = -9.1 kcal; (b)S08(g) = S02(g) + 
i02(g), AH = 22 kcal. 

Another form of Eq. (8.44) that is particularly useful for numerical calcula¬ 

tions can be obtained by writing 

In Ki = 
AH0 AS0 
RT i + R 

In K2 
AH0 AS0 
RT2 + R 

and then subtracting the first of these expressions from the second. The 

result is 

In 
K2 

K i 
(8.45) 

Equation (8.45) shows that if we know the value of AH n and of the equilibrium 

constant at one temperature, we can calculate K at any other temperature. 

Also, if we measure K at two temperatures, we can calculate AH 0 by Eq. (8.45). 

Thus it is possible to obtain AH0 for a reaction without ever doing a calori¬ 

metric experiment. 
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Example 8.7 For the reaction 

NO(g) + *02(g) = N02(g), 

AG° = —8.33 kcal and AH0 = —13.5 kcal at 298°K. Calculate the equilibrium 
constant at 298°K and at 598°K. 

By Eq. (8.38), 
— jq-AG°/(2.3RD 

= +8330/(2.3) (1.99) (298) 

= 1.28 X 106. 

To find the equilibrium constant at 598°K, we cannot use Eq. (8.38), since we do not 
know AG° at this temperature. However, we can use Eq. (8.45): 

1 K2 051 K* 
ln xT - 2 3 log 5 = 

AH0 (i 
R \T2 Ti, 

2.3(log K2 - 6.12) = 
13,500 / 

1.99 \ v598 ~ 298 

log K-2 = 1.16, 

K2 = 14.4. 

The equilibrium constant of this exothermic reaction is smaller at the higher tem¬ 
perature, which is consistent with Le Chatelier’s principle. 

Example 8.8 For the reaction 

£N2(g) + §H2(g) = NH3(g), 

K = 1.3 X 10-2 at 673°K, and K = 3.8 X 10-3 at 773°K. What is AH0 for this 
reaction in this temperature range? We simply substitute the values of K and T in 
Eq. (8.45) to give 

3.8 X 10 3 AH0 / 1 1 \ 

1.3 X 10-2 ~ L99 \773 _ 673/ ’ 

AH0 = —12.7 kcal. 

8.13 COLLIGATIVE PROPERTIES 

The equations that we have developed will be very useful in our subsequent 

discussions of the descriptive chemistry of the elements. However, it is worth 
noting that Eq. (8.45) in particular can be used to analyze the physical processes 

of boiling-point elevation and freezing-point depression by dissolved substances. 
By using Eq. (8.45), we can find out how the empirical constants for boiling- 

point elevation and freezing-point depression are related to more fundamental 

properties of the solvent. 
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Let us first consider the boiling-point elevation phenomenon in an ideal solu¬ 

tion of a volatile solvent and a nonvolatile solute. The equilibrium is between 

liquid solvent at a mole fraction aq, and its vapor at a pressure of 1 atm. The 

corresponding reaction is 

liquid (concentration aq) = vapor (1 atm). 

The equilibrium constant for this reaction is 

[vapor] _ 1 atm _ 1 

[liquid] [aq] [aq] 

Since we are always interested in the normal boiling point of the solution, the 

vapor concentration is always 1 atm. 
Depending on the concentration aq, the solution boils at different tempera¬ 

tures. To connect Xi and the boiling temperature, we must find the temperature 

dependence of the equilibrium constant. Our general expression is 

K2 AH0 ( 1 l\ 

Kx R \T2 Tj 
(8.45) 

Let us choose 7T as the boiling point Tb of the pure solvent; thus xx = 1, and 
K\ — 1 at 7T = Tb. For K2 we substitute 1/aq, the value of the equilibrium 
constant at the arbitrary temperature T2 = T. Also AH 0 must be the enthalpy 

of vaporization. With these substitutions, Eq. (8.45) becomes 

, Atfvap (Tb - T\ 
ln Xl “ R \ TTb ) 

The boiling-point elevation AT is just 

AT = T - Tb, 

and if the solution is dilute, AT is small and T ~ Tb. 
TTb equal to Tb, and get 

ln xx = — 
AHV&P ^ 

RT\ 

Therefore we can set 

We can simplify this expression further. If we have a two-component 

mixture, then Xi — 1 — x2, and 

ln aq = ln (1 — x2) = — x2, 
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where the last equality holds if x2 is small. Consequently we can write 

—*2 = 
AHvap ^^ 

RTl 
AT 

RTl 

A-ffyap 

X2. 

Let us recall that in Chapter 4 we showed that for dilute solutions, x2 was 
related to the molality m by 

x2 = 
Mx 
1000 m> 

where Mi is the molecular weight of the solvent. Using this relation gives 

AT 
( rtUu \ 
\1000 AHvaJ m 
Kbtn. 

(8.46) 

Equation (8.46) provides us with an explicit expression of the boiling-point 
elevation constant Kb in term of Tb, M i, and AHvap. All of these are properties 

of the solvent alone, so Kb should be applicable to any ideal solution of a 
particular solvent. 

The same type of analysis can be applied to the freezing-point depression 
phenomenon. In this case, the equilibrium is between a pure solid solvent and 
the same material as a liquid of concentration aq. The reaction we consider is 

solid (pure) = liquid (concentration aq). 

Since the concentration of the pure solid is contant, the equilibrium constant 
is simply 

K = [aq]. 

Once again we are interested in the temperature at which equilibrium is 

reached for solutions of various concentration, and therefore we must find the 
relation between K and T. We start with Eq. (8.45) and choose Tx = Tfus, 

the freezing point of the pure solvent. Therefore at Tx, aq = 1 and Ki = 1. 
The equilibrium constant at the arbitrary temperature T = T2 has the value 

K2 = K = xi, and AH° is the enthalpy of fusion. Thus 

AH?US (Tfu8 - T\ 
R \ TT{ug ) 

We realize that the freezing-point depression AT is equal to Tfus — T, and 
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that TTfus Tfya for small AT. As a result we get 

111 Xi 
AHL AT 

R T f2us 

Setting In Xi = In (1 — X2) = — X2 as before gives us for AT 

AT 
RT L 

A H°lnt 
x2. 

Conversion of x2 to molality results in 

AT 
/ RTfuaMA 

\1000 AHfUSJ 
m (8.47) 

Equation (8.47) shows that the freezing-point depression constant K/ is a 

function only of the properties of the solvent itself. 
We turn now to the phenomenon of osmotic pressure, which has been 

described in Section 4.4. As pointed out there, we are dealing with an equilib¬ 

rium between a pure solvent and the same solvent in a solution to which some 

external pressure has been applied. This equilibrium will be reached only when 

the molar free energy of the solvent in solution is the same as that of the pure 
solvent. The molar free energy of an ideal solvent of mole fraction x\ is 

V = RT \nxu 

where G° is the free energy of the pure solvent. Since Xi is less than unity, 

In Xi is negative, and the solvent in solution has a smaller free energy than the 

pure solvent. 
If an external pressure is applied to the solution, the free energy of the solvent 

may be increased to the point at which it is equal to the free energy of the pure 

solvent. According to Eq. (8.34), the effect of pressure on free energy is given by 

dG = VdP 

for a process at constant temperature. Since the osmotic pressure tt is the 
pressure on the solution in excess of that exerted on the pure solvent, the 

increase of the molar free energy due to this pressure is 

AV — V [ dP = 7rV. 
Jo 

We have assumed that the solvent is virtually incompressible, so that the molar 

volume V is independent of pressure. 

348 CHEMICAL THERMODYNAMICS | 8.13 



The combined effects of dilution and of external pressure on the free energy 
of the solvent are given by 

V = T)°+ RT lnxi + tvV. 

When the solvent in solution is in equilibrium with the pure solution, V = G°, 
and 

7rV = —RT In x\. 

Substituting X\ = 1 — x2 and expanding the logarithm as before gives 

7rV = RTx2. 

If the solution is dilute, x2 = n2/n1, and V = V/nu where V is the volume of 

the solution and nx and n2 are the numbers of moles of solvent and solute, 
respectively. Therefore 

7r — = RT — , 
71X 711 

7r = n2 = cRT, (8.48) 

where c is the concentration of solute in moles per liter. Thus we have arrived 

at the expression used in Section 4.4 to relate the osmotic pressure tv to the 

concentration and temperature of the solution. 

8.14 HEAT ENGINES 

Early work in thermodynamics was very much concerned with the operation 

and efficiency of devices for converting heat into useful work. Indeed, there are 

two common statements of the second law of thermodynamics which have to do 

with the existence of natural limitations on the conversion of heat to work. 

In this section, we shall use our understanding of the second law to deduce the 

limiting efficiency with which heat can be converted to work in cyclical or 

repetitive processes such as occur in practical engines. To do this, we shall 

analyze the behavior of an idealized device called the Carnot heat engine. 

The first component of a Carnot heat engine is a source of heat which is 

maintained at a constant high temperature TV In an actual engine, this source 
of heat might be a combustion chamber or nuclear reactor. The second com¬ 

ponent of the Carnot engine is a heat sink, maintained at a low temperature 

Tc, which receives any heat which might be discarded by the engine as it operates. 

In a real working engine this heat sink might be the atmosphere or a cooling 
bath. The engine operates by carrying a working substance through a cycle, 

or by a sequence of changes which converts heat into work and returns the 

working substance back to its original state. The working material is most 
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fig. 8.10 The operation of a Carnot heat engine: (a) Isothermal expansion at Th- (b) Adiabatic 
expansion, (c) Isothermal compression at Tc. (d) Adiabatic compression to original state. 

commonly a gas, but it may be any substance. For convenience, we shall refer 

to the working substance as a gas. 
The cycle used in the Carnot engine is shown in Fig. 8.10. There are four 

steps, each of which is carried out reversibly: 

1. The working gas absorbs q\ units of heat from the hot reservoir; while doing 

so, the gas expands isothermally and reversibly and does work. The value of 

qi is positive, but wi, the work done on the gas, is negative. 

2. The working substance is thermally isolated from the surroundings. The 

gas expands, and does work. However, q2 = 0, since the gas is thermally 

isolated. Such a process is called an adiabatic expansion. Since the gas does 

work without receiving heat, its internal energy and temperature decrease. 
The adiabatic expansion continues until the temperature of the gas has 

dropped from Th to Tc, the temperature of the heat sink, or cold reservoir. 

3. The gas is brought into thermal contact with the cold reservoir and then 
compressed isothermally. This process deposits heat into the cold reservoir, 

so 53, the heat absorbed by the gas, is a negative number. Work is done on the 

gas as it is compressed, so W3 is a positive number. 

4. In the final step, the gas is again thermally insulated and compressed 
adiabatically. Therefore, g4 = 0, and w4 is a positive number. During the 

compression, the gas temperature rises to Th. 

At the end of the cycle the gas has returned to its initial state. Therefore, 

ASgas = 0, AFgas = 0, and so 

5i + 53 = —wi — w2 — wz — W4 = —w. (8.49) 
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Here w is the net work done on the gas, so —w is the net work done by the gas. 

Also qi + <?3 is the net heat added to the gas, so Eq. (8.49) is a statement of the 
conservation of energy. 

To find the limitations on the net work done by the gas, we must consider 
the entropy changes that occur during one cycle. According to the second law 

of thermodynamics, the total entropy change of the gas and the two reservoirs 
must be zero, because the whole cycle is carried out reversibly. That is, 

A*Sgas AS res — 0. 

But ASgas = 0, because the final state of the gas is the same as the initial state, 

and therefore A£res = 0. Thus we can write the entropy change of the reservoirs 
as 

AS,,, = -21-11 = 0. 
T„ T, 

The minus signs appear here, because when (or q3) is absorbed by the gas, 

the same amount is lost by the reservoirs. Now we use 

gi + 93 = — w 

to find that 

_ £j_ , gi + w = Q 

Th Tc 

or 

The quantity —w/qi is just the net work done on the outside world, divided by 

the heat extracted from the high temperature source. Therefore, it is the efficiency 

7j of the reversible Carnot engine. 
Equation (8.50) shows that in order for the efficiency y to approach unity, 

the temperature ratio Tc/Th must approach zero. It can be proved that no 
other heat engine can exceed the efficiency of the Carnot engine, and thus Eq. 

(8.50) provides the limiting value of the efficiency of any heat engine operating 

between the two temperatures Th and Tc. Clearly, it is advantageous to make 

Th as large, and Tc as small as possible, but there are practical limitations imposed 

by nature of heat sources, the properties of working materials, and the avail¬ 

ability of cold reservoirs. In commercial steam heating plants, Th and Tc can be 

maintained at values such that the efficiency is 45 percent even with friction 

and heat losses included. In contrast, the automobile engine operates at an 

efficiency of only 15 percent, partly because of a rather high exhaust manifold 

temperature. 
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8.15 STATISTICAL THERMODYNAMICS 

In Section 8.7 we advanced the qualitative, intuitive argument that entropy 

was related to our lack of detailed knowledge or information about the micro¬ 

scopic state of a system. In this section we shall make this idea somewhat more 

precise, and thereby indicate how entropy can be calculated from the mechanical 
properties of the molecules which make up the system. To begin, we must 

specify what we mean by information. 
The various sources of information such as clocks, radio dials, stop lights, 

etc., which we encounter in our lives can be thought of as devices which send 

messages to us. How much information is in each message? A little reflection 

suggests that the amount of information in any one message decreases as the 

probability that that particular message might be sent increases. For example, 
a railroad gate has two possible messages: if it is up, no train is coming in the 

immediate future; if it is down, a train will be along sometime soon. The 

message that the gate is closed may be very interesting, but does not contain 
much information, since there is only one other possibility. The message that 

the gate is open contains even less information, since this is the usual or more 

probable situation. Contrast this situation with the information conveyed 

by a 24-hour digital clock that gives the time to the nearest minute. If we 
have absolutely no information concerning the time, we know that there are 

24 X 60 = 1440 messages which might be sent, and consequently the informa¬ 

tion in any one of them is quite large. If we know, by virtue of some previous 

experience, that the time is 12 o’clock plus or minus 15 minutes, then the 
amount of information in a message is correspondingly less. We assert, then, 

that if pi is the probability that a message will be sent, the information /,• in 

the message is a function 7,(pt) of p,-, and increases as p, decreases. 
Suppose two messages i and j are sent quite independently of each other. 

It is reasonable to require that the total information received, is the sum 
of the information contained in the separate messages: 

lij(Pij) — Ji(Pi) T" IjiPj)- 

Here p,;- is the probability that the two messages i and j will be sent. If mes¬ 

sages i and j are truly independent, the probability of both being sent is just 

the probability of one times the probability of the other. Thus 

Pij = Pi X pj. 

We see, then, that information is a function of the probability of a message, 

that independent information is additive, and that independent probabilities are 

multiplicative. How then does information depend on probability? The only 
function that satisfies these conditions is the logarithm, and so we must have 

/,• = —k In pi = k In (1/p,), (8.51) 
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where k is, for the moment, an arbitrary positive constant. Since pt- < 1, the 
minus sign is inserted so that will be a positive quantity. We see from the 
definition that 

Ii + Ij = —fc(ln pi + In pj) = k In p{py, 

and since ptJ- = p,- X pj for independent probabilities, it follows that 

Ii —I- Ij = k In pij = Iij. 

This shows that, as we required, information is indeed additive if the proba¬ 
bilities of the messages are independent. 

Now we can start to apply this analysis to the problem of the entropy of 

thermodynamic systems. The microscopic state of a system of independent 
molecules such as an ideal gas can be regarded as a message. This message 

would consist, if we were to use quantum mechanics, of all the quantum num¬ 
bers which specify the motion of all the atoms. If we were to use classical 

mechanics, it would consist of a list of the positions and momenta of all the 

atoms. Clearly, with as many as a mole of atoms, the number of different 
microscopic states possible is enormous. The probability that any one of them 

will occur is, therefore, very very small, and the information contained in the 

message that a particular one has occurred is very great. Since we never do 
know the microstate of a thermodynamic system, we can regard —k In pj as 

a piece of missing information about the system. Of course, other microstates 

occur, and the missing information associated with them may be different 
from —/c In pj. The average missing information would be 

7 = —k In pi - —k pi In pt-. 
i 

That is, we take the missing information associated with each microstate, 

weight it with the probability that the microstate occurs, and add these quan¬ 
tities together. 

We now make a major assertion: the entropy of a system is proportional to 

the average missing information associated with it, and is given by 

S=-kZ pi In pi 
i 

where k has the value of Boltzmann’s constant, 1.380 X 10“16 erg/degree. 

Clearly, in order to test this assertion we would have to calculate the entropy 
of a system and compare it to an experimental measurement. To do this cal¬ 
culation, we must know the values of p,-. This is achieved by saying that in the 

absence of any information concerning the microscopic state of the system, 

each microscopic state has the same probability of occurring. Therefore, if 

there is a total of Q microscopic states available to the system, the probability 
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of each is 1/12. We can then deduce that 

S = —& Z) Pi hi Pi = — k Pi In 

= k In 12 ^ pi = (k In 12)12 X - > 
i ^ 

S = fc ln 12, (8.52) 

since there are 12 microstates, each with probability 1/12. We have now arrived 
at a fundamental equation of statistical thermodynamics: the entropy is Boltz¬ 

mann’s constant times the natural logarithm of the number of microscopic 
states available to the system. When 12 is calculated correctly, this equation is 

in exact agreement with experiment. We have found in Eq. (8.52) the origin 

of our statement that entropy is a measure of the number of microscopic states 

associated with a macroscopic state. 
It appears that it was necessary to make two postulates in order to derive 

Eq. (8.52). The first was that entropy was equal to the average missing infor¬ 
mation associated w’ith a system, and the second was that the probability of 

each microstate was the same. Actually, it is possible to show that the quantity 

1C Pi ln Pi 
i 

has its maximum value when all the pi are equal. Thus wTe can condense our 

postulates and say that entropy is proportional to the maximum missing 

information associated with a system. 
The actual evaluation of 12 has been carried out for the ideal gas, the ideal 

solid, and other systems of chemical interest. Such calculations are moderately 

involved, and will not be carried out here. We can, however, show howr 12 for 

an ideal gas depends on the state parameters V and T, and use this result to 
calculate AS for an isothermal expansion and a temperature change at constant 

volume. 
Consider an isothermal expansion of an ideal gas. The initial and final 

entropies Si and Sf are different, and so the microstates 12* and 12,- associated 

with the initial and final macroscopic states are different. Thus 

AS = Sf — Si = k ln 12/ — k ln 12* 

and so we have to calculate only the ratio 12//12*- rather than their absolute 

values. Suppose that there wrere only one molecule in the gas. The number of 
microstates available to this molecule should be proportional to the number 
of places the molecule can be, and hence to the volume of the container. This 

is also true for each molecule in a system of N molecules. The number of micro- 
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states available to the whole system is the number of states available to mole¬ 
cule 1 times the states available to molecule 2, and so on. Thus for an ideal 
gas of N molecules, we have 

a « VN. 

Consequently, for an isothermal expansion, 

Q//Q.- = (Vf/Vi)N, (8.53) 

and therefore 
AS = k In (Qf/Qi) = k In (Vf/Vl)N 

= Nk In {Vf/Vi) 

or 
AS = nN0k In (V//Vi) = nR In (Vf/Vl) (8.54) 

if the number of molecules N is expressed as the number of moles n times 
Avogadro’s number N0. Equation (8.54) is the same as the result we obtained 
earlier by using thermodynamic reasoning, and helps to confirm the idea that 
our probabilistic or statistical interpretation is correct. 

Our analysis reenforces the explanation given in Section 8.7 of why a gas 
expands spontaneously from a small volume into a large volume. The value of 
ft* for the gas in the small volume is smaller than the value of Qi for the gas in 
the larger volume. We can say, therefore, that because the gas in the large 
volume can exist in that state in many many more ways than it can exist in the 
small volume, it is overwhelmingly more probable for the gas to occupy the 
large volume. To see how enormously more probable the occupation of the 
larger volume is, consider the situation in which one mole of an ideal gas is 
given the opportunity to double its volume. By Eq. (8.53), for one mole of gas, 

sh/n, = (Vt/Vsf0 = 2^° = 2(6X1°23). 

Thus the chance that the gas will remain in the smaller volume is less than 
about one in 1010‘3, which is rather negligible. We can attribute the “spon¬ 
taneous” free expansion of a gas to the fact that the molecules are just doing 
what is overwhelmingly probable for them to do. 

We shall now give a heuristic demonstration of how statistical considera¬ 
tions can be used to calculate the entropy change of an ideal monatomic gas 
which is heated at constant volume. As energy is added to the gas, the average 
momentum of the molecules increases. Since the range of momenta in which 
we would find molecules increases with increasing energy of the gas, we can 
deduce that the number of microscopic momentum states increases with 
increasing temperature. 

For one molecule, the number of momentum states should increase propor¬ 
tionally to p3, the cube of the average linear momentum, since each molecule 
has three independent momenta along the three coordinate axes. This depen- 
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deuce of the number of microstates on p3 is completely analogous to the 
dependence of the number of microstates on L3 = V. For N molecules, the 

number of microstates is proportional to p3A. Since p « e1'2 « Th2, where 

e is the average molecule energy, we have 

ft a T3Nl2. 

Thus for a temperature increase at constant volume, 

AS = k In (ft/M), ft//fti = (T//Ti)3Nl2, 

AS — k\n (Tf/Ti)3Nl2 

= %Nk In (Tf/Ti), 

AS = nf R In (Tj/T/)- 

But for the monatomic gas we are treating 

Cv — 
so 

Tf 
AS = nCv In fjr > 

* i 

which is identical with the result obtained by thermodynamic reasoning. 
Our demonstrations of how AS can be calculated for a volume change or 

temperature change of an ideal monatomic gas suggest another way of stating 
the relationship of entropy to molecular properties. We can say that since S 

increases as Nk In V, entropy increases as the logarithm of the volume available 

to molecules in coordinate space. Also, since S increases as Nk In (p)3, we can 

say that entropy increases as the logarithm of volume available to molecules in 
momentum space—a three-dimensional space in which the coordinates are the 

Cartesian components of momentum. The concept of available volume in 

coordinate space and momentum space is very important in understanding how 

entropy depends on the mechanical properties of molecules. The combined 

six-dimensional space made up of coordinate space and momentum space is 

called phase space. Thus it is true that as F or T increases, the available 
volume in phase space increases, the number of microstates of the system 

increases, our lack of knowledge of the detailed microstate increases, and the 

entropy of the system increases. 
Having encountered the statistical interpretation of why entropy increases 

with increasing volume and temperature, we now analyze, in a similar manner, 

the problem of the dissociation of diatomic molecules. We ask for the entropy 

increase associated with 

AB(g) -> A(g) + B(g) 

for an ideal gas at constant temperature. We shall continue to use arguments 
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based on the available number of microstates, or the available volume in phase 

space, and to assume that classical mechanics rather than quantum mechanics 
applies. 

If the dissociation occurs at constant temperature, the number of momentum 
microstates, or the available volume in momentum space, is the same for 

products and reactants. Each atom, whether bound or free, has three indepen¬ 

dent Cartesian momentum coordinates and, at the same temperature, has the 
same momentum states available to it. Thus to find the entropy change upon 

dissociation, we need to consider only the change in available positional micro¬ 

states or the change in coordinate space available to the atoms. 

We treat the products first. Since the number of positional microstates for 
one atom is proportional to V, the value of for Na A-atoms and Nb B-atoms 

is proportional to VN^VN^ = V2N, since all the 2N product atoms move 
independently of one another. 

For the reactant molecules, the positions of the bonded pairs of atoms are 

not independent, but are correlated by the chemical bond force. We can regard 

the motion of one of the atoms (say A) in the molecule as independent, however, 
since it can go anywhere in the container, dragging the other atom B along. 

The number of microstates available to atom A is proportional to V. 

The volume available to atom B when FIG. 8.11 

atom A is held fixed is a spherical shell 
of radius R equal to the bond length, 
and thickness AR equal to the amplitude 
of bond oscillation. 

We now seek the positions available to the second atom in the diatomic 

molecule which are independent of the position of the first atom. As Fig. 8.11 

shows the volume independently available to atom B lies in a spherical shell 

about atom A. The radius of the shell is R, the bond length of the diatomic 
molecule, and the thickness is AR, the amplitude of oscillation of the bonded 

atoms. The associated volume available to the second atom is, therefore, 
47tR2 A R. The number of microstates available to one molecule is proportional 

to the product of V and 4tvR2 AR, and for N molecules we have 

S2r oc (F X 4ttR2 AR)n. 
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The entropy change for the dissociation reaction can now be given as 

(V)2N 

AS = k ln Q~r = k ln (V4irR2 AR)N 

= Nk ln AtR2AR ' 

Thus the entropy change is proportional to the logarithm of a simple volume 

ratio: V, the volume an atom has when it is free, divided by 47rR2 AR, the 

independent volume that the atom has available to it when it is bonded. It is 

clear that since V » i-irR2 AR, the entropy of dissociation is positive. We see 

that the larger R is, the larger is the volume available to the atom in the 
molecule, and the smaller is the entropy of dissociation. Also, the larger the 

vibrational amplitude AR, the smaller the entropy of dissociation. Further 
analysis shows that this vibrational amplitude can be expressed as (2irkT/f)11 , 

where / is the spring or Hooke’s law constant for changing the bond distance 

slightly from its most favorable position. Therefore, the stiffer the bond, the 

smaller AR, and the larger the entropy gained upon dissociation. 
Although our analysis applies directly to the dissociation of diatomic mole¬ 

cules, the physical idea that entropy increases with an increase in the freedom 
or volume available to atoms for independent motion is of general validity. The 

positive entropy changes associated with melting of a crystal, evaporation of 

a liquid, and dissociation of diatomic and polyatomic molecules are immediate 

consequences of this principle. 

8.15 CONCLUSION 

Thermodynamics is a subject of great scope and enormous utility. It proceeds 

from certain experimentally determined laws that concern the behavior of 

systems in general, and shows how to make conclusions or predictions about 

specific changes that a particular system may undergo. From the first law of 
thermodynamics, we learn how to use in a systematic and efficient way the 

measured energy changes that accompany chemical reactions. By measuring 

the AH of relatively few reactions we can tabulate enthalpies of formation of 
compounds and from these calculate AH for any reaction that involves com¬ 

pounds in the table. By doing this we avoid having to perform many calori¬ 

metric experiments, some of which may be very difficult or impossible. I' rom 
the second law of thermodynamics, we learn the criteria for the spontaneity of 

any chemical or physical process. By developing these criteria we discover the 

utility of AGf, the standard free energy of formation. This quantity gives us a 
measure of the intrinsic stability of a substance with respect to chemical change. 
If AGf is very negative, the compound is more stable than its elements, and will 

in general tend to be formed rather than consumed by any chemical reaction in 

which it is involved. In contrast, a compound with a large positive A Gy repre- 
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sents a relatively unstable arrangement of atoms, and will have a tendency to 
be converted to other, more stable arrangements—either elements or other 
compounds of them. Thus in A Gy we have a quantitative expression of the 

intrinsic chemical reactivity of a substance. 

We must be careful to recognize the limitations of thermodynamics. While 
we can measure values of A Gy for various compounds and use these to predict 

equilibrium constants, thermodynamics does not contain explanations of why 

one molecule is more stable than another. Such explanations are drawn from 
the quantum theory of molecular structure, an interesting and complex subject 

that is still growing and being refined. But even the proper predictions of 

thermodynamics are sometimes of a conditional nature. We may calculate that 
the equilibrium constant of a particular reaction is large, but thermodynamics 

offers no guarantee that this reaction will proceed fast enough to be observed. 
Thus thermodynamics provides a way of predicting what is possible in principle; 

it tells us what can happen rather than what is certain to happen. Despite 
this limitation, thermodynamics is of substantial help in organizing and under¬ 

standing chemical phenomena, as we shall see in subsequent chapters. 
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PROBLEMS 

8.1 Calculate the enthalpy of formation of Ca(OH)2(s) from the following data: 

H2(g) + i02(g) = H20(1), AH = -68.3 kcal; 
CaO(s) + H20(1) = Ca(OH)2(s), All = -15.3 kcal; 

Ca(s) + ^02(g) = CaO(s), AH = —151.8 kcal. 

8.2 From the data contained in Table 8.1, calculate AH for each of the following 
reactions * 

Fe203(s) + 3C0(g) = 3C02(g) + 2Fe(s), 
2N02(g) = 2N0(g) + 02(g), 

N(g) + NO(g) = N2(g) + 0(g). 

8.3 A sample of solid naphthalene, CioHs, weighing 0.600 gm is burned to C02(g) 
and H20(1) in a constant-volume calorimeter at T = 298°K. In this experiment, the 
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observed temperature rise of the calorimeter and its contents is 2.270°C. In a separate 
experiment, the total heat capacity of the calorimeter was found to be 2556 cal/deg. 
What is AE for the combustion of one mole of naphthalene? What is A// for this 
reaction? By using the tabulated values for A//°(CC>2) and A//°(H20, 1), calculate 
the enthalpy of formation of naphthalene. 

8.4 One mole of an ideal gas at 300°K expands isothermally and reversibly from 
5 to 20 liters. By remembering that for an ideal gas, E is constant at constant tem¬ 
perature, calculate the work done and the heat absorbed by the gas. What is AH for 
this process? 

8.5 Ethylene, C2H4, and propylene, C3H6, can be hydrogenated according to the 
reactions 

C2H4(g) Hr H2(g) = C2H6(g), 
C3H6(g) + H2(g) = C3H8(g), 

to yield ethane, C2H6, and propane, C3H8, respectively. From data contained in 
Table 8.1, calculate AH for these reactions. Do these answers suggest that AH for 
any reaction of the type 

C„H2n + H2 = C„H2n+2 

might be approximately equal to a constant? Test this idea with another such reaction 
involving compounds in Table 8.1. 

8.6 Calculate AS0 for the following chemical reactions, all carried out at 298°K. 

Ca(s) + *02(g) = CaO(s), 
CaC03(s) = CaO(s) + C02(g), 

H2(g) = 2H(g), 
N2(g) + 02(g) = 2NO(g). 

Explain the sign and/or magnitude of AS0 for each reaction by qualitatively evaluat¬ 
ing the change in molecular chaos or disorder that accompanies the reaction. State 
whether or not the attendant entropy change tends to favor production of the products 
of the reaction. 

8.7 (a) One mole of an ideal gas expands reversibly from a volume of 2 to 20 liters. 
Calculate the entropy change of the system and of the surroundings, (b) The same 
isothermal expansion takes place irreversibly such that no work is done on or by the 
ideal gas. Calculate the entropy change of the system and of its surroundings, 
(c) Using the answers you have accumulated, show numerically that the spontaneous 
contraction of an ideal gas in an isolated system would violate the second law of 
thermodynamics. 

8.8 Compute the entropy of vaporization of the following liquids at their normal 
boiling points. 

U(°K) AHvap 
(kcal) 

U(°K) AHvap 
(kcal) 

Cl2 238.5 4.87 PbCI2 1145 24.8 

c6h6 353 7.35 H20 373 9.72 

CHCI3 334 7.02 c2h5oh 351 9.22 

The fact that for most liquids, A5vap at the boiling point is nearly always 21 eu is 
called Trouton’s rule. In liquid water and ethyl alcohol, molecules are linked by 

360 CHEMICAL THERMODYNAMICS 



relatively strong hydrogen bonds between the hydrogen of one molecule and the 

oxygen atom of another. Is this “ordering” effect consistent with the way in which 

water and ethanol deviate from Trouton’s rule? Explain. 

8.9 When a mole of water supercooled to —10°C freezes isothermally, what is its 

entropy change? The process as described is irreversible, so in order to calculate AS, 

a reversible path between initial and final states must be found. One such path is 

H20(1), -10°C H20(1), 0°C, 
H20(1), 0°C -+ H20(s), 0°C, 
H20(s), 0°C H20(s), -10°C. 

The molar enthalpy of fusion of ice at 0°C is 1440 cal, the molar heat capacity of ice 

is 9.0 cal/mole-deg, and the molar heat capacity of water is 18.0 cal/mole-deg. Use 

these data to compute AS for the water when it freezes at —10°C. 

The enthalpy of fusion of ice at — 10°C is 1350 cal/mole. Find the entropy change 

of the surroundings when 1 mole of water freezes at —10°C. What is the total entropy 

change of the system and surroundings for this process? Is the process irreversible 

according to the second law of thermodynamics? 

8.10 From the data given below, calculate the absolute entropy of solid silver at 

300°K by plotting Cp/T as a function of T and determining the area under the curve 

by counting squares on the graph paper. 

T(°K) 15 20 30 40 50 70 
C/>(caI/mole-deg) 0.16 0.41 1.14 2.01 2.78 3.90 

T(°K) 90 130 170 210 250 300 
Cp(cal/mole-deg) 4.57 5.29 5.64 5.84 5.91 6.09 

8.11 From each of the following pairs of substances, choose the one which you would 

expect to have the greater absolute entropy. Except where specified, assume one mole 

of each material at the same temperature and pressure. 

(a) C(graph), Ag(s) (b) B(298°K), B(398°K) 

(c) Br2(g), 2Br(g) (d) Ar(l atm), Ar(0.1 atm) 

8.12 At the normal boiling temperature of water, AHvap = 9.72 kcal/mole. By 

assuming that the volume of 1 mole of liquid water is negligible, and that water vapor 

is an ideal gas, calculate q, w, AE, AS, and AG, for the reversible vaporization of 1 mole 

of water at a constant pressure of 1 atm and at a temperature of 373°K. 

8.13 Calculate AG° and K at 25°C for the reaction 

NO(g) + K>2(g) = N02(g) 

from data tabulated in this chapter. Which factor, enthalpy or entropy, makes K 
greater than unity and thereby provides the principal driving force for the reaction? 

8.14 Tabulated below are A//°, AG*}, and 5° for four substances: 

AH§98(kcal) AG298(kcal) S298(eu) 

CO -26.42 -32.79 47.3 

C02(g) -94.05 -94.24 51.1 
H 20(g) -57.80 -54.64 - 

H2(g) “ - 31.2 
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From these data only, calculate AH0, AG°, and AS0 for the reaction 

H20(g) + CO(g) = H2(g) + C02(g). 

If these substances are perfect gases, what is AE%98 for this reaction? Finally, com¬ 

pute the absolute entropy of H20(g) at 298°K. 

8.15 For the reaction 

S02(g) + *02(g) = so3(g), 

calculate AG° and AH0 from data tabulated in this chapter. Compute the equilibrium 

constant at 298°K and at 600°K by assuming that AH is independent of temperature. 

8.16 For the reaction 

|N2(g) + i02(g) = NO(g), 

the equilibrium constant is 1.11 X 10-2 at 1800°K and 2.02 X 10-2 at 2000°K- 

Calculate A(j2000, the standard free-energy change at 2000°K, and compare it with 

AGggg which you can obtain from Table 8.4. From the two values of the equilibrium 

constant, compute AII for the reaction. 

8.17 The equilibrium vapor pressure of water over BaCl2 • H20 is 2.5 mm at 25°C. 

What is AC for the process 

BaCl2 • H20(s) -> BaCl2(s) + H20(g), 

where the water vapor is imagined to be a 1-atm pressure? What is AG for the process 

if water vapor is produced at 2.5 mm? 

8.18 For the reaction 

BaS04(s) = Ba++(aq) + SO=(aq), 

AH = 5800 cal. Does barium sulfate become more or less soluble in water as tem¬ 

perature increases? At 25°C the solubility product of barium sulfate is 1.1 X 10-10. 

What is its value at 90°C, given that AH for the reaction is constant? 

8.19 For the reaction 

N204(g) = 2N02(g), 

the following values of logiolv have been obtained at different temperatures: 

log i qK -1.45 -1.02 -0.587 -0.036 0.379 0.903 
T(°K) 282 298 306 325 343 362 

Plot log K as a function of 1 /T, and determine AH for the reaction in this manner. 

Is the slope of the line obtained from these data equal to —AH/R or to —AH/2.3R? 

8.20 For water, A//fus = 1.44 kcal/mole, and AHvap = 9.72 kcal/mole. From these 

data, calculate the molal freezing-point depression constant and the molal boiling- 

point elevation constant. Do they compare well with the directly measured values 

of 1.86 and 0.52, respectively? 

8.21 In the Daniell cell, the reaction 

Zn(s) + Cu++(aq) = Zn++(aq) + Cu(s) 

occurs spontaneously, and the cell delivers 1.10 volts when all substances are at 1-4/ 

concentration. What is AG° for this reaction, expressed in units of (i) joules and 

(ii) calories? Calculate the equilibrium constant of the reaction from (a) the value 

of AG° and (b) the value of AG°. 
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8.22 Consider the following half-reactions and their standard electrode potentials: 

1. Fe+++ 2e“ = Fe, 8° = —0.440 volt; 

2. Fe+3+ e“ = Fe++, 8° = 0.771 volt; 

3. Fe+3+3e- = Fe, 8° = —0.036 volt. 

Although half-reaction 3 is the sum of half-reactions 1 and 2, the electrode potential 

of half-reaction 3 is not equal to the sum of the first two electrode potentials. In 

general, it is not possible to combine 8°’s for half-reactions directly to obtain the 8° 

of a third half-reaction. Strictly, only free energies, and not electrode potentials, may 

be combined in these instances. With this in mind, execute the following: (a) Find 

AG° for half-reactions 1 and 2 by using AG° = —n2F8°. (b) Add these quantities in 

order to obtain AG° for reaction 3. (c) From the result of part (b), calculate 8° for 

reaction 3, and compare it with the value given, (d) Use this type of analysis to 

decide why it is legitimate to calculate A8° for a net reaction in which electrons do 

not appear, simply by algebraic combination of the 8°’s of two half-reactions. 
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CHAPTER 9 

CHEMICAL KINETICS 

A chemical reaction has two general characteristics of foremost importance: 

the position of equilibrium and the reaction rate. In considering chemical 

equilibrium, we are concerned only with the relative stabilities of products 

and reactants and their relative concentrations at equilibrium and not with 

the pathway from the initial to final state. On the other hand, in treating 

reaction rates, we are concerned not only with how fast reactants are converted 

to products, but also with the sequence of physical and chemical processes by 

which this conversion occurs. Indeed, reaction rates are studied in order to 

obtain a detailed picture of what molecules do to each other when they react. 

The behavior of a chemical system may be determined either by equilibrium 

effects or by reaction rates. For example, when a small amount of aqueous 

silver ion is added to an equimolar solution of chloride and iodide ions, we 

immediately obtain a small amount of solid silver iodide, and no silver chloride. 

This occurs because the reaction 

Ag+ + I- = Agl 

has a much larger equilibrium constant than the reaction 

Ag+ + Cl" = AgCl, 

so that silver iodide is the product favored by the equilibrium constants. In 

contrast, consider the two ways in which ethyl alcohol, CH3CH2OH, may be 

dehydrated: 

CH3CH2OH H2S°4 > CH2CH2 + H20 (concentrated acid, 170°C), 

2CH3CH2OH —?4-> CH3CH2OCH2CH3 + H20 (dilute acid, 140°C). 



Either ethylene or diethyl ether can be the principal product of the dehydra¬ 

tion, depending on the temperature and acid concentration. This selectivity is 

not due to a change in equilibrium constants. Rather, ethylene is obtained at 

the higher temperature because under these conditions it is formed faster than 

diethyl ether. At the lower temperature, the situation is reversed; the rate of 

formation of diethyl ether is greater than that of ethylene. In general, when 

any two compounds are mixed, there may be a large number of reactions which 

are possible, but the reaction or reactions which are actually observed are the 

ones which proceed fastest. 

Our example shows that it is possible to influence the products of chemical 

change by controlling factors which affect reaction rates. Naturally the rates 

of reactions are in large measure determined by the nature of the reactants, 

but there are other factors, more at our disposal, which are also influential. 

As our example suggests, the first of these is concentration—both of the re¬ 

actants themselves, and of other added reagents called catalysts. The latter 

affect rates even though they may not be involved in the stoichiometry of the 

overall reaction. Temperature also is an important parameter; the rates of some 

reactions increase profoundly when temperature is raised, while the rates of 

others are almost insensitive to temperature changes. Two additional factors 

apply only to reactions which take place at the boundary surface between two 

phases. These reactions are classified as heterogeneous, and include the com¬ 

bustion of solid particles, the dissolution of metals in acid, and the evaporation 

of condensed materials. In such systems, reaction rates increase as the avail¬ 

able surface area increases, and may be further augmented by agitation, which 

speeds the transport of fresh reagents to the phase boundary. We now turn to 

a detailed discussion of each of these rate-controlling factors. 

Time dependence of the concentrations fig. 9.1 

of reactants and products in a chemical 
reaction. 

9.1 CONCENTRATION EFFECTS 

Figure 9.1 shows the usual behavior of the concentration of a reactant and a 

product as a chemical reaction progresses. The concentrations at first change 

rapidly and then more slowly approach the limiting concentrations found when 

the reaction comes to equilibrium. Not only does the concentration of a reactant 
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diminish but the rate of change of its concentration (the slope of the concen¬ 

tration-time curve) also decreases as the reaction progresses. Since this rate of 

change of concentration is not constant, it is best expressed as a time derivative, 

dc/dt, which gives the change in concentration per unit time, at a particular 

instant or at a particular concentration of reactants. We shall use such time 

derivatives of concentration to express reaction rates quantitatively. 

Differential Rate Laws 

In general, as reaction products are formed, they react with each other and 

re-form reactants. Therefore the net rate at which the reaction proceeds from 

left to right is 

net reaction rate = forward rate — reverse rate. 

When the reaction reaches equilibrium, the net reaction rate is zero, and the 

forward rate equals the reverse rate. When the reaction mixture is far from 

its equilibrium composition, either the forward or reverse rate is dominant, 

depending on whether reactants or products are in excess of the equilibrium 

value. To simplify our initial discussions, we shall limit ourselves to cases in 

which only the reaction rate in the forward direction is important. This is the 

situation when the reactants are first brought together and the mixture is far 

from equilibrium. 

With this restriction in mind, let us consider the reaction 

NO -f- O3 —> NO2 ~b O2, 

where the arrow means that only the reaction from left to right is important. 

What algebraic relations connect the various derivatives d[NO]/d£, d[03]/dt, 

d[N02]/dt, and d[02]/dt? The stoichiometry of the reaction shows that the 

concentrations of nitric oxide and ozone must decrease at the same rate, which 

in turn is exactly the rate at which the concentrations of nitrogen dioxide and 

oxygen increase. Since the concentrations of nitric oxide and ozone are dimin¬ 

ishing, d[NO]/d< and d[03]/dt are negative numbers, while d[N02]/d< and 

d[02]/dt are positive. Thus we have 

d[NO] 

dt 

rf[03] = d{ NQ2] = d[O2] 

dt dt dt 
reaction rate. 

As another illustration of the relations between concentration derivatives, 

consider the reaction 

2HI(g) H2(g) + I2(g). 

Since 2 moles of HI disappear for each mole of H2 formed, the rate of change 

of the HI concentration must be twice the rate of change of the H2 concentra- 
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tion. Remembering that d[HI]/rf< is a negative number, we can write 

_ 1 rf[HI] d[H2] d[la] ,Qn 

2 dt dt dt ' ^ j 

This shows that the concentrations of the various reactants and products may 

change at different rates. What, then, is the rate of this reaction? Is it the 

rate at which the concentration of HI changes, or the rate at which the con¬ 

centration of H2 changes? 

We can solve this problem by applying our arguments to the general reaction 

a A + 6B —> cC + dD. 

A little reflection shows that the relation between the various derivatives is 

1 d[A] _ 1 d[B] = 1 d[C] = 1 d[D] 

a dt b dt c dt d dt 

Since all these quantities are equal, it is natural to take the formal definition 

of “the rate of reaction” as the time derivative of a concentration divided by 

the appropriate stoichiometric coefficient and converted to a positive number. 

Thus the rate of the HI decomposition reaction is equal to any of the expres¬ 

sions in Eq. (9.1). Application of these ideas to the reaction 

gives 

3OCH3OH + B10Hi4 -> 10B(OCH3)3 + 22H2 

rate of reaction = — 
1 d[CH3OH] 

30 dt 

J_ d[B(OCH3)3] 

10 dt 

_ d[BipHi4] 
dt 

_1_ d[H2] 

22 dt 

Any of the derivatives of concentration, appropriately modified, may be used 

to express the rate of reaction. 

The mathematical expression which shows how the rate of reaction depends 

on concentration is called the differential rate law. In many instances, it is 

possible to express the differential rate law as a product of reagent concentra¬ 

tions, each raised to some power. Accordingly, for the reaction 

3A + 2B —> C + D, 

the differential rate law may have the form 

1 d[A] _ d[C] 
3 dt dt 

fc[A]n[B]”\ 

The exponents n or m are generally integers or half-integers; n is called the order 

of the reaction with respect to A, and m is the order of the reaction with respect 
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to B. The sum n + to is called the overall order of the reaction. It is important 

to realize that n and m are not necessarily equal to the stoichiometric coefficients 

of A and B in the net reaction. The order with respect to each reagent must be 

found experimentally and cannot be predicted or deduced from the equation for 

the reaction. For example, experiments show that the differential rate law 

for the reaction H2 + 12 —> 2HI is 

d[ H2] 

dt 
MH2][i2]. 

Since each concentration is raised to the first power, we say that this reaction 

is of first order with respect to H2, first order with respect to I2, and second 

order overall. In contrast, the differential rate law for the apparently similar 

reaction H2 + Br2 —> 2HBr is 

d[ H2] 

dt 
fc'[H2][Br2]1/2, 

that is, first order with respect to hydrogen, one-half order with respect to 

bromine, and three-halves order overall. Although these two reactions have 

the same stoichiometry, and despite the similarities of iodine and bromine, the 

rate laws of the reactions are different. 

The constant k which appears in the differential rate law is called the 

rate constant or more formally, the specific-reaction rate constant, since it is 

numerically equal to the rate the reaction would have if all concentrations 

were set equal to unity. Each reaction is characterized by its own rate constant 

whose value is determined by the nature of the reactants and the temperature. 

From the numerical value of the rate constant, we can calculate the rate of a 

reaction under particular concentration conditions. In essence, the rate con¬ 

stant is a numerical expression of the effect of the nature of the reactants and 

the temperature on reaction rate. Consequently, one of the goals of theoretical 

chemistry is to be able to understand, or better, to predict the values of rate 

constants from a knowledge of the electronic structure of reactants and products. 

The Integrated Rate Laws 

The differential rate laws show how the rates of reaction depend on the con¬ 

centrations of reagents. It is also useful to know how the concentrations depend 

on time; this information can be obtained from the differential rate law by 

integration. The decomposition of dinitrogen pentoxide provides us with our 

first example: 

N205 2N02 + *02. 
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The natural logarithm of the con- fig. 9.2 

centration of N2Os, plotted as a 
function of time. The slope of the 
line is the negative of the first- 
order rate constant. 

Experiments show that the reaction is first order with respect to the concen¬ 

tration of N2O5, 

d[N2Q5] 

dt 
MN2o5], 

If we let c stand for the concentration of N205, the differential rate law is 

which we can rearrange to 

- — = kdt. 
c 

The left-hand side of the equation is a function of c only, and apart from a 

constant, the right-hand side contains only the differential of time. Therefore 

we can integrate both sides, taking as limits c0, which is the concentration at 

t = 0, and c, the concentration at time t. Thus 

— In c|c0 = kt\l0 

— In — = kt. 
Co 

This equation shows that for a first-order reaction, the logarithm of the reactant 

concentration decreases linearly as time increases. It suggests that if we plot 

In c as a function of t, we will obtain a straight line whose slope is — k. Figure 9.2 

shows that the data for the decomposition of N205 do indeed yield a straight 

line when plotted this way. 
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FIG. 9.3 The reciprocal of the concentration of 
butadiene, plotted as a function of time. 
The slope of the line equalsthe rate con¬ 
stant for the dimerization reaction. 

If a reaction is second order, the time dependence of the reactant concentra¬ 

tion is different. Our example for this case is the dimerization of butadiene, 

C H * 

C4H6(g) -> *C8H12(g), 

which follows the second-order differential rate law 

d[C4H6] _ r.rc'* tt i2 
i, — 61 • 

If wTe substitute c for the concentration of C4H6, we can rearrange the equation 

to read 

dc 

c2 
k dt, 

and once again each side can be integrated between the limits c0, c and 0, t: 

c c0 

Thus for a second-order reaction, the reciprocal of the reactant concentration 

is a linear function of time, so that a plot of 1/c as a function of t should be a 

straight line with a slope k and an intercept l/c0. Figure 9.3 shows how well 

the dimerization of C4H6 conforms to this prediction. 
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These are but two examples of how the differential rate law can be converted 

to an expression which gives the time dependence of concentration. Other 

more complicated differential rate laws can be integrated, but the process is 

sometimes difficult and often produces cumbersome algebraic expressions. This 

is not a serious drawback, since virtually all the interesting information about 

reaction rates can be obtained by using the differential rate law expressions. 

Experimental Determination of Rate Laws 

The order of a reaction and its rate constant must be found experimentally, 

and the differential and integral rate laws which we have discussed suggest how 

this can be done. The differential rate law for the reaction 

aA + 6B —> cC 

is often of the form 

- -a ^ = MAnm’. 

Our first object is to determine the exponents n and m. One way of determining 

the order with respect to A is to make up a series of mixtures which contain the 

same concentration of B but different concentrations of A. Then the initial 

rate of reaction is found for each of these mixtures by measuring the change in 

concentration of one of the reactants or products which occurs in the first small 

time interval after the reagents are mixed. For instance, A[A]/A£ is a good 

approximation to cl[A}/dt if the time interval is short enough, and from it we 

can calculate the rate of reaction. Since in the series of experiments the only 

variable is the initial concentration of A, the experimentally determined initial 

rates should vary as the initial concentration of A, raised to the power n. If the 

reaction rate doubles when A is doubled, the rate depends on the first power of 

the concentration of A, and n is equal to one. If the reaction rate increases by 

a factor of four when the concentration of A is doubled, n must equal 2, and the 

reaction is second order. Once the order with respect to A is determined, the 

procedure can be repeated. This time we hold the concentration of A constant, 

vary the concentration of B, and deduce the order of the reaction with respect 

to B. When the order with respect to each reagent is known, we can calculate 

k by dividing the measured rate of reaction by the concentrations of the 

reactants, each raised to the appropriate power: 

— (1/a) (d[A]/dt) 

[A]n[B]m 

The success of this procedure depends on our ability to accurately evaluate 

the initial rate. Since it is difficult to measure accurately the small change in 

concentration A[A] which occurs in a small time interval At, the method we have 

outlined is not always satisfactory. As an alternative, we can make use of the 
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integrated rate laws to find both the order and rate constant of a reaction. The 

only integrated rate laws we are familiar with pertain to reactions in which 

there is only one reactant, as in 

and 

N205 -> 2N02 + ±02 

2HI —» H2 -f- I2, 

where the differential rate law has the form 

1 djA] = 

a dt 

To deal with such a reaction, we must determine the concentration of A at 

various times as the reaction proceeds. Then we prepare two graphs: one a 

plot of ln[A]/[A0] as a function of time, the other a plot of 1/[A] as a function 

of time. If the logarithmic graph is linear and the reciprocal plot curved, we 

can conclude that the reaction is a first-order process like the decomposition of 

N205. Moreover, since the general integrated rate law for a first-order process 

is In c/cq = — kt, the slope of the logarithmic graph can tell us the rate con¬ 

stant. On the other hand, if the logarithmic plot is curved and the reciprocal 

plot linear, the reaction has a second-order rate law. The reaction rate constant 

can be calculated from the slope of the reciprocal plot, since the general equation 

of the line is 1/c = l/c0 + kt. 

It is possible that neither In c nor 1/c will be linear functions of time; this 

merely shows that the reaction does not follow the simple rate laws we have 

discussed. The procedures used to identify which of the more complicated rate 

laws does apply are analogous to the methods we have just outlined and only 

involve the use of slightly more complicated algebraic expressions. 

9.2 REACTION MECHANISMS 

We now attack the problem of obtaining a complete chemical description of 

how reactant molecules are converted to products. In some reactions this con¬ 

version occurs in one step; two reactant molecules collide and as a result form 

the observed product molecules. An example of such a one-step conversion of 

reactants to products is 

AO -f- O3 —> N02 -)- 02. 

On the other hand, most chemical reactions do not follow such a simple path 

from reactants to products. For example, the reaction 

H202 + 2Br“ + 2H+ Br2 + 2H20 

is not the result of the simultaneous collision of two hydrogen ions, two bromide 

ions, and a hydrogen peroxide molecule. The chance of having five species come 
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to the same place at the same time is very small, so small that such a process 
could never produce products at the rate which is experimentally observed. 
The actual reaction path consists of two successive processes, neither of which 
involves the collision of more than three particles: 

Br“ + H+ + H202 -> HOBr + H20, 

H+ + HOBr + Br“ -»• H20 + Br2. 

Other reactions may involve a great many steps. For example, the decom¬ 
position of N205 follows the path 

n205 + n2o5 —* N205 -f- n2o5, 

n2o£ — no2 + N03, 

N02 + N03 —> NO + N02 + 02, 

NO + N03 2N02, 

where N2Os stands for an energized molecule capable of dissociating. Each 
one of the steps is called an elementary process, since each is a simple event in 
which some kind of transformation occurs. The collection of elementary proc¬ 
esses by which an overall reaction occurs is called a reaction mechanism. The 
mechanism of a reaction must be determined experimentally; to understand 
how this is done we must first discuss the three types of elementary process. 

Elementary Processes 

Elementary processes are classified according to the number of molecules which 
they involve. An event in which only one reactant molecule participates is 
called a unimolecular process. The decomposition or rearrangement of an ener¬ 
gized molecule is a unimolecular elementary process: 

0$ -+ 02 + 0, 

ch2 

/ \ -* ch3ch=ch2 

ch2—ch2 

A bimolecular process always involves two reacting molecules. For example, 

NO O3 —> N02 T- 02, 

Cl + CH4 -> CH3 + HC1, 
and 

Ar -f- O3 —> Ar + 03 

are all bimolecular processes. No chemical change occurs in the last process, 
but the collision between Ar and O3 does supply the ozone molecule with excess 
internal energy which can eventually cause it to dissociate, as we have noted 
above. 
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Elementary processes in which three particles participate are said to be 

termolecular. Most termolecular processes involve the association or combina¬ 

tion of two particles which is made possible by a third particle whose role is to 

remove the excess energy produced when a chemical bond forms. As examples 

we have 

0 -f~ O2 + N2 —* O3 + N2 

and 

0 + NO + N2 —> N02 + N2. 

By the conservation of energy, an ozone molecule formed by association of an 

oxygen atom and molecule has enough energy to redissociate. Only if some of 

this energy is removed by a third particle, the nitrogen molecule, can a stable 

product be formed. Elementary processes with molecularity greater than 

three are not known, since collisions in which more than three particles come 

together simultaneously are very rare. 

We have emphasized that the order of a reaction cannot, in general, be pre¬ 

dicted from the stoichiometry of the overall reaction. However, the order of an 

elementary process is predictable. Fof example, consider the general bimolecular 

elementary process 

A + B —* C + D. 

Now in order for a molecule of A and a molecule of B to react, they must at the 

very least collide with each other. The rate at which collisions between A- and 

B-molecules occur is directly proportional to the concentrations of A and of B. 

Therefore any bimolecular elementary process must follow the second-order 

rate law 

-^1 = «a][B], 

A similar argument applies to the problem of finding three particles in 

collision and leads us to conclude that a termolecular elementary process, 

A-f-B + C —> D + E, 

follows a rate law which is overall third order, and first order with respect to 

each reactant: 

d[ A] 

dt 
= fc[A][B][C]. 

Finally, let us consider the unimolecular process. Here we deal with a col¬ 

lection of molecules, each rearranging or decomposing independently of the 

others. It seems clear that as the number of molecules increases, the number 

that decompose in a given time interval will also increase. Thus the rate of 

reaction will be proportional to the first power of the concentration, and the 

unimolecular process 

A* —> B 
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will follow a first-order rate law: 

d[A*} 

dt 
k[ A*]. 

Our general conclusion is that for elementary processes the molecularity and 

order are the same; a unimolecular process is first order, a bimolecular process is 

always second order, and a termolecular process is third order. However, it 

is important to realize that the converse is not true: not all first-order reactions 

are unimolecular elementary processes, second-order reactions are not all bi¬ 

molecular, and third-order reactions are not necessarily termolecular. We 

have had one illustration of this point already; the decomposition of N205 is 

a first-order reaction, but it proceeds by a complex mechanism which consists 

of both unimolecular and bimolecular elementary processes. We will find an 

explanation for this by examining the relation between reaction mechanisms 

and rate laws. 

Mechanisms and Rate Laws 

We now have to find how the experimentally observed order and rate of an 

overall reaction are related to the order and rates of the elementary processes 

which comprise its mechanism. Fortunately this question has an answer which 

is simple and direct for most reactions. Consider the hypothetical reaction, 

3A + 2B —* C + D, 

which we will assume follows the mechanism 

A -f B —> E + F 

A -f E —> H 

A + F —► G 
H + G-fB —> C + D 

3A -f- 2B —> C + D 

The products C and D are the result of a sequence of four elementary processes, 

and it is indisputable that the products can be formed no faster than the rate of 

the slowest step in this sequence. Therefore, if one of the steps is much slower 

than all the others, the rate of the overall reaction will be limited by, and be 

exactly equal to, the rate of this slow step. Consequently, the slowest ele¬ 

mentary process in a sequence is called the rate-determining step. Suppose that 

the first step in the above mechanism is the slowest, and that its rate constant 

is k\. Since it is a bimolecular elementary process, its rate is overall second order: 

first order with respect to A and first order with respect to B. As a result the 

observed rate law for the overall reaction will be 

-\d^h *>iahb'- 
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Thus a complicated mechanism can result in a very simple rate law. In this 

argument we also find the explanation of why all reactions which follow second- 

order rate laws are not necessarily bimolecular elementary processes. The 

overall reaction, 
3A + 2B —> C + D 

is not an elementary process, it is complex; yet it follows a second-order rate 

law, because its slowest step is a bimolecular process. 

To turn from the abstract to the concrete, let us examine a few complex 

reactions which follow simple rate laws. For instance the reaction 

2N02 + F2 -> 2N02F 

follows a second-order rate law: 

1 d[NQ2] 

2 _dt 
WN02][F2]. 

The rate law indicates that both N02 and F2 are involved in the rate-deter¬ 

mining step, but stoichiometry shows that any reaction between N02 and F2 

must produce something besides N02F. These two facts suggest that the most 

likely mechanism for the reaction is 

1. N02 -T F2 N02F -f- F (slow), 

2. F + N02 N02F (fast). 

The first bimolecular process is the rate-determining step. Its rate law, and 

thus that of the overall reaction, is second order. Since the overall reaction 

proceeds at exactly the rate of reaction 1, kexp must equal Aq. 

We have already said that the mechanism of the reaction 

2Br 2H+ "T H202 —> Br2 -f- 2H20 

is 

1. H+ + Br“ + H202 HOBr + H20, 

2. HOBr + H+ + Br- Br2 + H20. 

How was this conclusion reached? The most important clue to the mechanism 

of a reaction is the rate law, which in this case is 

= WH202][H+][Br—]. 

This tells us that only H202, H+, and Br- are involved in the rate-determining 

step. To decide what the products of the rate-determining step are, we must 

use imagination, and be guided by our knowledge of descriptive chemistry and 

the principles of atom and charge conservation. Stoichiometry shows that 

II20 and HOBr are at least possible products of a reaction between H + , Br-, 
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and H202. Furthermore, HOBr is a known chemical species, although it is quite 

unstable. Consideration of the molecular structure of the reactants shows that 

HOBr and H20 can be formed from the reactants without serious departures 
from normal molecular geometry. That is, we might picture the slow step as 

\ 
0—0 

H 

\ 
Br~ H+ 

H H 

\ / 
0 O 

Br H 

H H 

\ / 
0 + 0 

/ \ 
Br H 

The species in brackets represents the intermediate situation in which the 
0—0 bond is breaking while the Br—0 and H—O bonds form. Such unstable 

structures are called activated complexes, and last for only about 10—13 sec. 

To justify the final step of the mechanism, we must use some supplementary 
knowledge of descriptive chemistry. It is possible to prepare neutral or slightly 

alkaline mixtures of HOBr and Br-, and when these solutions are acidified, 

bromine is formed very rapidly. This is independent evidence that the reaction 

HOBr + H+ + Br~ -> H20 + Br2 

is very fast. In other words, the second step of our mechanism is consistent 
with our chemical experience. 

The mechanism of a reaction may change if the conditions under which it is 
run are altered. The reaction between carbon monoxide and nitrogen dioxide, 

N02 + CO —>■ C02 + NO, 

follows the rate law 

= fc[N02][C0] 

at temperatures above approximately 500°K. The reaction mechanism is a 
single elementary process in which an oxygen atom is transferred: 

N02 + CO 
0 0*1 

' \ / 
c 

C02 + NO. 

At lower temperatures the rate law changes to 

^ = *'[N0Z]2, 

which does not involve the concentration of carbon monoxide at all. The 

explanation is that the low-temperature mechanism is 

N02 + N02 -> N03 + NO (slow), 

N03 + CO —> N02 + C02 (fast). 
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The first of these reactions is the slower, rate-determining step, and accordingly 

the rate is independent of the carbon monoxide concentration, as long as some 

is present. At high temperatures, this pair of reactions is slower than the direct 

reaction between N02 and CO, but the reverse is true at lower temperatures. 

This is the reason that the mechanism changes; the reaction goes by the fastest 

path available. 

As another example of a complex reaction mechanism, we select the reaction 

between gaseous hydrogen and bromine: 

H2(g) + Br2(g) —> 2HBr(g). 

This reaction is interesting because it follows a three-halves-order rate law: 

~ = fc[H2][Br2]1/2, 

and our analysis so far does not suggest how half-integer rate laws come about. 

Considerable experimentation has shown the mechanism to be 

Br2 + M — 2Br + M\ . 
. 1 (fast equilibrium), 

2Br + M —Br2 + M) 

Br + H2 HBr + H (slow), 

H + Br2 k3 * HBr -f- Br (fast). 

The first two elementary processes result in a rapidly established equilibrium 

between molecular bromine and its atoms. The symbol M stands for any 

molecule capable of both colliding with Br2 so as to cause its dissociation and 

removing the excess energy from a pair of atoms so that they may combine. 

The third and fourth processes convert hydrogen and bromine to hydrogen 

bromide, without a net consumption of bromine atoms. The rate-determining 

step is the reaction between a bromine atom and a hydrogen molecule; hence 

the rate of the reaction is given by 

\ = fc2[H2][Br], (9.2) 

To find the rate law expressed in terms of the bromine-molecule concentration, 

we make use of the equilibrium relation between atomic and molecular bromine: 

Br2 = 2Br, j]|L = [Br] = Vtf«,[Br2] . 

Substituting this into Eq. (9.2), we find 

\ = k2KU2[H2][Br2]1/2, 
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which has the same form as the experimentally determined rate law. Further¬ 

more, we see that the experimental rate constant is actually the product of a 

rate constant k2 and the square root of an equilibrium constant, K]^2. This 
shows how important the determination of reaction mechanisms is, for in order 

to understand or interpret the size of an experimentally determined rate con¬ 

stant k, we must know whether it is equal to the rate constant of an elementary 
process, or whether it is actually some algebraic combination of rate constants 

and equilibrium constants. 

While we have stressed the importance of the rate law in the determination 
of reaction mechanisms, the rate law alone often does not allow us to make a 

unique choice when several mechanisms are possible. An outstanding example 
of this fact is provided by the reaction between nitric oxide and oxygen: 

2NO + 02 -> 2N02. 

The rate law is 

-^r = mno]2[o2]. 

Two possible mechanisms, both consistent with the rate law, are 

NO + NO = N202 (fast, at equilibrium), 

N202 + 02 2N02 (slow), 

- ^ = *[N202][02] = kK[N0]2[02]j 

and 

NO + 02 = OONO (fast, at equilibrium), 

NO + OONO 2N02 (slow), 

- = &'[00N0][N0] = k'K'[N0]2[02], 

The difficulty is that the rate law really tells us only the atomic composition 
of the activated complex, and for both of these mechanisms, it is the same, 

04N2. A definite choice between the two mechanisms will be possible only 
when the structure of the intermediate is discovered through use of molecular 

spectroscopy. In general, not only the rate law, but information from every 

possible source must be used to select a reaction mechanism. 

The Steady-State Approximation 

The mechanisms that we have discussed so far have been of two types. The 
simplest situation is one in which the first step is slow and rate-determining, 

and is followed by very rapid subsequent reactions. The other situation, also 

quite simple, occurs when the first step of the mechanism is a rapid equilibrium 
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which produces an intermediate which reacts slowly in t he rate determining 
step. We must anticipate the occurrence of the intermediate case, in which 
all steps of t he mechanism proceed at comparable rates. 1 he exact deduction of 
the rate law for this situation can be quite complicated. Fortunately, however, 
the steady-state approximation provides us with a simple means of finding the 

rate law under most conditions. 
Consider the following general mechanism, which applies to many thermal 

decompositions and isomerizations: 

A + M A* + M, 
fc-t 

A* b + C. 

In the first step, the molecule of interest A undergoes a collision with any 
molecule M, and the result is that A*, a molecule with a considerable amount 
of internal energy, is produced. The reverse process in which A* is deactivated 
by collision with M can also occur. Finally, if A* is left alone, it decomposes 
to products It and C. We know that if the first step is slow and rate-determining, 

the rate law is 

= *i[AllM], (9.3) 

Oil the other hand, if fc_i is large, and thus A* is in rapid equilibrium with A, 

we have 
[A*] _ kj 

"[A] k—\ ’ 

_ fc2[A*] = [A). (9.4) 

We will use the steady-state approximation to find the general rate law for 

this system. 
The excited molecule A* begins to be formed when the A-molecules are 

heated in order to start the reaction. At first the concentration of A* may 
increase fairly rapidly, but as its concentration builds up, it starts to be de¬ 
activated and to decompose to products. 1 bus we can anticipate reaching a 
condition in which the rate at which A* is created is just balanced by the rate 
at which it is destroyed. At this point, the concentration of A* will be finite, 
and very nearly constant in time. We can find this steady-state concentration 

by writing 

rate of production of A* = rate of destruction of A* 

MA][M]= fc_,[A*][M] + fca[A*], 
» fci[A][M] 

lA 1 “ k_,[M] + k2 
(9.5) 

380 CHEMICAL KINETICS | 9.2 



Now, since the rate of reaction is 

_ i. r a *1 

~dT ~ ^[A 1 

we can substitute the steady-state expression for A* and get 

d[BJ fexfc2[A][M] 

dt -f- k2 
(9.6) 

for the general form of the rate law. 

We shall now find the conditions under which the general expression, 
Eq. (9.6), reduces to either of the two simpler rate laws, Eq. (9.3) and Eq. (9.4). 

Suppose we work at gas pressures low enough so that /c_t[M] « k2. Physically 
this means that virtually every A* formed will proceed to products, and that 

reaction 1 is the rate-determining step. From Eq. (9.6) we can write 

d[ BJ 
dt 

fciMAHM] _ feifc2[A][M] 
&_i[M] + k2 k2 

fci[A][M] (if A:_i[M] « k2), 

which is the rate law we expect if step 1 is rate-determining. The opposite 
situation is » k2, which we can achieve by making the pressure quite 

high. Physically this means that few of the A* decompose to products, and 
that A* is essentially in equilibrium with A. In the denominator of Eq. (9.6) 

we can neglect k2, and get 

d[B] k,fc2[A][M] _ fcxfc2[A][M] 
dt *_i[M] + k2 ~ /c_x[AT] 

= km 
which is just what we expect if A* is in near equilibrium with A. Thus the 

general expression for the rate, Eq. (9.6), includes as special cases the simple 
situation where either the first or second step of the mechanism is rate¬ 
determining. 

The steady-state approximation consists, as we have seen, of selecting an 

intermediate in the reaction mechanism, and calculating its concentration by 
assuming that it is destroyed as rapidly as it is formed. This procedure cannot 

be strictly accurate for all times during the reaction, since it implies that the 
concentration of the intermediate is constant. This is not true at the beginning 
of the reaction, when the concentration of the intermediate rises from zero 

toward its steady-state value. Nevertheless, when the concentration of the 
intermediate is small, the approximation is sufficiently accurate to be of very 

great use and importance in the analysis of mechanisms. 
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As a practical example of the application of the steady-state approximation, 

we can consider the decomposition of gaseous N205: 

2N2O5 —> 4N02 + 02, 

which has the rate law 

= MN2O5]. 

A great deal of evidence shows that the mechanism is 

N2O5 < — NO2 + NO3, 
k-\ 

NO3 + N02 —NO + NO2 + 02, 

N03 + NO —2N02. 

The molecule N03 is an intermediate whose concentration is small and can be 

calculated by the steady-state approximation. The same can be said for NO. 

In the latter case we have 

rate of production of NO = rate of destruction of NO, 

fc2[N02][N03] = fc8[N0][N08], 

[NO] = (fc2/fc3)[N02]. (9.7) 

For NO3 we proceed as follows: 

rate of production of N03 = rate of destruction of N03, 

fci[N205] = (fc_i[ N02] + fc2[N02] + fc3[N0])[N03]. 

If we substitute Eq. (9.7) for [NO] and solve for [N03] we get 

[N03] = 
_fci[N2Q5]_ 
/c_i[N02] -b 2A;2[N02] 

for the steady-state concentration of NO3. Now, the rate of production of 

oxygen, which is also the rate of reaction, is 

= A;2[N02][N03]. 

With the steady-state approximation for [N03] this becomes 

d[02]   fei^2[N2O5] 

dt k—i d- 2A:2 

which is of the same form as the experimental rate law. Note that the relation 

between the experimental rate constant k and the rate constants for the 
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individual steps is 

, ki k2 

k—i -j- 2^2 

Question. The steady-state approximation is applied to a reaction intermediate, but never 
to a reactant or product. Why? 

Chain Reactions 

We have encountered reaction mechanisms which involved intermediates that 

were created in one step, and consumed in another step to give the reaction 

products. However, there are a very large number of so-called chain reactions 
of the type exemplified by 

H2(g) + Cl2(g) 2HCl(g) 

which has the mechanism 

Cl2 -f- light -* 2C1 

Cl + H2 HC1 + H, 

H + Cl2 -**-> HC1 + Cl, 

2C1 + M -**-> Cl2 + M. 

We see that in step 1, the reactive intermediate Cl is produced, and this in turn 

reacts by step 2 to produce a product HC1 molecule. However, the hydrogen 

atom also produced by step 2 can react with Cl2 to give another HC1 molecule 
and a chlorine atom. Thus the net result of steps 2 and 3 is formation of two 

molecules of HC1, without consumption of the intermediate chlorine atom. This 
mechanism is analogous to that encountered for the H2-Br2 reaction. The 

possibility that steps 2 and 3 can be repeated indefinitely is responsible for the 
name “chain reaction.” Step 1, which first produces the chain carrier Cl, is 

called an initiation reaction, while step 4 is a chain termination reaction. Steps 2 

and 3 are said to be chain propagation reactions. 
Chain reactions occur in flames, explosions, and atmospheric and life pro¬ 

cesses, and are important in the production of synthetic polymers. Examples of 

the latter are found in the polymerization of ethylene (CH2CH2) and vinyl 

chloride (CH2CHC1) to make polyethylene and polyvinyl chloride, respectively. 

The direct reaction 

2/i(CH2CHC1) -> (—CH2CHCH2CH—)„ 

Cl Cl 

is very slow. If, however, a small amount of a substance which will produce 

atoms or free radicals is present, the polymerization proceeds via a chain 
reaction. Benzoyl peroxide is a convenient initiator, for it decomposes to 
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benzoyl radicals (CeH5C02 •) and benzyl radicals (C0H5 ')'■ 

00 0 

C6H6C—0—0—C—C6H6 -4 c6h6c-o • + c6h5 • + co2. 

These radicals (R •) then react with vinyl chloride, and a radical chain is 

propagated: 
R • + CH2=CH RCH2—CH 

Cl ('1 

RCH2—CH • + ch2=ch rch2chch2ch •, 

Cl Cl ci Cl 

R(CH2CHC1)„ • + CH2CHC1 -> R(CH2CHC1)„+1 

The chain termination step occurs when two such polymer radicals combine 

with each other. 
The number of intermediates or chain carriers in a reaction mixture is 

usually determined by the relative rates of the initiation and termination steps. 
A good example of this is the H2-Br2 reaction, which we discussed earlier. The 

relative rates of dissociation of bromine and recombination of bromine atoms 

determine the bromine atom concentration 

Br2 + M 2Br + M\ ^ .... . 
, > fast equilibrium, 

M + 2Br —Br2 + Mj 

[Br] = (fc1/A;_1)1/2[Br2]1/2, 

and the chain is propagated by 

Br + H2 -» HBr + H, 

H + Br2 -> HBr + Br, 

which produce as many atoms as they consume. There are, however, chain 

reactions in which some steps produce more radicals or chain carriers than they 

consume. Such steps are called chain-branching reactions, examples of which 

occur in the hydrogen-oxygen reaction: 

02 + M -> 20 

O + H2 —► OH -f H 

H + 02 —> OH + O 

OH -f H2 -> H20 + H 

H + 02 + M -* H02 + M j 

2H02 H202 + 02l 

initiation 

branching 

branching 

propagation 

termination 
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If the rate of the branching reaction is greater than the rate of the termination 

reactions, the concentration of chain carriers grows steadily, and hence the rate 

of propagation increases essentially without limit. This nearly unbounded 
reaction rate is what produces an explosion. The slow, controlled reaction can 

be maintained if the termination step is made fast enough so that branching 

reactions cannot produce ever-increasing numbers of chain carriers, or if the 
rate at which reactants are fed into the reaction mixture is limited. 

To summarize our discussion of concentration effects and reaction mech¬ 

anisms, we note that the investigation of a reaction rate involves the following 

steps: 

1. The rate law is determined by studying the effect of concentration of 
reactants on the rate of reaction. 

2. The rate law, together with imagination, general chemical experience, and 
the principles of stoichiometry and molecular structure, is used to deduce a 
mechanism for the reaction. 

3. The mechanism is used to show that the measured rate constant is either the 

rate constant for one of the elementary processes, or is an algebraic combina¬ 
tion of elementary rate constants and equilibrium constants. 

4. The temperature dependence of the rate constant is determined. This 

information permits us to interpret the magnitude of the rate constant in 

terms of the nature of the reacting molecules. 

The last step has not yet been discussed. We will turn to it after a brief analysis 

of the relation between reaction rates and chemical equilibria. 

9.3 REACTION RATES AND EQUILIBRIA 

We noted in Chapter 5 that in a state of chemical equilibrium, the rates of the 
forward reaction and its reverse are exactly equal. This principle allows us to 

establish a relation between equilibrium constants and rate constants. Let us 
first consider the reaction 

CO + N02 C02 -f NO 

and its reverse 

NO -f- C02 ^=L* N02 + CO. 

Both of these reactions are elementary processes and, at temperatures above 
500°K, are the only reactions responsible for the interconversion of C02, NO, 

N02, and CO. When a mixture of these molecules reaches chemical equilibrium, 

the rates of the two reactions must be equal. At equilibrium, then, 

ki [C0],[X02]. = *_i[C02]JN0]„ 

where the subscript e indicates that the concentrations are those found at 
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chemical equilibrium. We can rearrange this expression to 

fcl _ [C02]e[N0]e 
Jfc_i [C0]e[N02]e ■ 

The quotient of the equilibrium concentrations is equal to the equilibrium 

constant, so this equation shows us that 

This is the general relation which connects the equilibrium constant and the 

rate constants for the forward and reverse of any elementary process. 
It is not difficult to extend this argument to reactions which proceed by a 

multistep mechanism. Our example now is 

N02 + F2 N02F + F, 

F + N02 N02F. 

The condition for equilibrium in such a system is that each elementary process 

and its reverse proceed at the same rate. The reverse reactions of oui mech¬ 

anism are 

F + N02F —N02 + F 2, 
N02F N02 + F. 

The equilibrium condition requires that 

MN02]e[F2]e = fc_i[N02F]e[F]e, 

/c2[N02]e[F]e = fc_2[N02F]e. 

Now we combine these two expressions in a way which will eliminate the con¬ 

centration of fluorine atoms. Multiplication of the left- and right-hand sides 

respectively gives 

fcifc2[N02]?[F2]e[F]e = fc-!fc-2[ N02F]’[F],. 

Cancellation of the fluorine atom concentration and rearrangement leave us 

with 

kxk2 [NQ2F]e 

k-ik-2 [N02]e[F2]e 

Once again, the concentration quotient is equal to the equilibrium constant, so 

we conclude that 
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The principle that at equilibrium, each elementary process and its reverse 

proceed at the same rate establishes the connection between the equilibrium 
constant of a reaction and the rate constants of its elementary processes. This 
idea that at equilibrium, each elementary process is exactly balanced by its 

reverse reaction is called the principle of detailed balancing, or sometimes the 
principle of microscopic reversibility. 

9.4 COLLISION THEORY OF GASEOUS REACTIONS 

Now that the connection between reaction mechanism, rate constants, and 

equilibrium constants has been found, we can begin a theoretical analysis of 
the factors which determine the magnitude of the specific rate constant. We 
will treat gaseous bimolecular reactions, for which the theory is best established. 

It is a fundamental idea of the collision theory of reactions that a minimum 

condition for two molecules A and B to react is that their centers of mass must 

come to within a certain critical distance of each other. We will call this dis¬ 

tance p. Its exact value depends on the nature of the molecules which react, 
but we would expect that, in general, p is not much larger than the length of a 
chemical bond, that is, about 2 or 3 A. In Section 2.6 we found the expression 

for the number of collisions experienced by one molecule in one second: 

collisions/molecule-sec = irp2cn, 

where n is the number of molecules per cubic centimeter, and c is the average 

relative speed of the molecules in centimeters per second. We can adapt this 

expression to calculate the total rate at which A-molecules collide with B- 
molecules. If the concentration of B in molecules/cm3 is ub, then the number 

of collisions that one A-molecule makes per second with B-molecules is irp2C7iB- 

If the concentration of A-molecules is n\, then the total number of A-B col- 
lisions/sec-cm3 is 

collisions/cm3-sec = 7rp2cnA^B- (9.8) 

This is the total collision rate, and if molecules reacted upon every collision, it 

would be equal to the chemical reaction rate. Although we have expressed this 
rate as a number of collisions/cm3-sec, we see that the combined units on the 

right-hand side of Eq. (9.8) are concentration/sec: 

irp2cn\nB (- 
cm -V: cm 

ymolecule/ \sec 

molecules^2 
cnv 7Tp2CftAttB 

molecules 

cm3-sec 

Strictly, the units are molecules that react (collide) per second per cubic centi¬ 
meter. 

Because Eq. (9.8) apparently represents a maximum possible reaction rate, 
it is interesting to evaluate it for a typical situation. If we take both gases to 

be at 1-atm pressure and 0°C, then n\ = t?b = 2.8 X 1019 molecules/cm3. 
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Common values of p and c are 3 X 10 8 cm and 5 X 104 cm/sec, respectively. 

Therefore 

collision rate = (3.14)(3 X 10 8)2(5 X 104)(‘2.8 X 1019)2 

= 1.1 X 1029 molecules/cm3-sec 

= 1.8 X 108 moles/liter-sec. 

The total collision rate corresponds to an enormous reaction rate. If the two 

reacting gases, each at 1 atm, could be mixed, they would be almost entirely 

consumed by reaction in 10—9 sec. A few reactions actually are nearly this 

fast; among them are 

N + NO -> N2 + O, 

0 + N02 -> NO + 02. 

On the other hand, there are many common reactions used in laboratory and 

industrial preparative chemistry whose rates are 10~2 or 10-3 moles/liter-sec, 

or 10_1° to 10-11 times as fast as the total collision rate. There are other 

reactions that proceed even more slowly. Therefore, there must be criteria for 

reaction, other than those considered so far, that are responsible for this enor¬ 

mous variation in reaction rate. 
The clue that led to the discovery of the most important criterion for chemical 

reaction is the fact that reaction rates are in general very sensitive to tem¬ 

perature. Although the rates of some reactions are virtually independent of 
temperature, a temperature change of 10° increases the rate of most bimolecular 

reactions by factors which commonly lie between 1.5 and 5. The total collision- 

rate formula, Eq. (9.8), does not account for this behavior, for it suggests that 

the only way in which temperature affects reaction rate is through the mean 

speed c, which is proportional to T1/2. Thus 

total collision rate « c « T1/2. 

If T is initially 300°K, increasing it to 310°K increases the collision rate by a 

factor of 

We see that the average molecular speed is rather insensitive to temperature, 
and its variation cannot account for the temperature dependence of reaction 

rates. 
What feature of a gas is sensitive to temperature? If we consult Fig. 9.4, the 

answer is clear. In Fig. 9.4, we find the Maxwell-Boltzmann energy distribution 

function plotted for two temperatures. The area under either one of these curves 
corresponding to energies equal to or greater than the value Ea is equal to the 

fraction of molecules that collide with kinetic energy of relative motion equal 
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to or greater than Ea. As the temperature changes, the area under the dis¬ 
tribution curve for energies greater than Ea changes. If Ea lies in the tail of 

the distribution curve, the area may change by a large factor as temperature 

changes. Thus, if we suppose that the only molecules which react are those that 
collide with energy greater than a certain minimum, we can explain why chem¬ 

ical reaction rates are generally smaller and more temperature sensitive than 

total collision rates. The minimum energy of relative motion necessary for 
reaction is called the activation energy, and is a factor of foremost importance 

in determining the magnitude of the reaction rate. 

Energy 

The distribution of molecular kinetic fig. 9.4 
energies at two temperatures. The num¬ 
ber of molecules with energy Ea or 
greater is proportional to the shaded 
area for each temperature. 

In any collision that leads to reaction, some chemical bonds are broken and 

some new bonds may be formed. During any individual reactive collision, the 
total energy of the colliding particles remains constant, but this total energy can 

be interconverted between kinetic energy and potential energy of the partici¬ 

pating atoms. The origin of the activation-energy requirement is most easily 
explained if we assume that between the atomic arrangement we call products 

and that called reactants, there is an atomic arrangement which has a potential 

energy greater than that of reactants or products. In order to pass from re¬ 
actants to products, a colliding pair of molecules must possess a total energy 

at least equal in magnitude to the potential energy of this intermediate atomic 
configuration. 

Let us consider a specific example. The reaction 

Br+ H2 -> HBr + H 

is of the simplest type, since it involves only three atoms. For simplicity, we 
shall assume that the reactants collide such that the nuclei of the three atoms 
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lie on the same straight line at all times. The potential energy of this linear 
system of atoms is plotted in Fig. 9.5 as a function of a “reaction coordinate” 

that represents the progress of the three atoms from the form of reactants to 

that of products. When Hr and II2 are many angstroms from each other, the 
reaction coordinate is simply the distance between their centers of mass. In 

this region, the potential energy is essentially constant. As the bromine atom 
nears the hydrogen molecule, there may be at first a slight lowering of tin* 

potential energy due to van der Waals attractive forces, but as the bromine 

atom moves still closer, the potential energy of the system rises. 

fig. 9.5 The potential energy as a function of the re¬ 
action coordinate for the linear system of 
atoms in the reaction Br + H* —► HBr + H. 

In the region where all three atoms are close, the reaction coordinate i< pre¬ 

sents a simultaneous shrinking of the Br II distance and expansion of the 
II 11 distance. Theoretical calculations suggest that the maximum potential 

energy is reached when the Br H and II—II distances are comparable, both 

approximately 1.5 A. In this situation the central hydrogen atom is partially 
bonded to both terminal atoms. This configuration of maximum potential 

energy is the activated complex. The activated complex decays as the external 
hydrogen atom moves away and the molecule of HBr is formed, lo the light 

of the potential-energy maximum, the reaction coordinate is the distance 

between the centers of mass of llBr and II, and the potential energy along this 

coordinate is substantially constant. 
We can now ask how the potential-energy profile is changed when the three 

atoms do not all lie on a straight line. In the particular case we are discussing, 
the potential energy is unaffected for configurations that are removed from the 
potential-energy maximum, but the height of the maximum increases as the 
activated complex becomes bent, as shown in I'ig. 9.0. 1 here fore, while it is 

possible for collisions in which the three atoms are not collinear to lead to 
reaction, the energy requirement for such collisions is greater than for those in 

which the atoms are collinear. 
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Similar considerations apply to other, more complicated reaction processes. 
The reaction 

CO + N02 -> NO + C02 

involves an activated complex for which the geometry of lowest energy is 
zigzag: 

N N 

/ \ / \ 
OC + O O -» [0—C • • • 0 0] -> OCO + NO. 

If the collision occurs in a way that forces the geometry of the activated com¬ 
plex to depart seriously from this most favorable arrangement, the energy 

barrier between reactants and products is higher and fewer collisions can meet 

this requirement. In the extreme ease it is difficult to see how a collision with 
the orientation 

O 
/ 

0—C N 
\ 

O 

can lead to reaction at all, since the atoms that must eventually become bonded 
are separated from each other. 

The potential energy as a function of the fig. 9.6 

reaction coordinate for the reaction Br+ 
H2 —» HBr + H. The solid line represents 
the linear system of atoms, and the dashed 
line a nonlinear configuration of atoms. 

Our discussion has revealed two related factors that influence reaction rates. 
Not only must molecules collide, they must collide with a restricted range of 

relative orientations, and with enough initial kinetic energy of relative motion 
to be able to pass over the potential-energy barrier to products. The energy 
and orientation factors are related because it is the orientation of the colliding 

molecules that determines, to a certain extent, what the energy requirement is. 

When the energy and orientation criteria are applied, the theoretical expression 
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Table 9.1 Dependence of exponential factor e-E°/RT on Ea and T 

298 
400 
600 
800 

10 kcal 20 kcal 30 kcal 

4.6 X 10-8 2.1 X 10-15 9.9 X 10~23 
3.4X10-6 1.2X10-11 4.0X10-17 
2.3 X 10-4 5.2X10-8 1.2 X 10 —11 
1.8 X 10-3 3.4 X IQ-6 6.4 X 10~9 

for the rate of a bimolecular gas reaction becomes 

fSirkT\112 2 -ejrt 
rate = p ( ———) P e nA«B, (9.9) 

w •here p is a combination of molecular masses given by 

m AmB 
IX = -;- f 

mA + mB 

k is Boltzmann’s constant, and R is the ideal gas constant in units of cal/mole- 

deg. The quantity p is called the steric factor and is related to the orientation 

requirement. Its value depends on the complexity of the reacting molecules 

and on how sensitive the height of the potential-energy barrier is to distortions 

of the activated complex. Methods are available for estimating p from the 

mechanical and geometric properties of the activated complex. In general, p is 

approximately 10“1 for reactions between atoms and simple molecules, but may 

be as small as 10-5 for a reaction between two complicated molecules. 

The factor e~Ea'RT arises from the energy requirement, since Ea is the activa¬ 

tion energy, the minimum energy required to form the activated complex from 

the reactants. Table 9.1 gives the value of this exponential factor for several 

choices of temperature and activation energy. It is clear from these numbers 

that the activation-energy requirement can have a profound influence on the 

reaction rate. Table 9.2 lists a few reactions and their experimentally deter- 

Table 9.2 Activation energies of some bimolecular reactions 

Reaction £a(kcal/mole) 

NO + Os -► N02 + 02 2.5 

H + D2 —> HD + D 8 

Br + H2 -» HBr + H 17.6 

Cl + H2 — HCI + H 5.5 

H + Br2 —> HBr + Br 1.2 
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mined activation energies. Differences in the activation energies are largely 
responsible for the large range of the magnitudes of chemical reaction rates. 

Figure 9.7 shows how the activation energy for a reaction and its reverse 
are related to the overall energy change for the reaction. Any reaction and its 

reverse have the same activated complex, so if we call Eaf the activation energy 
for the forward reaction, and Ear the activation energy for the reverse process, 

we get 

AE = Eaf — Ear 

for the overall energy change for the forward reaction. 

The relation between the activation energy fig. 9.7 
of a forward reaction £„/, that of the reverse 
reaction Ear, and AE, the net internal energy 
change. 

Let us return to Eq. (9.9) and set the rate of the bimolecular reaction equal 
to k'n\nB, where k' is the bimolecular rate constant. This gives us 

EuaUb = V (■ 8trkT^112 

\ M 
p2e EalhJn\TiB- 

Canceling the concentrations leads to 

8irkT\ll2p2c-EaiRT (9.10) 

as the expression for the bimolecular rate constant. Equation (9.10) shows that 
the rate constant is determined by the temperature and by the nature of the 

reactants through the factors p, p, p, and Ea. Now that we have identified the 
principal factors that determine a bimolecular rate constant, we might ask 
whether it is possible to predict reaction rates theoretically. In principle this is 

possible; in practice it is not often done satisfactorily. To predict a reaction 
rate, one must know all the mechanical properties of the activated complex. 
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There are some methods that can be used to estimate geometric properties of 
activated complexes, but it is virtually impossible to predict activation energies 

accurately. Since reaction rates are so sensitive to the value of the activation 

energy, it is not possible at the present time to make very useful predictions 

of the magnitudes of many reaction rates. 

FIG. 9.8 The natural logarithm of the rate con¬ 
stant as a function of reciprocal tem¬ 
perature for the dimerization of 
butadiene. The slope of the line 
equals —Ea/R. 

9.5 TEMPERATURE EFFECTS 

Inasmuch as it is usually not possible to predict the activation energies of 

chemical reactions, these quantities must be obtained experimentally. To see 
how this is done, let us first note that in Eq. (9.10), the factors other than 
e-EjRT are rather insensitive to temperature. In particular, we demonstrated 

in Section 9.4 that T1'2 changes by only a very small factor when T is changed 

by 10 K°. On the other hand, reference to Table 9.1 shows how rapidly the 

factor e~EalRT varies with temperature. With these ideas in mind, we can 

rewrite Eq. (9.10) in the form 
k = Ae-*JRT (9.11) 

and regard the pre-exponential factor A as virtually independent of tempera¬ 

ture. Taking the natural logarithm of Eq. (9.11) gives 

In k — In A — (9.12) 

Ink =-^ + constant. (9.13) 
iii 

Equation (9.13) suggests that a plot of In k as a function of 1 /T should be a 
straight line, and as Fig. 9.8 demonstrates, this is found experimentally. Our 

analysis shows that the slope of this plot is —Ea/R, and experimental activa¬ 
tion energies are obtained by measuring k at several temperatures, plotting the 

data as in Fig. 9.8, and calculating Ea from the slope. 
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If the activation energy and the value of the rate constant at one temperature 
are known, it is possible to calculate the rate constant for any other temperature. 
To show this, we need only write Eq. (9.12) for two temperatures: 

In k2 = In A — 
Ea 

RT2 ’ 

In ki = In A _Ea 

RT 1 

Subtracting the second of these from the first gives 

(9.14) 

Thus if Tj, ki, and Ea are known, k2 can be calculated for any choice of T2. 

Example 9.1 For the reaction, 

C2H5I + OH- 

k = 5.03 X 10“2 M~x • sec-1 at 289°K 

C2H5OH+ I- 

and k = 6.71 A/-1 • sec-1 at 333°K. 

What is the activation energy of the reaction? What is its rate constant at 305°K? 
By Eq. (9.14), 

1.99 

T2 - T1 

(289) (333) 
2.3 log 

6.71 

44 5.03 X 10-2 

= 21,200 cal = 21.2 kcal. 

To find the rate constant at 305°K, we use Ea and the rate constant at 333°K to get 

Ea (Ti - T2n 
2.3 log k2 = 2.3 log k 1 — 

R TiT2 

= 2.3 log 6.71 - 
21,300 333 - 305 

1.99 L (333) (305) 

log k2 = 0.826 - 1.28 = -0.45, 

k2 = 0.35 M~l • sec-1. 

The experimentally measured value is 0.37 M 1 • sec ,-1 

Our discussion of the effect of temperature on reaction rate has dealt ex¬ 
clusively with bimolecular elementary reactions. Now let us consider some 

other cases. A unimolecular rearrangement reaction always involves collisional 
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processes that produce and destroy energized species. For the rearrangement 
of cyclopropane to propylene, the important steps are 

ch2 *, 
/ \ +M 

H,C-CHo *2 

CHo 
/ \ 

h2c-ch2 
+ M, 

CH2 

/ \ 
HoC-CH2J 

*3 

ch3ch=ch2, 

where M is any molecule, including cyclopropane itself. Only the cyclopropane 
molecules with considerable internal energy of vibration can rearrange to 

propylene. The role of the collisions with the molecules IN I is to maintain a 

certain concentration of the cyclopropane molecules in this energized condition, 
and the ratio of Aq to k2 is the equilibrium constant for the formation of energized 
molecules: 

[cyclopropane*] _ Aq 

[cyclopropane] k2 

General thermodynamic considerations suggest that this equilibrium constant 

should be proportional to e~E° RT, where Ea is the minimum energy a cyclo¬ 
propane molecule must have in order to be considered activated; that is, in 

order to be able to react by step 3. The decomposition of the activated mole¬ 
cules occurs with some rate constant k3 characteristic of the structure of the 

molecule, and Aq is not strongly temperature dependent. Thus for the tem¬ 
perature dependence of the overall first-order reaction we get 

k = ~ A'3 = constant X e~E° RT, 
A* 2 

where k is the experimental rate constant defined by 

(/[cyclopropane] 

dT 
= A*[cyclopropane]. 

Thus for reactions that involve a unimolecular decomposition step we again 
obtain an exponential relation between the rate constant and temperature. 

It is not always true that the rate of a reaction increases as temperature 
increases. For example, the recombination of iodine atoms, 

I -t~ I ~F Ar —► I2 + Ar, 

is faster at lower temperatures than at higher temperatures. The same is true 

for other atomic recombinations. The explanation of this behavior lies in the 
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mechanism of the reaction: 

k\ 

I + Ar + Ar < * IAr + Ar, fast equilibrium, 
k-\ 

IAr + I —12 + Ar, slow. 

The weakly bound complex IAr is in equilibrium with iodine and argon atoms. 
Thus 

[IAr] = (fc1/fc_1)[ Ar][I] and ® = k2[ I][IAr] 

give us 

d[l2] k1 m2r a „i 

-ir = kZ**lI) [Arl- 

Since k\/k_\ is the equilibrium constant for what must be an exothermic asso¬ 

ciation reaction, it must decrease as temperature increases. Now k2 is the rate 
constant for a bimolecular process, and if there were any activation energy 
required for reaction 2, k2 would increase with temperature. However, for 

virtually all atom recombinations there is no activation energy for step 2, and 
the overall rate of recombination follows the behavior of fcj/fc_i, and decreases 

as temperature increases. 

To summarize our discussion of the effect of temperature on reaction rates, 
we can remark that the rate constants of bimolecular elementary reactions 

generally increase with increasing temperature at a rate determined by the 
activation energy of the reaction. However, the behavior of the overall rate 
constant of a reaction that, follows a complex mechanism is difficult to predict. 

Depending on the nature of the mechanism, the overall rate constant may 

increase, decrease, or stay virtually constant as the temperature is changed. 

9.6 RATES OF REACTIONS IN SOLUTION 

Reactions in the gas phase occur by processes in which no more than three 

molecules collide at the same time. The situation is quite different for reactions 
which take place in solution. Any reactant molecules brought together in 

solution not only collide with each other, but are constantly subjected to forces 
due to their several neighboring solvent molecules. It would appear, then, that 
any reaction in solution is a complicated event in which the behavior of not 

only the reactants but 10 or 20 surrounding solvent molecules must be con¬ 

sidered. Despite this apparent complexity, we can achieve a good understanding 
of solution reactions by analyzing three general factors which affect the reaction 

rate. They are: 

1. The rate at which initially separated reactant molecules come together and 

become neighbors. This is called the rate of encounters. 
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2. The time that two reactants spend as neighbors before moving away from 

each other. This is called the duration of an encounter. During this time 

the two reactants may collide or vibrate against each other hundreds of 

times. 

3. The requirements of energy and orientation which two neighboring reactant 

molecules must satisfy in order to react. 

The first and third factors are similar to the concepts which entered our discus¬ 

sion of gas-phase reactions, while the second involves a phenomenon which 

occurs only in dense phases. Any one of these three factors may determine the 

rate at which a reaction occurs, and we shall now consider each of them in 

more detail. 

There are several reactions in which there are no activation-energy or orienta¬ 

tion requirements; the molecules react as soon as they become neighbors. 

Consequently the reaction rate is limited only by our first factor—the rate at 

which encounters occur. Two examples of such reactions are 

I + I —* 12 (in CC14 solution), 

H30+ -f HSOF —■> H2S04 + H20 (in H20 solution). 

Since the reactants are of very simple structure, and since the products are 

energetically much more stable than the reactants, it is not surprising that 

there are no orientation or energy restrictions for reaction. The reactant mole¬ 

cules move together through the liquid by diffusion. Since the rate of the 

reaction is determined only by the rate at which reactant molecules can diffuse 

together, these reactions are said to be diffusion controlled. The rate at which 

diffusion occurs depends on the nature of the solvent. If the solvent molecules 

are large and exert strong forces on one another, they will impede the motion 

of reactant molecules and diminish the rates of diffusion-controlled reactions. 

Therefore, diffusion-controlled reactions are fastest in solvents of low viscosity, 

where the solvent molecules are easily pushed aside by the diffusion reactants. 

Diffusion-controlled reactions are very rapid, and consequently it is difficult 

to measure their rate constants. However, considerable effort and ingenuity 

have been applied to this problem, and Table 9.3 contains only a few of the 

measured rate constants for diffusion-controlled reactions. The neutralization 

reaction between H30+ and OH- is the fastest of all reactions that take place 

in aqueous solution, because H30+ and OH- diffuse through water faster than 

any other ions. The rate constant for the corresponding reaction between 

H30+ and F~ is smaller, since F— diffuses through water more slowly than 

does OH-. Comparison of the rate constants of the last three reactions is 

interesting because it shows how the charge on the reacting species affects the 

reaction rate. We would expect the rate at which two ions of opposite charge 

diffuse together to be greater than the rate of encounters of an ion and a neutral 

species, or of two ions of the same charge. The data substantiate this expecta- 
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Table 9.3 Rate constants for diffusion controlled reactions 

Reaction /c(liters/mole-sec) 

H30+ + OH- — 2H20 1.4X1011 

H3O+ + F--* hf+h2o 1X1011 

H30+ + HS- — H2S + H20 7.5 X 1010 

H3O+ + N(CH3)3 -*• H20 + HN(CH3)3 2.6 X 1010 

H3O++ CuOH+-> Cu++(aq) + H26 1 X 1010 
H3O+ + (NH3)5CoOH+2 -> (NH3)oCoH20+3 + H20 4.8 X 109 

tion, since the rate of these neutralizations decreases as the like charge on the 
reactants increases. 

The second of the rate-controlling factors also involves the effect of the 

solvent on the motion of reactant molecules. Consider, for example, an iodine 
molecule which has somehow received enough energy to dissociate into atoms. 

If this molecule is in the gas phase, this dissociation occurs immediately, and 
within 10~11 sec the two atoms may be separated by several hundred ang¬ 

stroms. However, if the dissociating molecule is in a solution, it is surrounded 
by solvent molecules which impede the separation of the atoms, and which 

thereby may prevent the dissociation. In essence, the iodine molecule is held 
in a “cage” of solvent molecules, and the action of the solvent which prevents 

dissociation is known as the “cage effect.” In our example, the cage effect 
diminishes the net rate of dissociation of iodine molecules. However, there are 

situations in which the cage effect can work to increase the reaction rate. Sup¬ 
pose two molecules diffuse together but find upon their first collision that they 
do not satisfy the energy or orientation requirements for reaction. Then, in¬ 

stead of immediately separating, they are held as neighbors by the solvent cage. 
The duration of such an encounter may be 10—10 sec, and during this time the 

molecules may acquire the energy or orientation required to react. This argu¬ 

ment shows one essential difference between reactions in the gas and liquid 
phases. In the gas phase, molecules collide and, if no reaction occurs, separate 
immediately. In solution, molecules make an encounter during which they may 

collide several hundred times. If no reaction occurs, they eventually separate. 
The third of the rate-controlling factors, the energy-orientation requirement, 

is primarily determined by the nature of the reacting species. Even here, how¬ 
ever, the solvent may play a role. A good example is the reaction 

(ch3)3cci + oh- -> (ch3)3coh + cr, 

which proceeds by the mechanism 

(CH3)3CC1 -> (CH3)3C+ + Cl- (slow), 

(CH3)3C+ + OH" (CH3)3COH (fast). 
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Of the reactants, only (CH3)3CC1 is involved in the rate-determining step, 

and consequently the reaction is first order with respect to (CH3)3CC1, and 

does not depend on the concentration of OH-. This reaction can be studied 
in aqueous solution and in solvents which are mixtures of water and organic 

liquids. The result is that the rate of the reaction depends profoundly on the 

nature of the solvent and increases with increasing water concentration. The 
explanation of this behavior is that the rate-determining step involves the 

production of a pair of ions, and this step would be expected to proceed more 

easily or more frequently in a solvent in which ions are more stable. In other 
words, a polar solvent to which ions are strongly attracted should increase the 

rate of ionization. This is precisely what is found: the reaction is 104 times 

faster in a 90% water-10% acetone mixture than in 10% water-90% acetone. 

In general we can expect a reaction to be fastest in a solvent in which the 
activated complex is most stable. If, as in the above example, the activated 

complex is highly polar, the reaction should be fastest in a solvent of polar 
molecules. On the other hand, a reaction in which polar or ionic molecules 

form a nonpolar or neutral activated complex will be fastest in a nonpolar 

solvent. 

9.7 CATALYSIS 

We observed earlier that there are many reactions which, while having large 

equilibrium constants, proceed at extremely small rates. In order to take 

advantage of these reactions, particularly for industrial processes, it is impor¬ 

tant to find ways to increase their rates. This is the general problem of catalysis. 
According to the usual formal definition, a catalyst is a substance which increases 

the speed of a chemical reaction without itself undergoing change. In practice 
this definition proves too restrictive. There are many instances in which a 

substance not required in the overall stoichiometry will increase the reaction rate 

and be changed at the same time. A simple example occurs in the hydrolysis of 
an ester; the overall equation is 

CH3COOC2H5 + H20 C2H5OH + CH3COOH. 

Hydroxide ion is not required by the stoichiometry of this reaction, but its 
addition does increase the reaction rate. However, one of the reaction products 

is an acid, and any added hydroxide ion is consumed as the reaction proceeds. 

Even so, we call the hydroxide ion a catalyst, for according to common usage, 
a catalyst is any reagent which can increase the rate of reaction while not being 

actually required for the stoichiometry. 
How do catalysts increase reaction rates? The general answer is that they 

provide new faster paths by which a reaction can proceed. This can be done in 
a variety of ways. Consider, for instance, the reaction between ceric and 

thallous ions: 
2Ce+4 + T1+ -> 2Ce+3 + T1+3. 
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This reaction is slow because in order to remove two electrons from Tl+ simul¬ 
taneously, a three-body collision between ions of the same charge is required. 

However, the reaction is catalyzed by Mn++, which acts in the following way: 

Ce+4 + Mn++ —► Ce+3 + Mn+3, 

Ce+4 + Mn+3 -* Ce+3 + Mn+4, 

Mn+4 + T1+ -* T1+3 + Mn++. 

That is, the presence of Mn++ permits a new mechanism or reaction path, 

whereby the single slow termolecular process is replaced by three faster bi- 
molecular reactions. 

Catalysts can also act by modifying the electronic structure of the reactants. 
For example, the conversion of an alcohol to an organic halide is catalyzed by 
hydrogen ion. The reaction is 

Br- + C2H5OH -» C2H5Br + OH-. 

The role of the hydrogen ion seems to be to facilitate the ejection of the OH 

group in the following way: 

H + 

H+ + C2H5OH = C2H50—H (rapid equilibrium), 

CH3 H + CH3 

\ I I 
Br- + C—0—H -> Br • • • C • • • 0H2 -> CH3CH2Br + H20 (slow). 

/ \ / \ 
H H H H 

The presence of the proton on the hydroxyl group of the alcohol apparently 

lowers the activation energy of the second slow step. 
The reactions we have discussed are examples of homogeneous catalysis, since 

the catalytic processes occur in one phase. Phase boundaries or surfaces also 
can increase reaction rates; this is called heterogeneous catalysis. One of the 

most outstanding examples of heterogeneous catalysis is the hydrogenation of 

unsaturated organic compounds. The reaction 

H2 + C2H4 -> C2H6 

is immeasurably slow at moderate temperatures in the gas phase, but occurs 
readily at the surface of metals such as nickel, platinum, and palladium. Sep¬ 

arate experiments show that these metals can “dissolve” or absorb large 
quantities of hydrogen, apparently by incorporating it in the metallic lattice 

as hydrogen atoms. We might represent this process by 

*H2(g) + M = M • H 
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where M represents the metal, and M • H stands for the “pool” of atomic 
hydrogen in the metallic lattice. Hydrogen atoms are known to be more reactive 

than hydrogen molecules, and thus the hydrogenation of C2H4 may take 
place by 

2M • H + C2H4 ataurface > C2H6. 

In effect, the metal provides a new reaction path of low activation energy by 
dissociating the molecular hydrogen to atoms. 

Metal oxides are often effective catalysts for oxidation reactions. Two 
examples are 

CO + i02 C02, S02 + i02 S03. 

An outstanding feature of these metal oxide catalysts is their specificity—an 
oxide particularly effective as a catalyst for the oxidation of carbon monoxide 

may have no effect on the rate of sulfur dioxide oxidation. Presumably this is 

due to differences in the interaction or bonding which can occur between the 

surface and the various substances to be oxidized. However, since the nature 
of surfaces and their interactions with gaseous molecules is one of the most 

complicated problems in chemistry, the detailed explanation of much of surface 
catalysis has not yet been found. 

Enzyme Catalysis 

In living systems, a great many very complicated molecular transformations are 

catalysed by large protein molecules called enzymes. These catalysts can be 

quite specific: for example, the enzyme urease catalyzes the hydrolysis of urea, 
(NH2)2 CO, by the reaction 

(NH2)2 CO + 2H20 2NHt + COf, 

but has no effect on the hydrolysis rate of any other molecule, even those whose 

molecular structure is very similar to that of urea. This specificity is a very 

important feature of enzyme action. It provides a mechanism for allowing the 

highly selected reactions which are necessary for the function of living cells to 

occur rapidly at moderate temperatures. The specificity of enzymes varies, 

however. The enzyme a-chymotrypsin, which is secreted by the human pancreas, 

can catalyze the hydrolysis of esters, amides, and polypetides (see Chapters 

17 and 18), and is used by the body to speed the digestion of small protein 
molecules. 

Enzymes function by forming an association or complex with the molecule 

(called the substrate) whose transformation they catalyze. This enzyme-sub¬ 

strate complex may dissociate back to reactant substrate and free enzyme, or to 
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free enzyme and product molecules. Thus we have the general mechanism 

E + S ES, 
fc-, 

ES E + P, 

where E stands for the enzyme molecule, S for the substrate, ES for the enzyme- 

substrate complex, and P for the product molecules. This simple three-step 

mechanism does not deal with the detailed questions of how the enzyme and 

substrate are bound, and what atomic motions lead to product formation. Such 
questions are currently of very great interest to biochemists, and in some cases, 

a very detailed picture of enzyme action can be built up. Nevertheless, the 

general behavior of most enzyme-catalyzed reactions can be understood in 

terms of the simple three-step mechanism. 

Let us find the rate law given by this mechanism. To conform to common 

usage in biochemistry, we write V for the rate at which products appear. Then 

V = k2( ES), (9.15) 

and to proceed we must find an expression for the concentration of enzyme- 

substrate complexes. In the steady-state, when the rates of formation and 

destruction of ES just balance, we have 

ledE][S] = (fc_! + k2)[ ES]. (9.16) 

This equation might be solved for the concentration of the enzyme-substrate 

complex [ES], but it contains the concentration of free enzyme [E], which is 

unknown. There is a way around this difficulty, however. We can write the 

material balance equation for the enzyme as 

[E0] = [E] + [ES], 

where [E0] is the total concentration of enzyme material. Solving this equation 

for [E], and substituting the result in Eq. (9.16), we get 

fci[S][(E„] - [ES]) = (k—i + k2)[ES], 

= fci[E0][S] 

k—i T- k2 T- fci[S] 

for the concentration of the enzyme-substrate complex. Substituting this in 

Eq. (9.15) we find that the rate of reaction is given by 

y fc1fc2[E0][S] 

k—i ~r k2 -f- Aq[S] 
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Now we divide numerator and denominator by ki, and make the definition 

The result is 

Kr 
fc—i T k 2 

fc2[E0][S] 

Km+[ S]' 
(9.17) 

This expression is known as the Michaelis-Menten equation, after the first two 

scientists who used it to represent the kinetics of enzyme-catalyzed reactions. 

By taking the reciprocal of both sides, we obtain another common form of the 
Michaelis-Menten rate law: 

- = —-1-. (9.18) 
V k2[ E0] fc2[E0][S] 

Thus the reciprocal of the reaction rate is a linear function of the reciprocal of 

the substrate concentration when the total amount of enzyme is held constant. 

Let us analyze the dependence of the reaction velocity V on the concentration 
of the substrate molecule S given by Eq. (9.17). At sufficiently low concentration 

of substrate, we can satisfy the inequality 

[S] « Km, 

and therefore the concentration of substrate can be neglected compared to Km 

in the denominator of Eq. (9.17). Thus we get 

V=^r MS], [S] « Km, 

and we see that at low substrate concentrations, the rate is first order with 
respect to both substrate and enzyme. 

Now consider the contrasting situation in which the substrate concentration 
is so high that 

[S] » Km. 

In this case, we can neglect Km compared to [S] in the denominator of Eq. (9.17). 
The result is that the concentration of the substrate cancels from the rate law 
expression, and we get 

y = ^r [S]» K~ 

Thus the rate law is now first order with respect to the enzyme, but zero order 
with respect to substrate. 
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What is the physical reason why the reaction rate changes from first to zero 
with respect to substrate as the substrate concentration is increased? Each 
enzyme molecule has one or more “active sites” at which the substrate must 
be bound in order for the catalyzed transformation to products to occur. When 
the concentration of substrate is low, most of these active sites are unoccupied 
at any time. Increasing the substrate concentration increases the number of 
these active sites which are occupied and the rate of reaction therefore increases. 
When very high substrate concentrations are reached, virtually all the active 
sites of the enzyme are occupied at any time, and further increases of the 
substrate concentration cannot increase the number of enzyme-substrate com¬ 
plexes. The rate is therefore unaffected by changes in the substrate concentra¬ 
tion. Examination of the expression for the enzyme-substrate complex 
concentration, 

[ES] = 
[Ep][S] 

Km + [S] ’ 

confirms this picture. At low substrate concentrations we have 

[ES] S 
[E0][S] 

Km 
[S] « Km, 

so that [ES] increases linearly with [S]. At high substrate concentrations, we 
find 

[ES] [E0], [S] » Km, 

which means that all active sites on the enzyme are occupied by substrate 
molecules. 

One way of affecting the pattern of cell functions is to inhibit the action of 
specific enzymes with chemical agents. This is in fact the basis for the action 
of several chemotherapeutic agents. Some molecules which act as inhibitors 
of an enzyme are chemically and structurally very similar to the normal sub¬ 
strate molecule and can occupy the active sites on the enzyme, but do not react 
to give the normal products. Such agents are known as competitive inhibitors, 
since they compete with the substrate for the active sites on the enzyme. 

Let us determine the form of the rate law for an enzyme-catalyzed reaction 
subject to competitive inhibition. The basic rate law is still 

V = fc2[ES], 

but now we must find how the inhibitor affects the concentration of the enzyme- 
substrate complex. Let the inhibitor molecule be designated by I. For the 
formation and destruction of an enzyme-inhibitor complex El by the reactions 

E + I = El 
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there is an equilibrium constant defined by 

K .. [El] 

[E][I] ' 

The material balance equation for the enzyme is 

[E„] = [E] + [El] + [ES] 

= [E](l + K[I]) + [ES]. 

Solving this for the enzyme concentration [E], and substituting the result into 
the steady state expression for [ES], 

ME][S] = (&_! + fc2)[ES], 

we can find the concentration of the enzyme-substrate complex, 

[ES] =--. 
Km( 1 + A[I]) + [S] 

The rate of reaction is therefore 

fe2[E0][S] 

Km( 1 + K[l]) + [S]' 
(9.19) 

We can see from this that if K[I] is large compared with unity, the rate of reaction 
is diminished. Since 

m = 
[EI] 

[E] ’ 

this condition occurs when an appreciable fraction of the active sites on the 

enzyme are occupied by inhibitor molecules. 

9.8 CONCLUSION 

The chemical reactions we encounter range from the almost instantaneous to 

the imperceptibly slow. It is possible, nevertheless, to understand the existence 
of this great variety of rates in terms of reaction mechanisms and the nature of 
elementary processes. In analyzing reaction rates, we have found that very 

many chemical reactions proceed by a series of steps. For any chemical reaction, 

there may be more than one possible sequence of steps leading from reactants 
to products, and consequently, the reaction mechanism must be determined 

experimentally by studying the concentration dependence of the reaction rate. 
A marked change in the temperature, introduction of a catalyst, or some other 

change in the conditions of the reaction may cause the mechanism of a reaction 
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to change. In some circumstances, reactions proceed by two or more mechanisms 
simultaneously. In any case, a reaction proceeds by the fastest mechanism 
available to it. 

The elementary processes of a mechanism are events which involve from one 

to three molecules. In an elementary process, energy may be transferred from 
one molecule to another, bonds may be broken or formed, or electrons may 

be transferred. In order for a bimolecular reaction, in which some bonds are 
broken and others are made, to occur, the molecules must collide with a certain 

orientation and with a certain minimum energy. Because of the orientation 
and energy requirements, the reaction rate is generally less than the total 
collision rate. While it is possible to predict the influence of the orientation 

requirement from the structures of the reacting molecules, it is considerably 
more difficult to predict what the activation energy of a reaction will be. As 

the techniques of quantum-mechanical calculation improve, it will prove pos¬ 
sible to calculate activation energies, and then we will be able to predict the 

rates of many elementary processes. In the meantime, however, analysis of 
experimental rate studies provides us with a description of what molecules do 

to each other when they react. 
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PROBLEMS 

9.1 If concentrations are measured in moles per liter, and time in seconds, what are 
the units of the rate constant for (a) a first-order reaction (b) a second-order reaction 
and (c) a third-order reaction? 

9.2 For the reaction between gaseous chlorine and nitric oxide, 

2NO + Cl2 -* 2NOC1, 

it is found that doubling the concentration of both reactants increases the rate by a 
factor of eight, but doubling the chlorine concentration alone only doubles the rate. 
What is the order of the reaction with respect to nitric oxide and chlorine? 
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9.3 The following terms are grouped in pairs which are sometimes confused with each 

other. Give a brief definition and explanation of each term that distinguishes one 

member of the pair from the other. 

reaction rate reaction rate constant 

order molecularity 

activation energy activated complex 

9.4 The reaction O+OCl- —> Cl~+OI_ follows the rate law d[0\~]/dt = 

*'[I-][OCl-], but k' proves to be a function of the hydroxide-ion concentration. For 

hydroxide concentrations of 1.00 M, 0.50 M, and 0.25 iff, k' is equal to 61, 120, and 

230 liters/mole-sec, respectively, at 25°C. What is the order of this reaction with 

respect to hydroxide ion? 

The mechanism of this reaction is 

OCl--(-H20 = HOC1+OH- (fast equilibrium), 

HOC1 + I" -» HOI + Cl- (slow), 

HOI + OH- -* H20 + OI_ (fast). 

Show that this is consistent with the rate law for the reaction. 

9.5 The reaction between carbon monoxide and chlorine to form phosgene (CI2CO), 

has the rate law 

Cl2 + CO —> CI2CO. 

—|P-- = A:[C12]3/2[C0]. 

Show that the following mechanism is consistent with this rate law: 

CI2 + M = 20+M, (fast equilibrium), 

Cl + CO + M = C1CO + M, (fast equilibrium), 

C1CO + Cl2 -+ Cl2CO + Cl, (slow). 

9.6 In acid solution the rate of the reaction 

NH + + HN02 -» N2+ 2H20+ H + 

is consistent with the mechanism 

HN02+H+ = H20+N0+ (rapid equilibrium), 

NH + = NH3+H+ (rapid equilibrium), 

NO + + NH3 -> NH3NO+ (slow), 

NH3NO+ H20 + H + + N2 (fast). 

Write the rate law which is consistent with this mechanism by expressing d[NH^]/d£ 

as a function of [NH^1-], [HN02], and [H+]. 

9.7 Consider the set of reactions 

A + B +=± C+ D, 
k—i 

C+ E —F. 
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What relationships between the magnitudes of k\, k-i, and k% and reagent concentra¬ 
tions will lead to the following rate laws? 

d[F] [A][B][E] 

dt [D] 
b) = k'[A][B] 

dt 

9.8 The following data give the concentration of gaseous butadiene as a function of 

time at 500°K. Plot them as In c vs. t and as 1/c vs. t. Determine the order of the 

reaction, and calculate the rate constant. 

t (sec) C (moles/liter) t (sec) C (moles/liter) 

195 1.62 X lO-2 4140 0.89 X lO-2 
604 1.47 X lO"2 4655 0.80 X lO-2 

1246 1.29 X lO"2 6210 0.68 X lO"2 
2180 1.10 x 10-2 8135 0.57 X lO"2 

9.9 The following data give the pressure of gaseous N2O5 as a function of time at 

45°C. Plot them first as 1/P vs. t, and then as In P vs. t. Ascertain the order of the 

reaction, and calculate the rate constant. 

t (sec) P (mm) t(sec) P (mm) 

0 348 3600 58 
600 247 4800 33 

1200 185 6000 18 
2400 105 7200 10 

9.10 The following data give the temperature dependence of the rate constant for the 

reaction N2O5 —> 2NO2+JOs- Plot them and calculate the activation energy of 
the reaction. 

T(°K) k (sec-') T (°K) k (sec-1) 

338 4.87 X 10-3 308 1.35 X lO-4, 
328 1.50 X 10"3 298 3.46 X 10-« 
318 4.98 X 10 273 7.87 X 10 

9.11 It is often stated that near room temperature, a reaction rate doubles if the 

temperature increases by 10°. Calculate the activation energy of a reaction that obeys 

this rule exactly. Would you expect to find this rule violated frequently? 

9.12 An endothermic reaction has a positive internal energy change AE. In such a 

case, what is the minimum value that the activation energy can have? (Refer to 

Fig. 9.7). 

9.13 An electronically excited atom can either fluoresce or lose its energy by collision 

with some other molecule. For example, 

Hg* Hg+h», 

Hg* + Ar Hg + Ar. 

These reactions are elementary processes. What is the rate law of each? What is the 

expression for the fraction of atoms lost by fluorescence at a given pressure of Ar? 
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9.14 Nitramide, O2NNH2, decomposes slowly in aqueous solution according to the 

reaction 

O2NNH2 -> N20+ H20. 

The experimental rate law is 

d[N20] [O2NNH2] 

dt ~ k [H+] 

a) Which of the following mechanisms seems most appropriate? 

1. O2NNH2 

2. O2NNH2+ H + 

O2NNH+ 

3. O2NNH2 

O2NNH- 

H++ OH- 

■» N20 + H20 

-> O2NNH+ 
k—2 

—^ N20+ H3O + 

O2NNH-+ h+ 
k—4 

—^ N20+ OH- 
ke 
-> h2o 

(slow) 

(fast equilibrium) 

(slow) 

(fast equilibrium) 

(slow) 

(fast) 

b) What is the algebraic relation between the k in the experimental rate law and the 

rate constants in the mechanism you chose? (c) What is the algebraic relation 

between the equilibrium constant for the overall reaction and the rate constants for 

the elementary process and their reverse reactions? 
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CHAPTER 10 

THE ELECTRONIC 
STRUCTURE OF ATOMS 

The strength of a science is that its conclusions are derived by logical arguments 
from facts that are the results of controlled experiments. Science has produced 
a picture of the microscopic structure of the atom, but it is a picture so detailed 

and so subtle of something which is so removed from our immediate experience 

that it is difficult to see how many of its features were constructed. This is so 
because many experiments have contributed to our ideas about the atom; even 

now as more experiments are done, the picture is being refined and revised. 
Yet among all the experiments used to form the theory of atomic structure, 

there stand a few which have been most influential in shaping its major features. 
In this chapter we shall examine these experiments and see how they contributed 

to the development of the atomic theory. Then, equipped with this logical 

background, we shall discuss the detailed features of the atomic theory itself. 
We shall examine the development of the theory of atomic structure in an 

historical context, for the order in which the most significant experiments were 
done is, surprisingly, the order in which the logic of the theory of atomic struc¬ 
ture is most clear. There were essentially three great steps: the discovery of 

the electrical nature of matter and the nature of electricity itself (1900), the 

discovery that the atom consists of a nucleus surrounded by electrons (1911), 
and the discovery of the mechanical laws which govern the behavior of electrons 
in atoms (1925). 



10.1 ELECTRICAL NATURE OF MATTER 

The first important clues to the nature of electricity and the electrical structure 

of atoms came in 1833 as a result of Faraday’s investigations of electrolysis. 

His findings can be summarized by two statements: 

1. The weight of a given material deposited at an electrode by a given amount 

of electricity is always the same. 

2. The weights of various materials deposited, evolved, or dissolved at an 

electrode by a fixed amount of electricity are proportional to the equivalent 

weights of these substances. 

The second of these laws is particularly revealing, if we remember that the 

equivalent weight of any substance contains the same number of molecules, or 

an integral multiple thereof. Then we see that the laws of electrolysis are analo¬ 

gous to the laws of chemical combination which originally suggested the exist¬ 

ence of atoms. If a fixed number of atoms reacts only with a certain fixed amount 

of electricity, it seems reasonable to suppose that electricity itself is composed 

of particles. Accordingly, an elementary electrode process must involve one 

molecule combining with or losing a small integral number of these electrical 

particles. Although Faraday did not realize this implication of his work, he did 

sense the relation between electricity and chemical bonding, for in his writings 

we find: “I have such conviction that the power which governs electrodecom¬ 

position and ordinary chemical attractions is the same.” 

The implications of Faraday’s experiments were recognized in 1874 by G. J. 

Stoney, who first suggested the name electron for the fundamental electrical 

particle. However, it was not until 1897 that any firm experimental evidence 

for the existence and properties of the electron was found. The source of the 

decisive information was the investigation of the electrical conductivity of gases 

at low pressure. Gases are ordinarily electrical insulators, but when subjected 

to high voltages at pressures below 0.01 atm they “break down,” and electrical 

conduction accompanied by light emission ensues. When the gas pressure is 

lowered to 10~4 atm, the electrical conduction persists, the luminosity of the 

gas decreases, and if the voltages involved are high enough (5000 to 10,000 

volts), the glass container begins to glow or fluoresce faintly. By 1890 various 

experimenters had shown that this fluorescence is the result of bombardment of 

glass by “rays” which, originating at the cathode or negative electrode, travel 

in straight lines until they strike either the positive electrode or the walls of 

the tube. Other experiments showed that these “cathode rays” could be 

deflected by a magnetic field, just as a wire is which carries an electric current. 

Experiments of J. J. Thomson 

In 1897 J. J. Thomson demonstrated that when the cathode rays were deflected 

onto an electrode of an electrometer, the instrument acquired a negative charge. 

Furthermore, he was the first to show that the rays could be deflected by the 

application of an electric field that caused them to move away from the negative 
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electrode. All of these results were found, irrespective of the gas present or the 

materials used to construct the discharge tube. Thomson provides us with a 

succinct summary and assessment of the results: 

"As cathode rays carry a charge of negative electricity, are deflected by an electrostatic 
force as if they were negatively electrified, and are acted on by a magnetic force in just 
the way in which this force would act on a negatively electrified body moving along the 
path of the rays, I can see no escape from the conclusion that they are charges of negative 
electricity carried by particles of matter.” 

What was the nature of these particles? The fact that they were found 

regardless of what gas was used in the discharge tube suggested that they were 

not one particular type of electrified atom, but rather a universal fragment 

found in all atoms. The ratio of charge to mass of various ions had been obtained 

from electrolysis experiments, and Thomson recognized that a determination of 

the charge-to-mass ratio for the cathode-ray particle would help identify it as 

either an ion or some other charged fragment. Accordingly, he determined the 

charge-to-mass ratio (e/m) by two different methods. 

In his first determination Thomson bombarded an electrode with cathode 

rays and measured both the current delivered to the electrode and the tempera¬ 

ture rise produced by the bombardment. From the temperature rise and the 

heat capacity of the electrode he calculated the energy, W, which the cathode- 

ray particles delivered; this he took as equal to the kinetic energy of the particles: 

Here N is the number of particles of mass m and velocity v which arrived at 

the electrode during the experiment. Since mv2/2 is the kinetic energy of one 

particle, Nmv2/2 is the total kinetic energy of the particles which struck the 

electrode. The total charge, Q, collected at the electrode during the experiment 

is related to N and e, the charge on each particle, by 

Q = Ne. 

Combining these two equations gives 

(10.1) 

As we have said, Thomson could measure Q and W; to calculate e/m he 

needed only to measure the velocity of the particles. He accomplished this by 

measuring their deflection by a magnetic field of known strength, H. In a 

magnetic field, particles of charge e and mass m moving with velocity v travel 

in a circular path of radius r; the relation between these quantities is 

erll 
v = 

m 
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Combining this with Eq. (10.1) gives 

e_ _ 2W 

m r2H2Q 

All the quantities on the right-hand side of this equation can be measured, 

since the radius of curvature r produced by the known magnetic field H can be 

determined from the fluorescence produced by the particle beam. The value of 

e/m so obtained by Thomson is in acceptable agreement with the best modern 

determinations of the charge-to-mass ratio of the electron. 

Accelerating 
electrodes 

FIG. io.i Schematic representation of Thomson’s apparatus for measuring e/m. Coils for pro¬ 
ducing a magnetic field perpendicular to the page are not shown. 

When a quantity such as e/m is determined for the first time, it is quite 

proper, indeed imperative, to ask whether the experiment performed really 

measures the desired quantity, and not some other unsuspected experimental 

artifact. One way to answer this question is to repeat the determination by a 

second experimental method which is as different from the first as possible. 

Agreement between the two methods suggests, but does not prove, the validity 

of the result. Thomson’s second procedure for determining e/m involved the 

apparatus shown in Fig. 10.1. A beam of cathode-ray particles passed through 

a region in which they could be subjected to electric and magnetic fields. Either 

field applied alone could deflect the beam from its horizontal trajectory, but 

the direction of the magnetic deflection was opposite to that produced by the 

electric field. Thus, if the electric field was applied and held constant, the 

magnitude of the magnetic field could be adjusted so as to return the beam to 

its original horizontal trajectory. In this condition, the force on the particles 

due to the magnetic field, Hev, was equal to the force due to the electric field, 
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eE. Thus 
II ev = eE 

and so 

v = 
E 
H' 

(10.2) 

The velocity of the particles could be calculated from measurements of E 
and H. 

The second step of the experiment was to remove the magnetic field and 

measure the deflection of the beam produced by the electric field alone. As the 
particles pass between the plates, the electric force eE produces a deflection o 
which, as Fig. 10.1 shows, can be calculated by the method of similar triangles 

from the displacement of the spot observed at the end of the tube. The electric 
force eE is related, by Newton’s second law, to an acceleration, a: 

eE = force = mass X acceleration = ma, 

a = 
eE 
m 

(10.3) 

The deflection 6 can be related to a and t, the time the particles spend between 

the plates, by 
5 = \at2, (10.4) 

which is a well-known result of elementary mechanics. Finally, t can be ex¬ 
pressed in terms of the length of the plates l and the velocity of the particles v: 

v 
(10.5) 

If we now combine Eqs. (10.3), (10.4), and (10.5), we obtain 

6 
1 eE /A2 
2 m \v) 

But v is given by Eq. (10.2); introducing this relation and rearranging the 
expression gives us 

e_ _ 28 E_ 
m~ l2 H2' 

Everything on the right-hand side of this equation can be measured experi¬ 
mentally, and thus e/m can be found. The currently accepted value for elm is 
1.76 X 108 coul/gm, or 5.27 X 1017 electrostatic units per gram (esu/gm). 

The significance of e/m for cathode rays became apparent when its value was 
compared with the charge-to-mass ratios of ions, which had been obtained from 
electrolysis experiments. The charge-to-mass ratio of the cathode ray was 
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over 1000 times larger than that of any ion. Furthermore, while the charge-to- 

mass ratios of various ions were different, e/m for cathode rays was a constant 

independent of the gas used in the discharge tube. These facts led Thomson 

to conclude that cathode rays were not electrified atoms, but corpuscular frag¬ 

ments of atoms; in our modern terminology, electrons. 

fig. 10.2 Schematic diagram of Millikan’s apparatus for measuring the fundamental unit of charge. 

Millikan’s Contribution 

The ultimate demonstration of the particulate nature of electricity came from 

the famous oil-drop experiment of R. A. Millikan. Using the apparatus shown 

in Fig. 10.2, Millikan proved that all electric charges are multiples of one definite 

elementary unit whose value is l.G X 10-19 coul or 4.80 X 10-1°esu. To per¬ 

form the experiment, spherical oil drops from the atomizer are led into the 

observation chamber. There they become charged by a collision with gaseous 

ions produced by the action of radium or x-rays on air. A charged oil drop is 

recognized by its response to an electric field, and its motion observed through 

the microscope. When the electric field is zero, the drop is subject only to the 

force of gravity and falls; because of air resistance the drop does not continually 

accelerate, but reaches a constant velocity given by 

mg _ gravitation force 

67n?r viscous resistance 

where g is the acceleration of gravity, m and r are the mass and radius of the 

drop, and q is the viscosity of air. This equation, together with the expression 

density = m/^irr*, 

which relates the known density of the oil drop to its mass and its radius, allows 

the calculation of m and r from the measured velocity and density. 
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If the same drop contains an amount of charge q, and is subjected to a field 

E, the electrical force causing an upward motion of the drop is qE. Due to the 

action of gravity, the net force on the drop is qE — mq, so its velocity in the 

upward direction is 

v, _ qE — mg 

67rrjr 

Since v' and E are measurable, and m, q, 77, and r are known, q can be calculated. 

Millikan found that q was always an integral multiple of 4.8 X 10-10 esu. 

This result shows that electricity is particulate, and the fundamental unit of 

charge is 4.8 X 10-I° esu. The assumption that this fundamental unit is equal 

to the charge on the electron, together with the measured value of e/m, gives 

9.1 X 10~28 gm for the mass of the electron. 

The experiments of Millikan and Thomson have been discussed in detail, 

for they show how extremely important fundamental quantities can be deter¬ 

mined by the use of fairly simple apparatus and the most elementary laws of 

physics. They are, without question, two of the greatest experiments in all 

of physical science. 

10.2 THE STRUCTURE OF THE ATOM 

While the nature of electricity was being established, scientists began to formu¬ 

late a detailed picture of the atom. It was not difficult to estimate the atomic 

size, for the molar volume of a solid expressed in cm3/mole, divided by Avo- 

gadro’s number, gives the atomic volume as roughly 10-24 cm3. Taking the 

cube root of the volume shows that the characteristic size of an atom is approxi¬ 

mately 10~8 cm. But Thomson’s experiments demonstrated that small as an 

atom was, it contained even smaller particles of negative electricity. Since 

atoms were ordinarily electrically neutral, it was clear they must also contain 

positive electricity. Furthermore, since electrons were so light, it seemed proper 

to associate most of the mass of an atom with its positive electricity. If the 

positive electricity contained most of the atomic mass, it was reasonable that 

it should occupy most of the atomic volume. Consequently, Thomson proposed 

that an atom was a uniform sphere of positive electricity of about 10-8-cm 

radius, with the electrons embedded in this sphere in a way which would give 

the most stable electrostatic arrangement. Thomson tried to relate the relative 

stabilities of various numbers of charges in the atom to the periodic chemical 

properties of the elements, and even developed a theory of chemical bonding. 

Appealing as this simple model was, and despite its occasional successes, it had 

to be abandoned in 1911, when E. R. Rutherford showed that it was completely 

inconsistent with his observations of the scattering of a-particles by thin metal 

foils. 
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The Rutherford Scattering Experiment 

The a-particle scattering experiment, perhaps the most influential single experi¬ 

ment used in the development of the theory of atomic structure, is shown 

schematically in Fig. 10.3. A narrow parallel beam of a-particles impinges on a 

thin metal foil (104 atoms thick), and the angular distribution of the scattered 

particles is obtained by counting the scintillations, or light flashes, pioduced on 

a zinc sulfide screen. The significant qualitative result of the experiment is that 

while most of the a-particles pass through the foil either undeflected or deflected 

by only small angles, a few particles are scattered at large angles, up to 180°. 

slits 

Schematic diagram of Rutherford’s a-particle scattering experiment. The region tra 

versed by a-particles is evacuated. 

At the time the experiment was first performed, Rutherford knew that 

a-particles were doubly ionized helium atoms with an atomic mass of 4, more¬ 

over, their velocities had been measured by the method of magnetic deflection 

discussed earlier. Consequently, Rutherford knew that the kinetic energy of 

the a-particles was very large, and he realized that in order to produce a large 

deflection of such an energetic particle, the atom must be the seat of an enormous 

electrical force. It was also clear that this force had to be exerted by a bodj of 

considerable mass, for a light body such as the electron would be swept aside 

by the heavier a-particle. Finally, the fact that only a few a-particles received 

large deflections suggested that the large electrical force was confined to \ery 

small regions of space which were missed by most of the a-particles. In other 

words, instead of being a sphere of uniform mass and charge density as Thomson 

had proposed, the atom was highly nonuniform. While the electrons might 

occupy the volume associated with the ~10 8-cm dimension of the atom, the 

positive electricity had to be concentrated in a tiny but weighty nucleus. 

By assuming that the force between the nucleus and the a-particle was given 

by Coulomb’s law, Rutherford showed that the trajectory of the a-particle 

deflected by an atom should be a hyperbola. As shown by I ig. 10.4, the deflec¬ 

tion angle 9, which is the external angle between the asymptotes of the hyperbola, 
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depends on the aiming error, or impact parameter 6. 

shows that 

tan 
zZe2 

mv2b 

The mathematical analysis 

where z and Z are the atomic numbers* of the a-particles and the nucleus, e is 

the magnitude of the electronic charge, and m and v are the mass and velocity 

of the a-particle. Thus we see that when b = 0,8 = 180°, which is just what 

we expect for a head-on collision. In a given scattering experiment, z, Z, m, 

and v are constants, and since a relatively wide beam of a-particles is used, all 

values of b occur, and scattering is seen at all angles. 

Trajectory of an a-particle passing near a nucleus of charge Ze. The a-particle hasveloc- fig. io.4 
ity v, mass m, charge ze, and impact parameter or aiming error b. 

The probability of an a-particle passing between b and b + db is proportional to the area fig. io.5 
of the ring, 2irb db. 

As shown in Fig. 10.5, the probability that the impact parameter b will lie in 

the range b, b -f db is proportional to the area of a ring of radius b and width db. 

This area is equal to 2irb db, the product of the circumference of the ring, 2irb, 

and its width, db. The area increases as b increases, and consequently large 

* The atomic number is the number of fundamental units (4.8 X 10 10 esu) of positive 
charge on the nucleus. 
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values of b are more probable than small values. Thus most of the scattering 

will be in the forward direction (b large, 0 small), and few particles will be 

deflected through large angles. This is just a sophisticated way of saying that 

there are more ways of missing a small target than of hitting it. 

By using the probability of the various values of b, Rutherford deduced that 

the fraction, /(0), of the initial a-particles scattered through an angle 0 is given by 

m =2Tlp (H3) sin 0 

sin4 (0/2)’ 
(10.6) 

where t is the thickness of the foil and p is its density expressed in atoms/cm3. 

This expression for the angular distribution of particles is valid only if the force 

between the nucleus and a-particles is given by Coulomb’s law. Geiger and Marsden, 

working in Rutherford’s laboratory, showed that the experimental distribution 

of scattered particles followed Eq. (10.6) within experimental error. Further¬ 

more, the quantity (zZe2/2mv2) could be evaluated from the experiments, and 

since 2, e, m, and v were known, the atomic number Z of the scattering nucleus 

could be evaluated. For the gold nucleus, Rutherford calculated Z to be 

100 =t 20; this is a reasonable approximation to 79, which we know is the cor¬ 

rect value. Thus the a-particle scattering experiment was one of the first ways 

of estimating the atomic number of an atom, and as the experiment was refined, 

it became possible to measure Z exactly. 

We have pointed out that the nucleus is small compared with 10-8 cm, but 

just how small is it? The scattering experiment can tell us. When an a-particle 

is deflected through 180°, it has made a head-on collision with a nucleus. In 

such a collision the a-particle approaches the nucleus until the Coulomb poten¬ 

tial energy of repulsion, zZe2/r, becomes equal to its initial kinetic energy, %mv2 

Thus the equation 

T'min 

allows us to calculate rm;n, the distance of closest approach, if all other factors 

are known. 

For a-particles obtained from the disintegration of radium, 

v = 1.6 X 109 cm/sec, 

e = 4.8 X 10“10 esu, 

m = 6.68 X 10~24 gm, 

and if the scattering nucleus is copper, 

Thus 

Z = 29. 

zZe2 2 X 29 X (4.8 X 10~10)2 

(1/2)mv2 ~ (l/2)(6.68 X IO-24) X (1.6 X 109)2 

= 1.6 X 10~12 cm. 
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Since particles can come to within nearly 10-12 cm of the nucleus and still 

be scattered according to Coulomb’s law, the nucleus itself must be smaller 

than 10-12 cm. Other experiments with faster a-particles and lighter nuclei 

(Z smaller, rm;n smaller) show that the Coulomb scattering law is not obeyed if 

the a-particles come closer to the nucleus than about 0.8 X 10-12 cm; this 

does indeed imply that the positive charge on the nucleus occupies a sphere of 

approximately 10~12 cm radius. Thus the a-particle scattering experiment not 
only provided a qualitative indication of the existence of the nucleus, but also 

produced quantitative measurement of the nuclear charge and size. 

10.3 ORIGINS OF THE QUANTUM THEORY 

There was a serious difficulty with Rutherford’s model of the atom: According 
to all the principles of physics known in 1911, the nuclear atom should have 

been unstable. If the electrons were stationary, there was nothing to keep them 

from being drawn into the nucleus; if they were in circular motion, the well- 

documented laws of electromagnetics predicted that the atom should radiate 

light until all electronic motion ceased. Only two years after Rutherford’s 

proposal, Niels Bohr attempted to resolve this apparent paradox by analyzing 

atomic structure in terms of the quantum theory of energy which had been 

advanced by Max Planck in 1900. Before discussing Bohr’s ideas about the 

behavior of electrons in atoms, let us examine the experiments which led to the 
development of the principles which Bohr used. 

Classical Theory of Radiation 

Before 1900, it was generally accepted that light was electromagnetic wave 

motion. That is, all experiments with light could be understood if it was pic¬ 
tured as oscillating electric and magnetic fields which were propagated through 

space. In Section 3.3 we discussed the electromagnetic wave theory and one of 

its most successful applications, the diffraction of x-rays. For our purposes now 

we need to call attention to only one more feature of classical radiation theory. 
According to electromagnetic theory, the energy contained in, or carried by, 

an electromagnetic wave is proportional to the squares of the maximum ampli¬ 

tudes of the electric and magnetic waves: 

energy °c (F2 ax + AT2 ax) « light intensity. 

The important feature of this equation is that the energy of a wave depends 

only on its amplitude, and not on its frequency or wavelength. 
The electromagnetic wave theory was eminently successful in explaining 

optical phenomena such as diffraction and scattering, which occur when waves 

encounter particles whose size is roughly the same as the wavelength. Yet 
despite many reassuring successes, the classical wave theory of light could not 

explain the nature of the radiation from a heated solid body. Experiments 
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demonstrated that this radiation was distributed at different frequencies accord¬ 

ing to the curves shown in Fig. 10.6. As the temperature of the radiating body 

is increased, the frequency at which most of the light is emitted becomes higher. 

This corresponds to the body passing through the stages of red, yellow, and 
white heat as its temperature is raised. The distribution of radiated frequencies 

predicted by the wave theory is shown by the dashed line in Fig. 10.6, and it 

obviously disagrees with the experimental findings. 

FIG. 10.6 The relative intensity of radiation from a 
heated solid as a function of frequency or 
wavelength. The dashed line represents 
prediction of the classical theory of matter. 

Frequency (sec ■) 

3X1014 1X1014 0.5X1014 

In 1900 Planck resolved this discrepancy, but only by making an extreme 

departure from usual laws of physics. Planck had to assume that a mechanical 
system cannot have any arbitrary energy, but only certain selected energy values. 

Let us see how Planck applied this assumption. An electromagnetic wave of 

frequency v was thought to be radiated from the surface of a solid by a group 
of atoms oscillating with the same frequency. Planck’s assumption was that 

this group of atoms, the oscillator, could not have an arbitrary energy, but had 
to have an energy e = nhv, where n is a positive integer, v is the oscillator 

frequency, and h is a constant to be determined.* This expression is known as 

* Subsequently, spectroscopic measurements have shown that without question, the 
energy of a molecular oscillator is quantized. The allowed energy levels are given by 
e = (n -(- \)hv, which is very nearly what Planck assumed. 
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Planck’s quantum hypothesis, since it proposes that a system has discrete bits, 
or quanta, of energy. When such an oscillator radiates it must lose energy; 

thus, if the oscillator is to radiate, n, the quantum number of the oscillator, 
must be greater than zero. How does this explain why the high-frequency 
radiation from a body is so feeble? 

Planck assumed that the oscillators were in equilibrium with each other, and 
consequently that their energies were distributed according to the Boltzmann 

distribution law. That is, the relative chance of finding an oscillator with energy 
nhv was given by e~nhi kT. Now this expression shows that the chance of finding 

an oscillator of high frequency which has enough energy to radiate (n > 0) 

is very small, since as v increases, e~nhv kT decreases. This explains why there 
is very little radiation at high frequencies: at equilibrium, the high-frequency 

oscillators rarely possess the minimum energy, hv, which they need in order to 

radiate. Hence the assumption that the energy of an oscillator cannot have 
continuous values leads to excellent agreement between theory and experiment. 

It should also be noted that the Planck quantum hypothesis was used by 

Einstein to explain the temperature dependence of the heat capacities of solids, 
as we discussed in Section 3.5. The success of the Einstein theory also substan¬ 
tiates the idea of quantized energy levels for oscillators. 

The existence of separated energy “levels” is a concept that is difficult to 
accept, for it is contrary to all ordinary experience with macroscopic physical 

systems. Therefore, it is not surprising that scientists, including Planck, were 
initially suspicious of the quantum hypothesis. It had been designed to explain 

radiation from heated bodies; it could not be accepted as a general principle 
until it had been tested by other applications. One consequence of the quantum 

hypothesis which was tested almost immediately concerned the nature of light. 

If an oscillator could radiate only by a discrete act in which its energy changed 
from nhv to (n — l)hv, then was it not reasonable that the light itself was 

composed of discrete entities of energy hv? This idea found application and 

support in Einstein’s explanation of the photoelectric effect. 

The Photoelectric Effect 

By 1902 it was known that light impinging on a clean metallic surface in vacuum 

caused the surface to emit electrons. The existence of this photoelectric effect 
was not surprising; it was to be expected from the classical theory of light that 

the energy of the electromagnetic wave could be used to eject an electron from 

the metal. However, the wave picture of light was completely incapable of 
explaining the details of the experiment. In the first place, no electrons were 

emitted unless the frequency of the light was greater than some critical value v0, 
as shown in Fig. 10.7(a). Second, the electrons emitted had kinetic energies 

which increased as the frequency of the light increased, as shown in Fig. 10.7(b). 
Finally, increasing the light intensity did not change the energy of the electrons, 

but did increase the number emitted per unit time. According to the wave 
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theory the energy of light is independent of its frequency; hence the wave theory 

could explain neither the frequency dependence of the kinetic energy nor the 

existence of a photoelectric threshold frequency, v0. Furthermore, the wave 

theory predicted that the energy of the electrons should increase as the light 

intensity increased, and this was in conflict with the experimental results. 

FIG. 10.7 The photoelectric effect: (a) emitted current as a function of frequency; (b) maximum 
kinetic energy of electrons as a function of frequency. 

In 1905, Einstein pointed out that the photoelectric effect could be explained 

if light consisted of discrete particles or photons of energy hv. He proposed 

that a photon of frequency v and energy hv impinges on the metallic surface 

and gives up its energy to an electron. A certain amount, e, of this energy is 

used to overcome the attractive forces between the electron and the metal; 

the rest is available to the ejected electron and appears as kinetic energy, \mv2. 

The law of conservation of energy yields 

hv = e + \mv2. 

I 

It is clear that e represents a minimum energy that the photon must have to 

eject the electron. If we express e in terms of a frequency, that is if we write 

e = hv0, then our equation becomes 

hv — hv0 + \mv2, 

%mv2 = hv — hv0. 

Thus, if the energy of the ejected electrons is plotted as a function of frequency, 

there should result a straight line whose slope is equal to Planck’s constant h, 

and whose intercept is hv0. We have already seen in Fig. 10.7(b) that this is 

indeed found. The additional fact that the number of photoelectrons increases 

with the intensity of light indicates that we should associate light intensity with 

the number of photons arriving at a point per unit time. 
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The success of the photon theory was impressive, but by no means did it 

clarify the nature of radiation. Is light really composed of particles or of waves? 

There is support for both pictures. We will reserve a discussion of this problem 

until later; for the moment we need only note that by 1905 the association 

between energy and frequency of radiation was clear, and this, together with 

Rutherford’s picture of the atom, allowed Niels Bohr to propose in 1913 a 

detailed model of the behavior of electrons in atoms. 

The Bohr Atom 

The work of Bohr was the first application of the quantum hypothesis to atomic 

structure which was in any way successful. Bear in mind, however, that Bohr’s 

theory was incorrect; it was abandoned after twelve years in favor of our present 

quantum theory of atomic structure. Nevertheless, there was enough substance 

in Bohr’s ideas to enable him to explain why only certain frequencies of light 

were radiated by atoms, and in some cases to predict the values of these fre¬ 

quencies. Furthermore, Bohr’s proposals greatly helped Moseley to understand 

his measurements of the frequencies of emitted x-rays and to use them to deter¬ 

mine atomic numbers. Thus, although it was eventually abandoned, this 

early theory was an important step in the understanding of atomic structure. 

I 
High voltage 

t_ 

Schematic diagram of the essential elements of a spectrograph and light source. FIG. 10.8 

The first success of the Bohr theory was in explaining the light emission or 

spectra of atoms. An apparatus for the measurement of atomic spectra is shown 

in Fig. 10.8. The light source is an electrical discharge through the gas to be 

investigated. In the case of hydrogen, the bombardment of the hydrogen 

molecules with electrons results in the production of hydrogen atoms. Some of 

these atoms acquire excess internal energy which they radiate as visible, ultra¬ 

violet, and infrared light. The light from the discharge tube passes through a 

slit and a prism which disperses the radiation into its various frequencies. 

These appear as lines (images of the slit) at different positions on the photo¬ 

graphic plate. Such devices, called spectrographs, were available after 1859, 

and by 1885 Balmer recognized that the frequencies emitted by the hydrogen 
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atom could be expressed by the formula 

X 3.29 X 1015 cycles/sec, 

where n is an integer greater than or equal to three. The simplicity of this for¬ 

mula was intriguing, and other empirical relations among the frequencies 

emitted by other atoms were sought, but none were found that involved integers 

in such a simple way. 
Bohr developed a model of the hydrogen atom which allowed him to explain 

why the frequencies emitted obeyed such a simple law. His reasoning involved 

the following postulates: 

1. The electron in an atom has only certain definite stationary states of motion 

allowed to it; each of these stationary states has a definite, fixed energy. 

2. When an atom is in one of these states it does not radiate; but when changing 

from a high-energy state to a state of lower energy the atom emits a quantum 

of radiation whose energy hv is equal to the difference in the energy of the 

two states. 

3. In any of these states the electron moves in a circular orbit about the nucleus. 

4. The states of allowed electronic motion are those in which the angular momen¬ 

tum of the electron is an integral multiple of h/2ir. 

Of these four postulates, the first two are correct and are retained in the 

modern quantum theory. The fourth postulate is partially correct; the angular 

momentum of an electron is fixed, but not in quite the way Bohr proposed. 

The third postulate is entirely incorrect, and does not appear in modern quantum 

theory. 
The derivation of the expression giving the energies of the allowed states of 

an atom is very simple. First, mechanical stability of the electron orbit requires 

that the Coulomb force between the electron and nucleus be balanced by the 

centrifugal force due to the circular motion: 

Coulomb force = centrifugal force 

2 
mv 

r 

Here m and v are the mass and velocity of the electron, Z is the number of units 

of elementary charge e on the atomic nucleus, and r is the electron-nucleus 

separation. Canceling one power of r gives us 

(10.7) 
r 

Bohr’s postulate for the angular momentum, mvr, was 

mvr = n > n = 1, 2, 3 . . . mvr = n (10.8) 
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where h is Planck’s constant, 6.626 X 10-27 erg-sec. That is, the angular 
momentum had to be an integral multiple of h/2ir. Eliminating v between 

Eqs. (10.7) and (10.8) gives 
„2,2 n h 

(2Tr)2mZe2 ’ 
n = 1, 2, 3 . . . (10.9) 

It would appear from this that only certain orbits whose radii are given by 

Eq. (10.9) are allowed to the electron. 
Now let us consider the total energy E of the electron, which is the sum of 

the kinetic energy, mv2/2, and potential energy, —Ze2/r: 

E 

But by Eq. (10.7) we can write 

1 Ze2 
E = 

Ze_2 

r 

1 Ze2 

2 r r 2 r 

Substitution for r, using Eq. (10.9), gives us 

E = — 
2?r2mZ2e4 

n2h2 
n = 1, 2, 3 . . . 

This expression shows that the consequence of the postulates is that only 

certain energies are allowed to the atom. Figure 10.9 indicates how these 
energies depend on n for the simplest case of the hydrogen atom (Z = 1). 

n 
X 

4 

3 

2 

1 

kcal/mole 

0 

ergs/molecule 

0 

-19.6 — 1.36X10-12 

-34.8 — 2.41 X10-12 

-78.4 -5.42X10"12 

1* An energy-level diagram for the hydrogen 
atom. The spacing between energy levels is 

-313.5 — 21.7X 10-12 not drawn to scale. 

The energies are negative only because the energy of the electron in the atom 

is less than the energy of a free electron, which is taken as zero. The lowest 
energy level of the atom corresponds to n = 1, and as the quantum number 

increases, E becomes less negative. When n = cc, E = 0, which corresponds 
to an ionized atom: the electron and nucleus are infinitely separated, and at rest. 
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According to Bohr’s second postulate, the energy of any photon radiated by 

the atom should be equal to the difference in the energy of two levels. To 

ensure that the energy of the photon is positive, we take the absolute value of 

the energy difference and write 

hv = |Ef - Ef\ = (~2 ~ 4) ’ m > nf> (10-10) 
n~ \rif n/ 

or 

27T2mZ2e4 / 1 1 

\rif n' 

If 7?/ is set equal to 2, and the constant term evaluated, this expression is in 

numerical agreement with the formula which Balmer had found from the experi¬ 

mental hydrogen-atom spectrum. In other words, the Bohr expression was 

in agreement with the known experimental spectrum of the hydrogen atom. 

n= oo 

n= 5 
n = 4 

71=3 

71=2 

fig. io.io Some of the predicted transitions between energy states of the hydrogen atom. 

Furthermore, if n/, the quantum number of the final state, is set equal to 1, 

Bohr’s formula predicts a set of spectral lines for which 7q > 2, 77/ == 1. Simi¬ 

larly, if n/ = 3, there should be a series of lines for which nt- > 4. These 

predicted transitions between states of different n are shown in Fig. 10.10, and 

subsequent to Bohr’s work, all the predicted spectral lines have been found at 

the expected frequencies. Further application of Bohr’s formula was made to 

other one-electron atoms, such as He+ and Li++. In each case of this kind, 

Bohr’s prediction of the spectrum was correct. 

X-ray Spectra and Atomic Number 

The visible spectra of atoms arise from changes in the energy of the most 

weakly bound atomic electrons. However, under conditions of extreme electrical 

excitation, atoms can emit x-rays, high-energy radiations which result from 
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energy changes of the electrons closest to the nucleus. Even though Bohr’s 

theory was designed to explain the visible spectra due to the outer, or “valence, ” 

electrons, it was of great help in the first interpretations of x-ray spectra. 

Ionization 
chamber 

Figure 10.11 shows a simplified x-ray spectrograph. When a metallic anode 

is bombarded with electrons of very high velocity, x-rays which are characteristic 

of the anode material are emitted. As explained in Chapter 3, the wavelength 

of an x-ray can be found by measuring the angle 6 through which the x-ray is 

diffracted by a crystal of known interatomic spacing cl, and then using the 

Bragg law equation, n'K — 2 cl sin 6. By employing various elements as his 

anode, Moseley observed in 1912 that each element emitted a different charac¬ 

teristic x-ray spectrum, and that the frequencies emitted increased regularly as 

the atomic weight increased. Using the Rutherford-Bohr model of the atom as 

a guide, Moseley realized that the x-ray frequency should be characteristic of 

the charge on the nucleus of the emitting atom. Accordingly, he found that he 

could fit all his observed frequencies by an empirical formula of the form 

v — c{Z — b)2, 

where c and b were universal constants, valid for all elements, and Z was an 

inteejer whose value increased regularly by one unit for successive elements, 

taken in the order in which they appeared in the periodic table. Moseley then 

correctly concluded that the Z in his empirical formula was the atomic number, 

or the charge on the nucleus of the emitter. According to the theory of Bohr, 

the frequency emitted by a one-electron atom should be proportional to Z2, 

the square of the charge on the nucleus, as Eq. 10.10 shows. Moseley suggested 

that the reason the x-ray frequencies were proportional to (Z — b)2 and not Z2 

was that the electrons in the atom tended to shield one another from the nucleus. 

Thus, so far as any single electron was concerned, the effective nuclear charge 

is not Z, but Z — b. This interpretation is quite in accord with our present 

ideas of the origin of x-ray spectra and the behavior of electrons in atoms. 

10.3 I ORIGINS OF THE QUANTUM THEORY 429 



If entered in the periodic table strictly in order of their atomic weights, the 
elements Ni-Co, Ar-K, and Te-I appear in an order inconsistent with their 
chemical properties. Moseley found that when the elements are arranged in 
the order of their atomic numbers, these discrepancies are removed. In short, 
he showed that nuclear charge, and not nuclear mass, is most fundamental to 
chemical properties. 

10.4 QUANTUM MECHANICS 

It may seem surprising that the Bohr theory, initially so successful, had to 
be abandoned after only twelve years. Yet despite its successes a theory must 
be refined or rejected if it cannot explain all the relevant experimental facts. 
Even after the most searching refinements, the Bohr theory could not explain 
the details of the spectra of atoms with many electrons, nor could it provide a 
satisfactory picture of chemical bonding. These and other failures made it clear 
that Bohr’s ideas could only be steppingstones or approximations to a univer¬ 
sally applicable atomic theory. 

There were two particularly objectionable features of theoretical physics in 
the early 1920’s. One was the conflict between the wave and photon models of 
light. The other was that the idea of quantized energy had to be imposed on 
Newtonian mechanics, almost as an afterthought. It seemed necessary to set 
up a new mechanics which would relieve the wave-particle conflict, and which 
would introduce quantized energy as a consequence of some more basic principle. 

Wave-Particle Duality 

The first step in the development of the new quantum mechanics was taken by 
Louis de Broglie in 1924. His reasoning was somewhat as follows: Electro¬ 
magnetic radiation had been thought of as a wave phenomenon for some time, 
yet the work of Einstein had shown that in certain experiments these “waves” 
had the properties of particles, or photons. Could the converse be true? Would 
things ordinarily called particles show the properties of waves in some experi¬ 
ments? The phenomena associated with wave behavior are diffraction and 
interference, and as we have mentioned, the appearance of these effects depends 
on how the length of a wave compares with the dimensions of the object it 
strikes. The task was to estimate the wavelength of the waves associated with 
particles. Starting with the Einstein relation between the energy and frequency 
of a photon, de Broglie wrote 

hv = E, 

v = c/X, 

hc/\ = E. (10.11) 
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From the theory of relativity he drew a relation between the momentum of 

light p, its velocity c, and its energy, E = cp. Combining this with Eq. (10.11) 
gives 

h/\ = p, (10.12) 

which we can interpret as the relation between the momentum of a photon and 

its wavelength. De Broglie suggested that this equation could be used to calcu¬ 
late the wavelength associated with any particle whose momentum was p = mv. 

Table 10.1 gives the results of calculations using Eq. (10.12). The greater 

the mass and velocity of the particle, the shorter is its wavelength. The wave¬ 

length associated with any macroscopic particle is smaller than the dimensions 
of any physical system; thus diffraction or any other wave phenomena can 

never be observed with baseballs or even dust particles. On the other hand, 
electrons and even atoms can have such small momenta that their wavelengths 

are of the same dimension as the interatomic spacing in crystals. Therefore, 

when a beam of electrons impinges on a crystal, diffraction should be observed, 

as indeed it was, first in 1927, three years after de Broglie had advanced his 
ideas. 

Table 10.1 Wavelengths of particles 

Particle 
Mass Velocity Wavelength 
(gm) (cm/sec) (A) 

Electron at 300°K 9.1 X 10- -28 1.2 X 107 61 
1-volt electron 9.1 X 10- -28 5.9 X 107 12.3 
100-volt electron 9.1 X 10- -28 5.9 X 108 1.2 
He atom at 300°K 6.6 X 10- -24 1.4 X 105 0.72 
Xe atom at 300°K 2.2 X 10- -22 2.4 X 104 0.12 

Instead of relieving the wave-particle conflict, de Broglie’s proposal seemed 
to deepen the problem. Yet it was a progressive step, for the generalization of 

de Broglie’s ideas produced a totally successful quantum mechanics. Today 
the almost universally accepted interpretation of the wave-particle conflict is 

that it is not really a conflict at all. In speaking of the behavior of atomic 
systems, we use the words of a language designed to describe the macroscopic 

world, and we have no right to suppose that only one of these words, wave or 
particle, will always characterize all properties of things which are not part of 

our macroscopic world. Therefore, we just accept the fact that whatever elec¬ 

trons and photons are, they have a dual nature; in some experiments their 
wave properties will be most obvious, and in others they will behave like 

particles. 
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The Uncertainty Principle 

The terms position and velocity are used to describe the behavior of macro¬ 

scopic particles. Is there any restriction to their application to subatomic 
“particles” which have wave properties? To see that there is, let us consider 

the problem of determining the position of an electron. If we use light to locate 

the electron, the general principles of optics tell us that we cannot resolve or locate 

the electron much more accurately than ±X, the wavelength of light used. 
Naturally we would try to make X as small as possible, and so in principle locate 

the electron to any required degree of accuracy. But can we determine the 

momentum of the electron at the same time as ive determine its position? The 

answer is no, for in determining the position of the electron we inevitably 
change its momentum by an unknown amount. To understand that this is so, 

we need only recognize that in order to locate an electron with a photon, there 

must be a collision between the two. A photon of wavelength X has a momentum 

p = h/X, and in the electron-photon collision, some unknown fraction of the 
momentum of the photon will be transferred to the electron. Thus the result 

of locating the electron to within a distance Ax ~ ±X is to produce an uncer¬ 

tainty in its momentum which is roughly Ap ^ h/X. The product of these two 

uncertainties is 

Ap&x^~X = h. (10.13) 
A 

This is a crude derivation of Heisenberg’s Uncertainty Principle, which states 

that there is a limit to the precision to which the position and momentum of a 

particle may be determined simultaneously. A more involved argument gives 

the precise form of the Uncertainty Principle as Ap Ax > h/4ir. 
A simultaneous and exact determination of position and momentum is just 

what is required to describe a trajectory, and thus the Uncertainty Principle 

tells us that there is a limit to the accuracy with which a particle trajectory can 

be known. Let us see how much the Uncertainty Principle allows us to say 
about the trajectories of electrons in atoms. In order to have a good idea where 

the electron is, we might wish to locate it to within 0.05 A, or 5 X 10—10 cm. 

According to the Uncertainty Principle, any such measurement of the electron 
position would have associated with it an uncertainty in momentum given by 

A h 6 X 10-27 , ,._18 . 

Ap = 4Va; = 6 X 10—» - 1 x 10 gn>Cm/seC' 

Since the mass of an electron is 9 X 10 28 

velocity is 

Ap ~ 1 X 10~18 
m ~ 9 X 10-28 

gm, the uncertainty in the electron 

= 109 cm/sec. 

According to this crude calculation, the uncertainty in the electron velocity 
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would be nearly as large as the velocity of light, or as great as or even greater 

than what we might expect the actual electron velocity to be. In short, we 
have to say that the electron velocity is so uncertain that no possibility of 

specifying a trajectory exists. Here we find another failure of the Bohr theory. 
Its sharply defined electron trajectories can have no real meaning, for in view 

of the Uncertainty Principle, their existence can never be demonstrated 

experimentally. 

The Schrodinger Equation 

The de Broglie wave relation is the basis for predicting the behavior of freely 

moving particles. Shortly after it was proposed, Erwin Schrodinger demon¬ 
strated that the de Broglie expression could be generalized so as to apply to 

bound particles such as electrons in atoms. The heart of Schrodinger’s theory 
is that the allowed energies of physical systems can be found by solving an 

equation which so resembles the equations of classical wave theory that it is 

called the wave equation. For the motion of one particle in one (the x) direc¬ 
tion, the Schrodinger wave equation is 

h2 dV 
8ir2m dx2 

+ V\p = E\f/. (10.14) 

The “knowns” in this equation are m, the mass of the particle, and V, its 
potential energy expressed as a function of x. The “unknowns” to be found by 

solving the equation are E, the quantized or allowed energies of the particle, 

and \p, which is called the leave function. The quantity d2\f//dx2 represents the 

rate of change of dyp/dx, the rate of change of \p. When this equation is applied 
to real systems such as the hydrogen atom, it is found that it cannot be solved 
unless E takes on certain values which are related by integers. Thus quantized 

energy and quantum numbers are an automatic consequence of the Schrodinger 

theory, and do not have to be tacked on to Newtonian mechanics as was done 
by Bohr. 

What is i/'? By itself, it has no physical meaning. However, the square of the 
absolute value of \f, \\J/\2, does have an important physical interpretation. It is 

a mathematical expression of how the probability of finding a particle varies 
from place to place. Thus the exact trajectories of Newtonian mechanics and 

the Bohr theory do not appear in the results of the Schrodinger quantum 

mechanics; this, according to the Uncertainty Principle, is as it should be. 

The Particle in a Box 

As an example of the quantum mechanical description of matter, we shall solve 

the simplest of problems, the motion of a particle confined by impenetrable 
walls—the so-called particle in a box. This example will allow us to examine 

the properties of a simple wave function, and to see how quantized energies 
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come about. In addition, the results will help us to understand qualitatively 

many types of more complicated quantum-mechanical problems. 
A particle in any real box moves in three dimensions. To analyze the 

mechanics of its motion, however, it is often sufficient to deal only with one 

dimension (say the x-coordinate), since motion in the other directions is in 
principle no different. We consider then, a particle of mass m moving with a 

positive total energy E along the x-coordinate. There is an impenetrable wall 

at x = 0, and another at x = L. For 0 < x < L, the potential energy is zero, 

and outside these limits it is taken to be infinite, due to the presence of the 

impenetrable walls. 
Starting with the one-dimensional Schrodinger equation, and letting the 

symbol h stand for h/2ir, we have 

2m dx2 
-f- V\p = E\p. 

We note that since V is zero for 0 < x < L, for this region we can write 

d2\p 2 mE 
dx2~ ~ v 

(10.15) 

From the qualitative features of this equation we can get a picture of what our 

wave function \f/ will look like. The second derivative d2\J//dx2 is the curvature 
of the wave function. Equation (10.15) says, therefore, that since m, E, and h 

are positive quantities, whenever ip is positive, its curvature is negative, or \p 
is concave downward. Similarly, whenever \p is negative, its curvature is posi¬ 

tive, and is concave upward. Whenever ip is zero, its curvature is zero. 
If we attempt to sketch a function which has these curvature properties, 

we find that it begins to look like a wave. There are many functions that have 

this general appearance, and the simplest of them, the sine function, is in fact 
the solution of the Schrodinger equation for the particle in the box. To verify 

this, we assume \p is equal to A sin bx, where A and b are constants. Then we 

differentiate twice: 
* = 

d\f/ _ 

dx 

d2j 

dx2 

A sin bx, 

bA cos bx, 

—b2 A sin bx, 

d2\p 

dx2 
-b2i. 

We see that this last equation has exactly the same form as Eq. (10.15), and 

would be identical to it if b2 were equal to 2mE/h2. Thus the function that 
satisfies Eq. (10.15) is 

i = (10.16) 

434 THE ELECTRONIC STRUCTURE OF ATOMS | 10.4 



Up to this point we have not made any use of the fact that the walls are 

actually located at x = 0 and x = L. Thus the wave function we have found 
applies to a free particle, and not yet to one confined to a box. Note that 

the energy E of this free particle may be any positive value we please. That is, 

there is not yet any sign of quantized energies, or energy levels. This is an 
important observation, since it is part of a demonstration that quantized 

energy levels occur only when we confine a particle by potential energy barriers, 
or when we make its motion periodic in some manner. 

We now consider the consequences of the walls of the box. If the walls are 

impenetrable, and if the square of the wave function represents the probability 
of finding a particle at a point, then it is reasonable to suppose that the wave 

function vanishes at the walls. More precisely, the wave function vanishes 
within the walls, and a general property that \p is a continuous function then 

requires that \p vanish at the walls. We have then the conditions 

\p(x = 0) = 0, f(x — L) = 0 

to impose on our free-particle wave function. These two requirements are 
called the boundary conditions for the problem. 

The first boundary condition, ^(0) = 0 is satisfied automatically, since 
setting x = 0 in Eq. (10.16) gives f = 0 = sin (0). The second boundary 

condition can be satisfied only if E has certain values. We can deduce these 
values by noting that sin mr = 0, where n is an integer. Thus if E is such that 

1/2 

L = mr, n = 1, 2, 3 ... , 

the second boundary condition will be satisfied. Calling the values of E that 

satisfy this relation En, we square and transpose to get 

En = ’ n = 1, 2, 3 . . . (10.17) 

These are the allowed or quantized values of the energy, 

wave functions are 
, 4 . (2 mEny 

= A sin \ -p-J 
12 

or 

\pn = A sin 
mrx 
L 

The corresponding 

(10.18a) 

(10.18b) 

It is of interest to note that the quantized energy levels can be obtained by 

asserting that our wave function must have the form of a standing wave 
between x = 0 and x = L. A standing wave has zero amplitude at the walls, 

and in order for this to be true, the distance L must be an integral multiple of 

half the wave length: 

L = y> » = 1,2,3,... 
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We now use the de Broglie relation X = h/p, where p is the momentum mv: 

n h 

2 mv 

nh 
mv = 

2 L 

1 2 _ (mv)2 _ 1 /n2h2\   n2h2 
2 2m 2m \4L2) 8mL2 

Since all the energy is kinetic, En = \mv2 and 

2 i 2 „ n h 

which is the correct expression for the allowed energy levels. Also, the mathe¬ 

matical representation of a standing wave of amplitude A between x = 0 and 

x — L is 
, . . nirx 

\pn = A sin > 

which is the correct wave function. Only in the simple cases where the potential 

energy is constant can the allowed energy levels and wave functions be deduced 

from the de Broglie relation. 
Our wave function still contains the undetermined constant A. We can 

evaluate A by using the fact that iJ/2(x) dx is the probability of finding the 
particle in state n in an interval dx at x. Therefore the sum (integral) of all 

such probabilities from x = 0 to x = L must equal 1, since it represents the 
probability of finding the particle anywhere between 0 and L. Thus we must 

have 

(10.19) 

if ipn is to be a proper wave function. We can force this to be true by adjusting 
the value of the constant A in our wave function. That is, we substitute 

Eq. (10.18b) for \pn to get 

The value of the integral is L/2, so 

This then is the value that A must have if the wave function is to be used to 

calculate a probability of finding a particle. The procedure we have used to 
find A is called normalization, and a wave function that obeys Eq. (10.19) is 

said to be normalized to 1. 
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Our final results for the particle in a one-dimensional box are 

(a) The wave functions for a particle in a box, and (b) their squares or the probability fig. 10.12 

density of the particle as a function of position. The height at which the zero line for each 
state lies is proportional to £„, the energy of the state. 

There are several properties of the energy levels and wave functions of the 
particle in a box which should be very carefully noted, since they appear 
qualitatively in solutions of more complicated problems. 

1. Quantized energy levels appeared only when we confined the particle with 

the potential barriers. We can expect quantized energy levels whenever 
particle motion is confined or is periodic, as in a rotating molecule. 

2. Equation (10.17) shows that the spacing between energy levels increases as 

the mass of the particle decreases, and as the space to which the particle is 
confined decreases. We can expect, in general, that effects of spacing of 

energy levels will be more prominent for systems of small mass confined to 
small regions of space. This is the qualitative reason why electrons confined 
to atoms have much more widely-spaced energy levels than atoms moving 

in a large box. It is also the reason why the motion of macroscopic systems 
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Table 10.2 Characteristic masses, lengths, and energy-level spacings 

System 
Characteristic 

mass (gm) 
Characteristic 

length (cm) 

Energy-level 
spacing 

(kcal/mole) 

Nucleons in nucleus 10-24 icr13 ~107 

Atom in solid 10-23 10-9 ~0.3 

Electron in atom icr27 icr8 ~100 

Atom in a box 10-23 10 ~10-9 

does not show quantum effects. Table 10.2 compares the energy-level spacing 

of several systems and shows how it is correlated with mass and degree of 

confinement. 

3. The wave functions may have regions in which they are positive, and other 
regions in which they are negative.' The sign of the wave function in various 

regions of space will prove to be important in our subsequent discussions of 

chemical bonding. Between the positive and negative regions, the wave 
functions pass through zero. These points are called the nodes of the wave 

function. In general, for wave functions of a given type, the one with the 

greater number of nodes will have the higher energy. The locations of the 

nodes of the electronic wave functions in molecules are very important in 

determining the bonding properties of electrons. 

10.5 THE HYDROGEN ATOM 

A complete theoretical treatment of the hydrogen atom using the Schrodinger 

equation has been accomplished, and the results agree with experimental infor¬ 
mation in every detail. Besides being an important test of quantum mechanics, 

the theoretical treatment of the hydrogen atom has another importance: the 

information derived from this simplest of all atomic systems is used to discuss 

and predict electron behavior in more complicated atoms and molecules. Thus 
in order to understand the periodicity of atomic properties and the nature of 

chemical bonding, it is necessary to thoroughly understand the behavior of the 

electron in the hydrogen atom. 
In the old quantum theory of Bohr, it was necessary to postulate or assume 

the existence of quantum numbers. This is not so in modern quantum mechanics. 

All we need assume is the much more general principle that the Schrodinger 
equation correctly describes the behavior of any atomic system. When the 

Schrodinger equation is applied to the hydrogen atom, the quantum numbers 

appear as an automatic consequence of the mathematics, just as was true for 
the particle in a box. For the hydrogen atom, there are four of these quantum 

numbers which specify the allowed energies and general behavior of the atomic 

electron. These are listed on page 423 in decreasing order of importance. 
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1. The Principal Quantum Number n 

This is a number which can assume any positive integral value, excluding only 

zero. As its name implies, it is most important, for its value determines the 
energy of the hydrogen atom (or any other one-electron atom of nuclear 
charge Z) by the formula 

E 
27T2meiZ2 

n2h2 
(10.20) 

where m and e are the electronic mass and charge. Equation (10.20), obtained by 

solution of the Schrodinger equation, is the same expression as Bohr had ob¬ 

tained earlier from his incorrect postulates. 

2. The Angular-Momentum Quantum Number/ 

As its name implies, the value of l determines the angular momentum of the 

electron, with higher values of l corresponding to greater angular momentum. 

Now, if an electron has angular momentum, it has kinetic energy of angular 
motion, and the amount of this angular kinetic energy is limited by the total 

energy of the electron. Thus it is not surprising that the theory restricts the 

allowed values of l according to the value of n. Theory and experiment both 

show that l may assume all integral values from 0 to n — 1 inclusive: that is, 

0, 1, ..., n — 2, n — 1. 

3. The Magnetic Quantum Number mi 

An electron with angular momentum can be thought of as an electric current 

circulating in a loop, and consequently a magnetic field due to this current is 

expected and observed. The observed magnetism is determined by the value 

of m/. Since this magnetism has its eventual source in the angular momentum 
of the electron, it is reasonable that the values allowed to mi depend on the 

value of l, the angular-momentum quantum number. Theory and experiment 

both show that mi can assume all integral values between — l and +/, including 

zero. That is, mi can equal —l, —l + 1, . . . , 0, 1, . . . , Z — 1, l. 

4. The Spin Quantum Number m8 

Besides the magnetic effect produced by its angular motion, the electron itself 
has an intrinsic magnetic property. A charged particle spinning about its own 

axis also behaves like a small magnet; hence we say that the electron has a spin. 
The quantum number associated with this spin has only two possible values: 

+£ and — 
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Since the value of n restrict** the possible values of i, and the value of l in 

turn restricts the allowed values of wq, only certain combinations of the quantum 
numbers are possible. For example, let us consider the lowest energy state, or 

ground state, of the hydrogen atom, for which n 1. Since l is restricted to 

integer values between n 1 and zero, it has only one possible value: / 0 if 

n 1. The value of l determines the allowed values of mi; since only integers 

between ( l and t are permitted, only mi 0 is possible if t — 0. Finally, 

irrespective of the three other quantum numbers, m, may be equal to -f ^ or 
Thus we find that there are two ways in which the hydrogen atom can be in its 
ground state, and these correspond to the choices of I, 0, 0, | i and 1, 0, 0, 

J for n, /, mi, and m,, respectively. 

n I 

1 0 

2 0 
2 1 

3 0 
3 1 
3 2 

4 0 
4 1 
4 2 
4 3 

Other combinations of the quantum numbers correspond to the excited 

electronic states of tin* hydrogen atom. If the electron is excited to the energy 

corresponding to n 2, its angular-momentum quantum number may be equal 

either to n — 1 = 1, or to n 2 = 0. If l = 0, the only allowed value of nq 
is zero, and as before, m, may be T£ or —If l = 1, mi can assume any one 
of the values 1,0, 1, and for each of these three values rn» can be or — 

These possibilities are enumerated in Table 10.3, which shows that there are 

eight different ways in which an electron in the hydrogen atom can be in the 
n — 2 state. All of these eight combinations of quantum numbers correspond 

to the same energy. When the electron is excited to the n = 3 state, l can be 
0, 1, or 2, and accordingly, a greater number of combinations of quantum 
numbers, 18 in all, is allowed. In general, the number of possible combinations 

of quantum numbers all with the same value of n is 2ri2. 
Each set of quantum numbers is associated with a different type of electronic 

motion, and now we must see how the behavior of electrons in atoms is described. 

Quantum mechanics provides us with |^|2, a mathematical expression of the 

Table 10.3 Quantum numbers and orbitals 

Orbital mi m. 
Number of 

combinations 

Is 0 + i. -i 2 

2s 0 + 1. —i 
2! 8 

2 P +1,0, -1 + i. — i 6) 

3s 0 + i. —1 21 
3 P +1, 0, -1 + i.-i 6 18 
3d +2, +1, 0, -1, -2 + 1. —i io| 

As 0 + i. — i 2 
Ap +1.0, -1 + J. —J 6 

■ 32 
Ad +2, +1,0, -1, -2 + i. -i 10 
A f +3, +2, +1, 0. -1, -2. -3 + h-J 14 
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probability of finding an electron at all points in spaon. Thin probability func¬ 
tion is the best indication available of how lie- electron behaves, for as a con¬ 
sequence of the Uncertainty Principle, the amount we can know about the 

electron is limited. While quantum mechanics can tell us the exact probability 
of finding an electron at any two particular points, it does not tell us how the 

electron moves from one of these points to the other. Thus the idea of an elec¬ 

tron orbit is lost; it is replaced with a description of where the electron is most 

likely to lx: found. This total picture of the probability of finding an electron 
at various points in space is called an orbital. 

There are various types of orbitals possible, each corresponding to one. of 

the possible combinations of quantum numbers. These orbitals are, classified 
according to the values of n and i associated with them. In order to avoid 
confusion over the use of two numbers, the numerical values of / are replaced by 

letters; electrons in orbitals with / 0 are called /(-electrons, those occupying 

orbitals for which l I are ^-electrons, and those for which / 2 are called 

^-electron*. The numerical and alphabetical correspondences are summarized 
in Table 10.3. Using the alphal/etical notation for l, we would say that in the 
ground state of the hydrogen atom (n 1, / 0; we have a I /(-electron, or 

that the electron moves in a I/(-orbital. 

z 

The relation of the spherical polar coordinates r, fig. 10.13 

0, and & to carteoian coordinates /, y, and /. 

To make the concept of an orbital wore, meaningful, it is helpful to examine 
the actual solutions of the wave function for the one-electron a tom. Because 

of the spherical symmetry of the atom, the wave functions are most simply 
expressed in terms of a spherical polar-coordinate system, shown in Fig. 10.13, 
which has its origin at the nucleus. Jt is found that the wave functions can be 

expressed as; the product of two functions, one of which (the “angular part” X) 

depends only the angles 0 and <f>, the other of which (the "radial part” It) 

depends only on the distance from the nucleus. Thus we have 

i(r, 0, <*>) R(r)X(6, <f>). 
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Table 10.4 Angular and radial parts of hydrogen-atom wave functions. 

Angular part X(9, 4>) Radial part Rn,l(0 

X(s) = 
1 

47T 

1/2 

X(Px) = 

X(p») = 

x(p.) = 

1/2 

— ) sin 9 cos d> 
Air 

/ 3 \1/2 
I — I sin 9 sin d> 
WJ 

3\1/2 
—- I cos 9 
Air ) 

X(dz2) = 

X(d„) = 

X(dy2) = 

X(dx2—y2) = 

X(dXy) — 

\16irJ 

/i5Y/2 ■ 
w) sm 

(3 cos 9-1) 

9 cos 9 cos <f> 

15\1/2 
— 1 sin 9 cos 9 sin 6 
Air) 

15\1/2 2 
— I sin 9 cos 2<f> 

15X\1/2 2 
— ) sin 9 sin 2<f> 

7\3/2 

R(Is) - 2 ( e“ff/2 

R(2s) = (2 - CT)e-»/2 _1_ /jZ\3/2 
2V2 \ao) 

1 / —<r/2 
R(2p) = —-( — ) <re 

2\/6 \a°/ 

R(3s) = —~ ^ (6 — 6cr + o-‘)e ff/“ 
9\/3 Va°/ 

R(3p) = 
1 

3/2 

9 V76 \a°/ 
(4 — cr)cre 

-a! 2 

1 /z\3/2 
R(3d) = ——( — ) tr 

9V30 \a°/ 

2 —er/2 
e 

2Zr 

nao 
a0 = 

Air2me2 

This factorization helps us to visualize the wave function, since it allows us to 

consider the angular and radial dependences separately. 
Table 10.4 contains the expressions for the angular and radial parts of the 

one-electron-atom wave functions. Note that the angular part of the wave 
function for an s-orbital is always the same, (1/47t)1/2, regardless of principal 

quantum number. It is also true that the angular dependence of the p-orbitals 

and of the d-orbitals is independent of principal quantum number. Thus all 
orbitals of a given type (s, p, or cl) have the same angular behavior. The table 

shows, however, that the radial part of the wave function depends both on the 
principal quantum number n and on the angular momentum quantum number l. 

To find the wave function for a particular state, we simply multiply the 
appropriate angular and radial parts together. Thus the wave function for a 
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ls-orbital is 

where o0 is the Bohr radius, 0.529 X 10“8 cm. By squaring this function, we 

obtain an expression which gives the probability of finding the electron in a 
unit volume as a function of r, the distance from the nucleus: 

^2(ls) = — f—V e~2Zr,a°. 
7r \ao/ 

From this expression we can see that the probability of finding an electron in a 

ls-orbital is independent of the angular coordinates 6 and </>, and decreases 
monotonically as r increases. 

^(ls) 

(a) (b) 

Representation of the hydrogen ls-orbital: (a) \p2 as a function of r, and (b) contours of fig. 10.14 

constant \p2 measured relative to \[/2 at the origin. 

For purposes of qualitative discussion, it is often useful to have a graphical 
representation of an orbital. One possible way to show what an orbital looks 

like is to plot a “cross section” of the probability of finding the electron. That 
is, we imagine starting at the nucleus and proceeding outward along a radius, 
plotting the probability of finding the electron as a function of the distance 

from the nucleus. This type of graph is shown in Fig. 10.14(a) for a hydrogen 

atom in the n — 1, 1 = 0 state. We see that there is a finite probability of 
finding the electron at any value of r between zero and infinity. This contrasts 

sharply with Bohr’s theory, which pictured the electron as fixed at one radius. 
The “cross-section” representation of the orbital does not tell us how the 

probability of finding the electron depends on the angular coordinates, which, 
along with r, specify the location of a point in space. One way to represent the 
angular properties of an orbital is to plot contour maps of the probability of 
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finding an electron, as shown in Fig. 10.14(b). The fact that regions of con¬ 

stant probability are concentric shells shows that for the ground state of the 

hydrogen atom, the orbital has a spherical shape. A somewhat simpler way to 

represent the shape of the orbital is to draw a single surface along which the 

probability of finding the electron is a constant; for a hydrogen atom in its 

ground state this surface of constant \\p\2 is a sphere. 
Now let us examine the radial parts of the 2s- and 3s-orbitals. Apart from 

a constant multiplier, the 2s wave function behaves as 

*{2s) ‘ (2 -1)(rZ"2'0' 
The fact that Zr/2a0 appears in the exponential show's that as r increases, the 

2s-function decreases in amplitude more slowly than does the ls-function, which 

has Zr/a0 in its exponential factor. This is one of the reasons that the 2s-electron 

tends to stay farther from the nucleus, and has higher energy than does the 

ls-electron. 
The factor (2 — Zr/a0) in the 2s wave function controls the sign of the 

function. For small values of r, Zr/ao is smaller than 2, and the wave function 

is positive, but for large values of r, Zr/ao is greater than 2, and the function is 

negative. At r = 2a0/Z, the pre-exponential factor is zero. Since the radial 

function vanishes on the circle of radius r = 2ao/Z, this is said to be the locus 

of a radial node. 
A similar analysis can be applied to the 3s-function. The exponential factor 

is now e~Zri(~3ao); which decreases even more slowly wfith increasing r than the 

exponential factors for \p(ls) and \]y(2s). Therefore, the 3s-electron is, on the 
average, farther from the nucleus than a Is- or 2s-electron. Again, the radial 

nodes for \J/(3s) are found at radii for which the pre-exponential factor vanishes. 

Thus solving the equation (see \p(3s) in Table 10.4) 

4Zr , 4 Z2r2 
+ Q 

a0 9 2 
a0 

= 0 

w'ill give the positions of the radial nodes. Since this is a quadratic equation 

in r, w'e expect tw'O solutions, and thus two radial nodes. In general, for an 
ns-orbital, there are n — 1 radial nodes. Notice that the number of nodes 

increases wdth increasing energy, just as was true for the functions for the 

particle in a box. 
Let us now' examine the 2p wave functions in detail. Table 10.4 shows that 

the radial part of \p(2p) is 

R(2p) = -±- (Z/a0)3l2(Zr/a0)e-Zrl{2ao). 
2v/6 

Thus the 2p wave function has no nodes at finite values of r. In contrast to 

the s-functions, which were nonzero at r = 0, the p-functions vanish at r = 0. 
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This difference is important, and is sometimes described by saying that the 

s-electron has a greater ability to penetrate to the nucleus than does the 

p-electron. We shall find that a d-electron has even less ability to penetrate to 
the nucleus. This difference between the s, p, and d-electrons is used to explain 

one of the important features of the energy levels of many-electron atoms, as 
we shall see subsequently. 

In contrast to s-orbitals, the p-orbitals are not spherically symmetric. This 
is most simply seen by examining the angular part of the 2pz-function. We 

see from Table 10.4 that 0(2pz) is proportional to cos 9. Thus it has an angular 

maximum along the positive 0-axis, for there 0=0, and cos (0) = +1, which 

is the maximum value of the cosine. Similarly, along the negative 2-axis, the 
pz function has its most negative value, for there 9 = t, and cos (7r) = — 1, 

the most negative value of the cosine. The fact that the angular part has its 

maximum magnitude along the 2-axis is responsible for the designation pz for 

the function. Everywhere in the xp-plane 9 = 7t/2, and cos 9=0. Thus the 
X7/-plane is the locus of an angular node of the pz function. 

Z 

(b) 

The angular part of the 2pz-orbital. (a) A plot of cos 9 in the zx-plane, which represents the fig. 10.15 

angular part of the 2pz wave function. Note the difference in the sign of the function in 
the two lobes, (b) A plot of cos2 9 in the zx-plane, which represents the square of the wave 
function, and hence the probability density for finding an electron. 

A similar analysis is possible for the other 2p-functions. The px function 
has the 7/2-plane as an angular node, since the function is proportional to 

sin 9 cos 0, and cos 0 = 0 everywhere in the 7/2-plane. The maximum values 
of 1 for sin 9 and cos 0 occur along the positive x-axis. The pv function, pro¬ 

portional to the sin 9 sin <t>, vanishes in the x2-plane, where sin 0 = 0, and has 
a maximum along the positive 7/-axis, where both sin 9 and sin 0 are unity. 

Two of the ways of representing the angular part of the pz function are 

shown in Fig. 10.15. In the first instance, cos 9 is plotted as a function of 9, 
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and the result is two tangent circles. The node in the xij-plane (perpendicular 

to the page) is clear, as is the maximum magnitude along the z-axis. The cosine 

function is positive for positive z and negative for negative z, as is indicated. 

If the square of the angular part, cos2 0, is plotted as in Fig. 10.15b, a double 
teardrop appearance results. The node and the location of the maxima in the 

function are perhaps clearer than in the cos 0 plot. Both these representations 

of the angular part of the p-functions are encountered frequently. 

The 2p-orbitals of the hydrogen atom. (Adapted from K. B. Harvey and G. B. Porter, An 
Introduction to Physical Inorganic Chemistry. Reading, Mass.: Addison-Wesley, 1963.) 

The simultaneous representation of the radial and angular parts of |i/'|2 for 

the p-orbitals is more difficult, but is shown in Fig. 10.16. The surfaces of 

constant |^|2 are two spheroidal lobes, with the nucleus located between them 
in the nodal plane. The three p-orbitals are identical except for the direction 

of their symmetry axes, which, as we have indicated above, lie along the axes 
of a cartesian coordinate system. Accordingly, it is often convenient to distin¬ 

guish between the orbitals by labeling them px, p„, and pz. 
For an electron with n = 3, l may be 0, 1, or 2. Thus we might have a 3s-, 

3p-, or 3d-electron. Corresponding to the fact that when l — 2, mi can assume 

one of five values, there are five d-orbitals. The approximate shapes of these 

orbitals are shown in Fig. 10.17. The significant feature is that two of these 
orbitals point along the coordinate axes, while the symmetry axes of the other 

three are in the coordinate planes, but pointing between the cartesian axes. 

The labeling of the d-orbitals as given in Fig. 10.17 is derived from the direc¬ 

tions or planes in which the orbitals have their maximum density. 
We have now seen instances where the wave function depends only on the 

radial distance r (s-orbitals) and on both r and the angles 4> and 0 (p- and d- 

orbitals). One way of remembering the general behavior of the wave functions 

is to systematize their nodal properties. For a hydrogen atom wave function 
of principal quantum number n, there is a total of n — 1 nodes which occur at 

finite values of the radial distance r. Of these n — 1 nodes, some are encountered 

as we proceed radially out from the nucleus at any fixed angle. These are called 
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radial nodes. Others are encountered as we proceed around the atom at a fixed 

distance from the nucleus. These are called angular nodes. Examination of the 

wave functions shows that the number of angular nodes is just equal to l, the 
angular momentum quantum number. Thus we have 

total nodes = n — 1, 

angular nodes = l, 

radial nodes = n — l — 1. 

With these relations in mind, it is easier to interpret the various qualitative 

pictures of orbitals that are encountered. Also, the nodal properties of the wave 
functions prove to be very important in the theory of chemical bonding, so it is 

advisable to analyze and understand these properties thoroughly. Finally, 

we should note that it is sometimes stated that the total number of nodes in 

an atomic wave function is n, rather than n — 1. In this case, the node which 

always occurs at r = oo is being included in the count. 

The 3d-orbitals of the hydrogen atom. Note the relation between the labeling of the fig. 10.17 

d-orbitals and their orientations in space. (Adapted from K. B. Harvey and G. B. Porter, 
An Introduction to Physical Inorganic Chemistry. Reading, Mass.: Addison-Wesley, 1963.) 
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Now that we have the general shape or angular properties of the orbitals in 

mind, we can examine what is called the radial probability distribution of the 

electron: the probability of finding the electron anywhere in a spherical shell 

of radius r and thickness dr. This radial probability differs from the probability 
we used earlier to plot the “cross section” of the atom. Previously we asked 
only for the probability of finding the electron at one particular point a distance 

r from the nucleus; for the radial probability we ask what is the chance of 

finding the electron at any of all the points which are a distance between r and 
r + dr from the nucleus. Thus the radial probability function is \R\2, the 

radial part of the wave function squared and multiplied by the volume of a 

spherical shell, 47rr2 dr. 

r( A) 

r( A) 

IG. 10.18 Radial probability density for some orbitals of the hydrogen atom. Ordinate is propor¬ 
tional to 47rr2R2, and all distributions are to the same scale. 

Figure 10.18 shows how this radial probability depends on the distance from 

the nucleus for various orbitals. This probability of finding an electron very 

near the nucleus is small, for in this region 47rr2 is small. The maxima in the 
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radial-probability curves occur at radii where the electron is most likely to be 
found. For the ls-electron of the hydrogen atom, this radius of maximum 

probability is 0.529 A. The curves show that on the average the 2s-electron 
spends its time a greater distance from the nucleus than does a ls-electron. 
This is qualitatively consistent with the relative energies of the Is- and 2s-states, 

for the electron which on the average is close to the nucleus is bound to have 
the lower energy. Comparison of the radial probability curves of electrons with 

the same n but different l shows that their average distance from the nucleus is 
approximately the same. However, an s-electron has a greater chance of being 

very close to the nucleus than does a p-electron, which in turn is more likely 
to be near the nucleus than is a d-electron. The different abilities of s-, p-, and 

d-electrons to penetrate to the nucleus should be noted carefully since they 
persist in atoms with many electrons, and are responsible for many of the details 
of the structure of the periodic table. 

To characterize the orbitals of the one-electron atom further, we draw upon 

two equations that result from the quantum-mechanical treatment. For a 
single electron moving around a central nuclear charge Ze in an orbital whose 

quantum numbers are n, l, the average value of the reciprocal of the electron- 
nucleus separation is 

1 _ 47r2me2Z 

r n2h2 
(10.21) 

Note that this expression does not contain the quantum number l. This begins 

to reveal the reason that the orbitals with the same n but different l have the 
same energy in the one-electron atom. The average potential energy of the 
electron-nucleus system can be obtained by multiplying Eq. (10.21) by —Ze2 

to give 
rr 2 a 2 \r/2 — _ Ze _ 47r me Z 

r n2h2 

If, as was true in the Bohr treatment of the atom, the total energy is one-half 

the potential energy, we might write 

E 
1 Ze^ 
2 r 

2tr2me4Z2 

n2h2 

which is in fact Eq. (10.20), the correct expression for the allowed energies. 
Thus while we can make the general observation that the energy of an orbital 

increases as its size increases, the important factor which determines the energy 

is the average of 1/r. 
This conclusion is further supported by the following expression for the 

average value of r, again derived from the quantum-mechanical treatment of 
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the one-electron atom: 

r 
Z 

W+ 1)11 
n2 Jf 

h2 

47r2me2 ’ 
(10.22) 

while f increases as n increases, it decreases as l increases. The form of the 
orbital at distances far from the nucleus is important in determining the value 

of F. Since F is less for a p-orbital than for an s-orbital, it must be that the 

electron density in a p-orbital decreases faster at great distances than does the 

density of the corresponding s-orbital. Reference to Fig. 10.18 shows that this 

is true. 

10.6 MULTI-ELECTRON ATOMS 

The application of quantum mechanics to atoms with many electrons is a 
difficult mathematical procedure, but theoretical results which are in extremely 

good agreement with experiment have been obtained. Consequently, we are 

confident that quantum mechanics provides a completely satisfactory descrip¬ 

tion of even the most complicated atoms. The simplest procedures used for 
the approximate qualitative description of multi-electron atoms are natural 

extensions of those used to describe the hydrogen atom. Electrons are asso¬ 

ciated with atomic orbitals which are qualitatively similar to the orbitals of 

the hydrogen atom. Each orbital is labeled with a set of quantum numbers 

which are just the same as those used for the hydrogen atom. As before, the 
principal quantum number n is most important in determining the energy of 

the orbital, and once again the value of l determines its shape or angular prop¬ 
erties. However, the value of l for an electron in a multi-electron atom also 

affects the energy. Thus in a multi-electron atom a 2p-electron has a higher 

energy than a 2s-electron, and the energy of a 3d-electron is greater than that 

of a 3p-electron, which is in turn greater than the energy of a 3s-electron. This 

is illustrated in Fig. 10.19, which compares the allowed energy states of the 
lithium and sodium atoms with those of the hydrogen atom. While the energy- 

level patterns of the various atoms differ in their quantitative details, all are 

at least qualitatively similar to those of lithium and sodium. 
Another important qualitative feature of multi-electron atoms is that each 

electron in the atom has a unique set of quantum numbers. That is, each elec¬ 

tron has a combination of n, l, mi, and ms which is in some way different from 

those of all other electrons in the atom. This important universal observation 

is called the Pauli Exclusion Principle. It is an experimental fact which really 
has no fundamental explanation, just as there is no explanation of why two like 

charges repel each other with a force given by Coulomb’s law. Another way 

of stating the Pauli Principle is that no more than two electrons can occupy 

the same atomic orbital. Two electrons in the same orbital have the same 

values of n, l, and mi] thus in order for each electron to have a unique set of 
quantum numbers, one must have spin +•£, the other spin —In short, two 

electrons can occupy the same orbital if and only if their spins are different. 
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Comparison of the energy levels of the hydrogen atom, lithium atom, and sodium atom. fig. 10.19 

Energy Levels 

The energy-level patterns of the lithium and sodium atoms reflect some impor¬ 

tant features of the behavior of electrons in multi-electron atoms. For example, 

why is it that the valence electron of sodium, normally in the 3s-orbital, has 
higher energy when it is excited to the 3p-orbital, and still higher energy when 

it is in the 3d-state? 

4x r2R2 

The radial distribution of electron density in the sodium atom in its ground and excited fig. 10.20 

states. The shaded area represents the core electrons. The distribution of the valence 
electron when it is in the 3s-, 3p-, or 3d-orbitals is also shown. 
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The answer can be deduced from Fig. 10.20, which shows the radial distri¬ 

bution of the ten core electrons in the sodium atom, and for the valence electron 

in the 3s-, 3p-, or 3d-orbitals. We see that when the electron is in the 3d-orbital, 

it spends virtually all its time relatively far from the nucleus, well outside the 

regions where the ten core electrons spend most of their time. As a result, the 

3d-electron is shielded or screened from the full nuclear charge of +11 by the ten 
core electrons. To a fairly good approximation, the 3d-electron moves under 

the influence of an “effective” nuclear charge of approximately 11 — 10 = 1. 
Consequently, the 3d-electron in the sodium atom has nearly the same energy 

as a 3d-electron in a hydrogen atom, as Fig. 10.19 shows. 
Figure 10.20 also shows that an electron in the 3p- or 3s-orbital of sodium 

also spends most of its time outside the inner core of ten electrons. However, 
in contrast to the 3d-orbital, the 3p-orbital has a subsidiary maximum at a 
fairly small distance from the nucleus, and has a noticeable density in regions 

even closer to the nucleus, well within the distribution of core electrons. When 

the valence electron penetrates the inner-core electrons, it is no longer shielded 

or screened from the nucleus, and feels an increasing amount of the full +11 
charge, the nearer it gets to the nucleus. This causes a lowering of the energy 

of the electron. The effect is even more extreme for the 3s-electron, which has 
two subsidiary maxima at small radii, and which penetrates to the nucleus 

most effectively. Consequently, the energy of the 3s-orbital is lower than that 

of the 3p-, which is in turn lower than that of the 3d-orbital. The type of 
orbital-energy splitting which occurs in sodium prevails in every multi-electron 

atom, and for the same reason. 
Why, as Figure 10.19 shows, do the energies of the s-, p-, d-, /-, etc., orbitals 

of a very high principal quantum number in sodium and lithium lie very close 

to each other, and very close to the hydrogen atom level of the same principal 
quantum number? The answer again involves the penetration effect. An elec¬ 

tron excited to the 6s-state of Na spends most of its time very far from the 

nucleus, and thus is very well screened from the full nuclear charge by the inner 
core. Because it is so far from the nucleus, its penetration of the core is ex¬ 

tremely rare, and so virtually all the time this electron is moving under an 

effective nuclear charge of +1. Consequently its energy is very close to that 

of an electron in the hydrogen atom with n — 6. The same argument applies 

to the electron in the p-, d-, /-, etc., orbitals of the same principal quantum 
number. Electrons in any of these orbitals are far from the nucleus, do not 

penetrate the core, and have approximately the same energy. 

Electron Configurations 

A number of aspects of the properties and behavior of atoms can be understood 

in terms of the number of electrons they have, and the relative energies of the 

orbitals they occupy. To see how this comes about, we need the electron 
configurations of the gaseous atoms of the elements, which tell us the atomic 
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orbitals that are occupied by electrons. To obtain these electronic configura¬ 
tions, we first imagine an atomic nucleus of appropriate charge surrounded by 

empty atomic orbitals. Then we feed electrons into these orbitals, filling them 
in order of increasing energy, always remembering that according to the Exclu¬ 

sion Principle, each orbital can accommodate only two electrons whose spins 
must be opposite. The order of increasing energy for the atomic orbitals is 

shown in Fig. 10.21. This diagram is qualitatively correct for almost every 
neutral atom, and can be used to find the electron configuration of all but a 
very few elements. 

A word of caution concerning the interpretation of Fig. 10.21 and the idea 

of “feeding” electrons into orbitals is in order. While it is useful to describe 

atoms qualitatively by saying that there are electrons “in” certain orbitals, and 
while it is sometimes helpful to think of atoms as being built up by “placing” 

electrons into a set of vacant orbitals, this language must not be taken too 
literally. The orbitals of an atom are not a permanent set of “boxes” rigidly 

placed on an energy scale as Fig. 10.21 might seem to suggest. When we say 
an electron is “in an orbital” we are saying only that an electron is behaving 

in a certain manner, and in this sense an orbital exists physically only if an 

electron is “in” it. Moreover, each atom and ion has a unique set of energy 
levels determined by its nuclear charge and number of electrons. Consequently, 

the energy associated with a given orbital depends on what other orbitals are 

occupied, and is not the same for all atoms. Thus the pattern of orbital energies 
shown in Fig. 10.21, while useful, has only qualitative significance. 

6* — 

5s ■ 

4s- 

3s- 

2s- 

bp - 
bd- 

5 p' 
4 d- 

4p- 
3 d- 

3 P- 

2 V- 

Schematic valence-orbital energy diagram for 
neutral atoms. 

FIG. 10.21 

Is- 

Let us consider some specific examples. The oxygen atom has a nuclear 
charge of eight, so the first two electrons would fill the ls-orbital, the third and 

fourth electrons would then have to go into the 2s-orbital, and the remaining 
1 four electrons would be distributed among the three 2p-orbitals. The resulting 

configuration is described by writing ls22s22/)4, where Is, 2s, 2p denote the type 

of orbital, and the exponents give the number of electrons occupying these 
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Table 10.5 Electron configuration of gaseous atoms 

Atomic 
number 

Element 
Electronic 

configuration 
Atomic 
number 

Element 
Electronic 

configuration 

1 H Is 27 Co —3d74s2 

2 He Is2 28 Ni —3d84s2 

3 Li [He] 2s 29 Cu —3d104s 

4 Be -2s2 30 Zn —3d104s2 

5 B —2s22p 31 G3 —3d104s24p 

6 C —2s22p2 32 G6 —3d104s24p2 

7 N —2s22p3 33 As —3d104s24p3 

8 O —2s22p4 34 Se —3d104s24p4 

9 F —2s22p5 35 Br —3d104s24p5 

10 Ne —2s22p6 36 Kr —3d104s24p6 

11 Na [Ne] 3s 37 Rb [Kr] 5s 

12 Mg -3s2 38 Sr —5s2 

13 Al —3s23p 39 Y —4d5s2 

14 Si —3s23p2 40 Zr —4d25s2 

15 P —3s23p3 41 Nb —4d45s 

16 S —3s23p4 42 Mo —4d55s 

17 Cl —3s23p5 43 Tc —4d55s2 

18 Ar —3s23p6 44 Ru —4d75s 

19 K [Ar] 4s 45 Rh —4d85s 

20 Ca —4s2 46 Pd —4d10 

21 Sc —3d4s2 47 Ag 

00 
in 
o

 1 

22 Ti —3d24s2 48 Cd —4d105s2 
23 V —3d34s2 49 In —4d105s25p 

24 Cr —3d54s 50 Sn —4d105s25p2 

25 Mn —3ds4s2 51 Sb —4d105s25p3 
26 Fe —3d64s2 52 Te —4d105s25p4 

orbitals. In the same manner, we find that the electron configuration of the 
sodium atom is ls22s22p63s. In discussing an atom with many electrons, it is 

often convenient to omit writing the assignments of all but the valence electrons. 

Thus for iron we could write the important part of its electron configuration as 

4s23d6, and assume that it is known that the Is-, 2s-, 2p-, 3s-, and 3p-orbitals 

are filled. Table 10.5 gives all the known configurations of the lowest energy 

states of the free gaseous atoms of the elements. 

The Periodic Table 

Table 10.6 is intended to show how the structure of the periodic table is related 

to the electron configurations of the atoms. Each of the periods starts with an 
element which has one valence electron in an s-orbital. The first period is only 

two elements long, since the 1 s-orbital can accommodate only two electrons. 

The third electron in lithium must enter the 2s-orbital, and the second period 

begins. Since there are one 2s-orbital and three 2p-orbitals, each capable of 

454 THE ELECTRONIC STRUCTURE OF ATOMS 10.6 



Table 10.5 (Continued) 

Atomic 
number 

Element 
Electronic 

configuration 
Atomic 
number 

Element 
Electronic 

configuration 

53 1 —4d105s25p5 78 Pt —4f145d96s 
54 Xe —4d105s25p6 79 Au [ 1 6s 
55 Cs [Xe] 6s 80 Hg -6s2 
56 Ba -6s2 81 Tl —6s26p 
57 La —5d6s2 82 Pb —6s26p2 
58 Ce —4f26s2 83 Bi —6s26p3 
59 Pr —4f36s2 84 Po —6s26p4 
60 Nd —4f46s2 85 At —6s26p5 
61 Pm —4f56s2 86 Rn —6s26p6 
62 Sm —4f66s2 87 Fr [Rn] 7s 
63 Eu —4f76s2 88 Ra —7s2 
64 Gd —4f'5d6s2 89 Ac —6d7s2 
65 Tb -4f96 s2 90 Th —6d27s2 
66 Dy —4f106s2 91 Pa —5f26d7s2 
67 Ho —4fn6s2 92 U —5f36d7s2 
68 Er —4f126s2 93 Np —5f46d7s2 
69 Tm —4f136s2 94 Pu —3f67s2 
70 Yb —4f146s2 95 Am —5f77s2 
71 Lu —4f145d6s2 96 Cm —5f76d7s2 
72 Hf —4f145d26s2 97 Bk —5f97s2 
73 Ta —4f145d36s2 98 Cf —5f107s2 
74 W —4f145d46s2 99 Es 10 

H— 
ln i 

75 Re —4f145d56s2 100 Fm —5f127s2 
76 Os -4f145d66s2 101 Md —5f137s2 
77 Ir -4f145d76s2 102 No —5f147s2 

103 Lr —5f146d7s2 

accepting two electrons, 2 X (1 + 3) = 8 elements enter the table before the 
2s- and 2p-orbitals are filled in the element neon. The third period is also eight 
elements long and ends when the 3s- and 3p-orbitals are filled in argon. 

Since the 4s-orbital is lower in energy than the 3d-orbitals, a new period 
starts with potassium before any electrons enter the 3d-orbitals. After the 4s- 
orbital is filled in calcium, the five 3d-orbitals are the next available in order of 
increasing energy. These five orbitals accommodate ten electrons, and there¬ 
fore there are 10 transition-metal elements which enter the table at this point. 
Once these 10 elements have entered, the fourth period is completed by filling 
the 4p-orbitals. In the fifth period the 5s-, 4d-, and 5p-orbitals are filled in 
succession. The sixth period is different in that after the 6s-orbital is filled, 
and one 5d-electron enters, the 4/-orbitals are the next available in order of 
increasing energy. Since an /-orbital corresponds to l = 3, the quantum num¬ 
ber m can assume integral values from —3 to -f3, for a total of seven different 
choices. Thus there are seven 4/-orbitals, and we expect 7 X 2 = 14 elements 
to appear before any more od-orbitals are filled, as is observed. 
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After the 14 rare-earth elements have entered the table, the last transition 
metals appear as the 5d-orbitals are occupied. These in turn are followed by the 
six elements required to fill the three 6p-orbitals, and the sixth period ends with 

radon. The seventh period starts by filling the 7s-orbital and after one 6d- 

electron appears, subsequent electrons enter the 5/-orbitals. Thus the periodic 

table ends with the actinide series, a group of 14 elements analogous in prop¬ 
erties and electronic structure to the rare earths. 

The gaseous atoms of elements in the same column of the, periodic table have, 
for the most part, the same configuration for their valence electrons, and as is 

well known, the elements in the same column resemble one another chemically. 
Furthermore, whenever “horizontal” chemical similarity exists, such as among 

the rare earths or transition metals, the elements which are chemically similar 
differ only by the number of electrons in a particular type of orbital, such as 

■if, or 3d. In addition to these general relations between electron configuration 
and chemical properties, there are many more detailed correlations which we 

shall examine in our later discussions of the chemical properties of the elements. 

The structure of the periodic table raises some interesting questions about 
electronic behavior. Why is it that the third short period stops with argon in 

the valence electron configuration 3s23p6, and the 4s-electrons are added before 
the 3d-orbitals start to fill? The answer lies in the penetration effect discussed 

earlier. The 3d-orbital in the potassium atom is concentrated outside the inner 
core of 18 electrons, and an electron in this orbital is very well screened from 

the nucleus. Since the 4s-orbital penetrates the core, an electron in it can feel 
nearly the full nuclear charge some of the time, and thereby lower its energy. 

This effect is so pronounced that despite its higher principal quantum number, 
the energy of the 4s-orbital is lower than that of the 3d-orbital. Therefore, the 
element 19, potassium, has the configuration [Ar]4s, and displays the general 

chemical properties of an alkali metal. 

Why do the 3d-orbitals suddenly become lower in energy and begin to fill 
immediately after the 4s-shell is completed? The qualitative explanation is 

based on the fact that even though the 4s-electrons penetrate the core and the 
3d-electrons do not, the major parts of these orbitals occupy approximately the 
same region of space. Because the two 4s-electrons are not any closer to 

the nucleus, they do not screen the 3c/-electrons from the nuclear charge. As a 
result, once the nuclear charge is increased to accommodate the two 4s-electrons, 

the effective nuclear charge ready to act on the 3d-electrons increases noticeably. 
In short, the increase in the nuclear charge which occurs in the sequence Ar, K, 
Ca, is not screened from the 3d-orbital by the added 4s-electrons because these 

electrons are not part of the inner core. Consequently, electrons added to the 
3d-orbitals after the 4s~orbital is filled feel an increased nuclear charge, their 

energy is lowered, and the first transition series begins. We can make use of a 
similar argument to explain the occurrence of the second and third transition 

series. 
Because the 4s- and 3d-electrons have somewhat similar energies in the first 

half of the transition series, these elements generally show a number of different 
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oxidation states in their compounds. However, the lowering of the energy of the 

3d-electrons relative to the 4s-electrons continues through the transition series. 
As the nuclear charge increases, the energy of the 3cZ-elcctrons falls well below 

the energy of the 4s-electrons, and becomes low enough so that in the latter 
half of the transition series, the typical oxidation state displayed is +2, which 

corresponds to removal of the two 4s-electrons only. Higher oxidation states 
of these elements (Fe-Cu) are produced only with difficulty. When we reach 
the element zinc, the energy of the 3cZ-electrons becomes so low that they no 

longer are directly involved in the chemistry of this and subsequent elements. 

fig. 10.22 Schematic diagram of the variation of orbital energies with atomic number. 

We see that the variation of the relative energies of the orbitals is responsible 

for the detailed structure of the periodic table. These energy variations can 

be summarized conveniently in a diagram like that in Fig. 10.22. We see that 
as atomic number increases, the energy of all orbitals tends to fall. The dif¬ 
ferences in penetrating power cause a splitting of the energies of the s-, p-, cl-, 

and /-orbitals of a given principal quantum number. In the valence shell, the 
d-orbitals sometimes are of higher energy than the s- and p-orbitals of the next 

higher principal quantum number. The 4/-orbitals for a time lie higher in 
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energy than the 6s-orbitals, and at a point fall rapidly to begin the rare earth 

series. As orbitals become part of the core, the differentiation in their energies 
caused by penetration decreases, and although the order of energy is still 

s < p < d < f, orbitals of a given value of n are lower in energy than all of 
those orbitals with principal quantum number equal to n + 1 or greater. 

Ionization Energies 

We have made use of Fig. 10.21, a qualitative indication of the relative energies 

of the various orbitals in a multi-electron atom. To understand the finer details 
of the periodic table and chemical behavior we must have a more quantitative 
indication of the energy with which an atom binds its electrons. This we obtain 

from measurements of the ionization energyr: the minimum energy’ required to 

remove an electron from a gaseous atom to form a gaseous ion. Since in the gas 
phase the atom and the ion are isolated from all external influences, the 
energy necessary to effect the ionization is exactly the energy with which the 

atom binds its electron. Thus the magnitude of the ionization energy gives a 

quantitative measure of the stability of the electronic structure of the isolated 
atom. The ionization energies of the gaseous atoms of the elements are given 

in the first column of Table 10.7, and these energies are plotted as a function of 
atomic number in Fig. 10.23. 

First ionization energy of the elements as a function of atomic number. (Adapted from fig. 10.23 

K. B. Harvey and G. B. Porter, Physical Inorganic Chemistry. Reading, Mass.: Addison- 
Wesley, 1963.) 
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Table 10.7 Ionization energies of gaseous atoms (kcal/mole) 

Atomic 
number 

Element h /2 13 li 

1 H 313.5 
2 He 566.9 1254 
3 Li 124.3 1744 2823 
4 Be 214.9 419.9 3548 5020 
5 B 191.3 580.0 874.5 5980 
6 C 259.6 562.2 1104 1487 
7 N 335.1 682.8 1094 1786 
8 O 314.0 810.6 1267 1785 
9 F 401.8 806.7 1445 2012 

10 Ne 497.2 947.2 1500 2241 
11 Na 118.5 1091 1652 2280 
12 Mg 176.3 346.6 1848 2521 
13 Al 138.0 434.1 655.9 2767 
14 Si 187.9 376.8 771.7 1041 
15 P 254 453.2 695.5 1184 
16 S 238.9 540 807 1091 
17 Cl 300.0 548.9 920.2 1230 
18 Ar 363.4 637.0 943.3 1379 
19 K 100.1 733.6 1100 1405 
20 Ca 140.9 273.8 1181 1550 
21 Sc 151.3 297.3 570.8 1700 
22 Ti 158 314.3 649.0 997.2 
23 V 155 328 685 1100 
24 Cr 156.0 380.3 713.8 1140 
25 Mn 171.4 360.7 777.0 
26 Fe 182 373.2 706.7 
27 Co 181 393.2 772.4 
28 Ni 176.0 418.6 810.9 
29 Cu 178.1 467.9 849.4 
30 Zn 216.6 414.2 915.6 
31 Ga 138 473.0 708.0 1480 
32 Ge 182 367.4 789.0 1050 
33 As 226 466 653 1160 
34 Se 225 496 738 989 
35 Br 273.0 498 828 
36 Kr 322.8 566.4 851 
37 Rb 96.31 634 920 
38 Sr 131.3 254.3 1300 

By examining Fig. 10.23, we find that there is a periodicity in the value of 

the ionization energy that parallels the periodicity in the chemical properties 
of the elements. Starting with one of the alkali metals, there is a general tend¬ 
ency for the ionization energy to increase until a maximum is reached at the 

subsequent rare gas; this is repeated along each row of the periodic table. 
Superimposed on this general trend is a “fine structure,” subsidiary maxima 

and minima, which we shall explain in terms of electron configurations. 
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Table 10.7 (Continued) 

Atomic 
number 

Element h h /.3 U 

39 Y 147 282.1 473 
40 Zr 158 302.8 530.0 791.8 
41 Nb 158.7 330.3 579.8 883 
42 Mo 164 372.5 625.7 1070 
43 Tc 168 351.9 
44 Ru 169.8 386.5 656.4 
45 Rh 172 416.7 716.1 
46 Pd 192 447.9 759.2 
47 Ag 174.7 495.4 803.1 
48 Cd 207.4 389.9 864.2 
49 In 133.4 435.0 646.5 1250 
50 Sn 169.3 337.4 703.2 939.1 
51 Sb 199.2 380 583 1020 
52 Te 208 429 720 880 
53 1 241.1 440.3 
54 Xe 279.7 489 740 
55 Cs 89.78 579 
56 Ba 120.2 230.7 
57 La 129 263.6 442.1 

72 Hf 160 344 
73 Ta 182 374 
74 W 184 408 
75 Re 182 383 
76 Os 200 390 
77 Ir 200 
78 Pt 210 4280 
79 Au 213 473 
80 Hg 240.5 432.5 789 
81 Tl 140.8 470.9 687 1170 
82 Pb 171.0 346.6 736.4 975.9 
83 Bi 168.1 384.7 589.5 1040 
84 Po 194 
85 At 
86 Rn 247.8 
87 Fr 
88 Ra 121.7 234.0 
89 Ac 160 279 

It is easy to understand why the ionization energy of helium is greater than 
that of hydrogen, particularly if we refer to Eq. (10.20), the expression for the 

binding energy of a one-electron atom. It is clear that the binding energy is 

sensitive to the nuclear charge if n is a constant. While this expression does 
not apply quantitatively to atoms with more than one electron, we can use it 

as a qualitative indication that as we go from hydrogen to helium, we expect 
the increase in nuclear charge to increase the binding energy or ionization energy 
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of the ls-electron. If Eq. (10.20) were correct, changing Z from 1 to 2 should 

increase the ionization energy from 314 to 1254 kcal. The fact that the observed 
ionization energy of helium is only 567 is a result of the repulsion of the two 

electrons, which makes the He atom less stable than might be expected from 

Eq. (10.20). Thus in thinking about ionization energies we must keep in mind 
the effects both of increasing nuclear charge and of repulsion between electrons. 

fig. 10.24 The electron distribution in the lithium atom. The first maximum corresponds to the 
ls-electrons; the second, to the 2s-electron. 

Why is the ionization energy of lithium, with a nuclear charge of three, so 

much smaller than that of helium? The electron configuration of lithium is 
1s22s, so in order to form the ion a 2s-electron must be removed. Equation 

(10.20) shows that if all else is held constant, the binding energy of an electron 

decreases as n increases, and this factor alone would tend to lower the ionization 

energy of lithium relative to helium. But why doesn’t the increased nuclear 
charge of lithium offset the change in principal quantum number? The reason 

can be found in Fig. 10.24, which gives the radial distribution of the electrons 

in the lithium atom. It is clear that the ls-electrons spend most of their time 

very close to the nucleus, while the 2s-electron is for the most part found at 

much greater radii. This effect is so extreme that it is reasonable to say that 

the ls-electrons “screen” the 2s-electron from the nucleus. That is, most of the 

time the 2s-electron feels not a charge of —)—3, but a net positive charge of ap¬ 
proximately 3 2 = 1. Only rarely when the 2s-electron moves very close to 

the nucleus does it “see” the full +3 nuclear charge. This screening effect by 
the inner electrons, together with the increase in the principal quantum number, 

provides a satisfactory explanation of the relative ionization energies of helium 
and lithium. 

Let us continue to analyze the trends in ionization energies shown in Fig. 
10.23. We find that the ionization energy of beryllium is somewhat greater than 

that of lithium, a fact which we can now attribute to the increased nuclear 
charge. Yet we find that increasing the nuclear charge one more unit and adding 
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one more electron to form the boron atom produces a slight decrease in ionization 

energy. The electron configuration of boron is ls22s22p, and the surprisingly 

low ionization energy is an indication that p-electrons tend to be slightly higher 
in energy than s-electrons of the same principal quantum number, and thus 

require less energy for their removal. This effect, too, can be understood in 

terms of the screening effects of the ls-electrons. As we noted earlier in examin¬ 
ing the form of the hydrogen orbitals shown in Fig. 10.18, a 2s-electron has a 
greater probability of being very close to the nucleus than does a 2p-electron. 

This means that a 2s-electron is better able to penetrate the ls-screen than is a 

2p-electron. Thus 2s-electrons feel the full nuclear charge more often than do 
2p-electrons, and consequently the energy of the 2s-electrons is always lower 
than the energy of the 2p-electrons. 

The addition of the second and third 2p-electrons in carbon and nitrogen is 
accompanied by increases in ionization energy which we once again attribute 

to the increasing nuclear charge. To understand the slight drop in ionization 

energy which occurs at the oxygen atom, we must investigate the filling of the 
2p-orbitals more carefully. Because of the repulsion between like charges, 

electrons try to avoid each other as much as possible. This can be most effec¬ 
tively accomplished if each of the first three p-electrons is placed in a different 
p-orbital. Thus the outer electron configuration of carbon is 2s22p*2py, and 

that of nitrogen is 2s22p].2pl2pl. When the fourth 7>-electron enters in oxygen, 

it must be placed in a p-orbital which already has an electron in it. Apparently 
the extra repulsion which results from two electrons occupying the same orbital 

offsets the increased nuclear charge, and the ionization energy of oxygen is 
slightly less than that of nitrogen. As the fifth and sixth p-electrons are added, 

the effect of increasing nuclear charge overcomes electron repulsion, and the 
ionization potential rises to a maximum at neon. 

Figure 10.23 shows that the third period repeats the behavior found in the 
second period. In the fourth period, a new feature is introduced. After the 
two 4s-electrons have appeared in potassium and calcium, the ionization energy 

rises very slowly as electrons are added in the transition-metal series. It would 

appear from the order in which the 4s- and 3d-orbitals are filled that the 3d- 
orbitals are the higher in energy of the two. Yet, when one of the transition 

metals is ionized it is a 4s-electron which is removed. This indicates that the en¬ 

ergies of the 4s- and 3d-orbitals are very close, and that a slight change in the 
structure of the atom can change their relative energies. Note that while the 
electron configurations of most of the transition metals are of the type 3dn4s2, 
chromium has the configuration 3d54s', and copper 3d104sx. The fact that the 

energy of the 3d-orbitals is nearly the same as that of the 4s-orbitals is in large 

measure responsible for the large number of oxidation states displayed by the 

transition metals. 
The features found in the fourth period are repeated in the fifth. In the 

sixth period we find that the ionization energies of the transition metals are 
higher than the corresponding elements in the fourth and fifth periods. The 
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cause of this is the appearance of the fourteen rare-earth elements immediately 
before the 6d-orbitals are filled. Thus the ionization energies of the transition 

metals of the sixth period reflect an “extra” amount of nuclear charge introduced 
with the rare-earth elements. 

So far we have been exclusively concerned with the energy necessary to 

remove the most weakly bound electron from the atom. This is called the first 
ionization energy of the element. That energy required to remove the second 
electron, as in 

Li+(g) -» Id++(g) + e, 

is called the second ionization energy, and values for the elements are given in 

the second column of Table 10.7. The magnitudes of the second and higher 

ionization energies can also be understood in terms of electronic configurations 
and nuclear charge. Consider, for example, that He, Li+, and Be++ all have 

the electron configuration Is2; we say that they are isoeledronic. Comparison 

of their ionization energies should give us a good indication of the effect of 
nuclear charge on the binding energy of an electron. The required data from 

Table 10.7 are the first ionization energy of He, 567 kcal; the second ionization 

energy of Li, 1743 kcal; and the third ionization energy of Be, 3547 kcal. These 

are the energies required to remove one of the two ls-electrons. The effect of 
nuclear charge on binding energy of an electron is quite clear. 

To see how changing the principal quantum number affects the binding 
energy of the electron, we need only compare the first and second ionization 

energies of any of the alkali metals. For lithium we have 124 and 1743 kcal, 

for sodium 118 and 1090 kcal, and so on. There is an enormous difference 

between the energy required to remove the outermost s-electron (~ 100 kcal) 
and the 1000 kcal needed to eject an electron of next lower principal quantum 

number. Since such a huge energy is required to remove an inner electron it is 

not surprising that the highest positive oxidation states of the metals are never 
greater than the number of valence electrons. 

Ionization of the transition elements displays what may seem at first to be 
a surprising feature. In the sequence K, Ca, Sc, the 4s-orbital fills before the 

3d-orbitals. However, when scandium is ionized sequentially, the following 
electron configurations occur 

Sc(4s23d) —> Sc+(4s3d) -)- e~ 

Sc+(4s3d) -► Sc++(3d) + e~ 

Sc++(3d) -»• Sc+3 + e~ 

That is, when scandium is ionized sequentially the s-orbital is emptied before 

the d-electron is removed. This merely indicates that in Sc++, the 3d-orbital 
is lower in energy than the 4s-orbital. This same phenomenon occurs through¬ 

out the transition series. Thus, vanadium, whose neutral atom has the con¬ 

figuration 4s23d3, gives V+ with a configuration 3d4, and when Co(4s23d7) is 
ionized, Co+(3d8) is formed. 
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To understand the explanation of the increasing stability of the 3d orbitals 
with increasing ionic charge, it helps to refer to Fig. 10.25, which shows the 

relative energies of the 4s-, 4p-, and 3d-orbitals in the isoelectronic sequence K, 
Ca+, Sc++, and Ti+3. In the potassium atom, the 4s- and 4p-orbitals lie lower 

in energy than the 3d-orbital because of the penetration effect discussed earlier. 
The ion Ca+ has the same number of electrons as K, but has an increased 

nuclear charge. As a result, the electron core of Ca+ is somewhat contracted. 
As the core contracts, the 4s- and 4p-orbitals lie more and more outside the 
region occupied by the core electrons, and consequently their ability to lower 

their energy by penetrating the more compact core decreases. In Ca+ the 

penetration of the 4p-orbital is no longer sufficient to lower its energy below 
that of the 3d-orbital, and we find the 3d-orbital above the 4s-, but below the 

4p-orbital. Further contraction of the core occurs upon passing to Sc++, and 
in this case the penetration of even the 4s-orbital is small. Consequently the 

3d-orbital lies lower in energy than 4s- and 4p-, because of its smaller principal 
quantum number. These effects occur again in Ti+3. 

Sc++ 

The energies of the 4s-, 4p-, and 3d-orbitals in the isoelectronic sequence K, Ca+, Sc++, fig. 10.25 

and Ti+3. 

In essence, the reason that the d-orbitals become more stable with increasing 
ionic charge is the same as the reason why d-orbitals become increasingly stable 

as one proceeds sequentially through the transition elements: the contraction 

of the core diminishes the importance of penetration, and increases the impor¬ 
tance of the principal quantum number in determining the energy. 

There are several useful generalizations we can draw from our study of 
ionization energy that will help us understand the behavior of electrons in 

atoms and molecules. First, it is apparent that as electrons are added to orbitals 
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of the same principal quantum number in successive elements, the ionization 

energy increases due to the increase in nuclear charge. This explains the general 
trend in ionization energy along any row of the periodic table. Second, electrons 

of the highest principal quantum number are shielded from the nucleus by the 

inner or core electrons. This is one of the reasons that the ionization energies 
of the alkali metals are so low. Third, when several p- or d-orbitals are available, 

one electron enters each orbital until all are half-filled. It is found that the 
electrons in these half-filled orbitals all have the same spin. This half-filled set 

of orbitals with all spins the same seems to be particularly stable, for addition 

of another electron often results in a decrease in the ionization energy. Fourth, 
among elements in the same periodic column or.group, with the exception of 

the transition metals, there is a tendency for the ionization energy to decrease 

as the atomic number increases. Thus among elements of the same periodic 
family, the ones with higher atomic number tend to be oxidized more easily. 

Electron Affinities 

The electron affinity is the amount of energy required to remove an electron 

from a gaseous negative ion, as in 

Cl-(g) Cl(g) + e-(g). 

Table 10.8 Electron affinities of gaseous atoms (kcal/mole) 

Atomic number Element Affinity 

1 H 17.4 

3 Li (14)* 

5 B (7) 
6 C 29 

7 N (0.9) 

8 0 34 

9 F 79.5 

11 Na 12.5 

13 Al 12 

14 Si (32) 

15 P (18) 
16 S 48 

17 Cl 83.4 

19 K 11.5 

29 Cu 28.3 

34 Se 46.6 

35 Br 77.3 

47 Ag 30.1 

53 1 70.5 

78 Pt 49.1 

79 Au 53.1 

•Values in parentheses are estimated by quantum mechanical 
calculation and have not been verified experimentally. 
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As its name implies, the energy necessary to effect this electron detachment is 

a measure of the affinity, or attraction, of the atom for its extra electron. A 

positive electron affinity means energy is required to remove the electron from 
the ion, and a negative electron affinity means the isolated negative ion is un¬ 

stable. Table 10.8 shows that the electron affinities of the halogen atoms are 
greater than those of the other elements. In the halogens, there is one vacancy 

in the valence p-orbitals. As the ionization energies of these elements show, the 
large nuclear charge binds the /^-electrons strongly, so it is not surprising that 

there is a large residual affinity for an extra electron. This argument also 
accounts for the electron affinity of the oxygen, sulfur, and hydrogen atoms. 

In contrast, the rare gases have no vacancies in their valence orbitals, and any 
electron added to them would have to be placed in an orbital of next higher 
quantum number. Because of the screening of the inner electrons, this added 

electron would feel very little net attraction of the atom, and consequently the 
electron affinities of the rare gases are essentially zero. This argument helps 

to show why the rare gases tend to be so inert. Since their electron affinities 

are so small, they never enter compounds as electron acceptors. On the other 
hand, their ionization energies are so high that they'are oxidized with great 

difficulty, and consequently they form only a limited number of compounds. 

10.7 CONCLUSION 

In Chapter 1 we learned that the general acceptance and development of the 

atomic theory of Dalton was the result of the performance and critical analysis 
of a large number of experiments. Here in Chapter 10 we have found that the 

same can be said of our theories of the electronic structure of atoms. It took 
many years and many experiments to ascertain the particulate nature of elec¬ 

tricity, the qualitative arrangement of electrical particles in the atom, and the 
quantitative laws of behavior of atomic systems. Today we can regard the 

problems associated with the gross features of atomic electronic structure as 
having been solved. However, chemists maintain an active interest in this 

subject, because of the obvious, but incompletely understood, relation between 

the chemical and physical properties of matter and the electronic structure of 
atoms. Our hope is to be able to understand or to explain quantitatively much 
of the chemistry of the elements in terms of the electronic properties of their 

atoms. The subsequent chapters of this book will discuss some of the progress 
that has been made in solving this fascinating problem. 
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PROBLEMS 

10.1 Energy of 118.5 kcal/mole is required to ionize sodium atoms. Calculate the 
lowest possible frequency of light that can ionize a sodium atom and the corresponding 
wavelength. One kcal/mole corresponds to 6.95 X 10~14 ergs/atom, and Planck’s 
constant h is equal to 6.62 X 10-27 erg-sec. 

10.2 In the classical wave theory of light, intensity was associated with the squares 
of the maximum amplitudes of the electric and magnetic fields. In the particle theory 
of light, what property of the model is associated with the intensity of light? 

10.3 When light of 4500-A wavelength impinges on a clean surface of metallic sodium, 
electrons whose maximum energy is 0.4 ev, or 0.64 X 10-12 erg, are ejected. What is 
the maximum wavelength of light which will eject electrons from metallic sodium? 
What is the binding energy of an electron to a sodium crystal? 

10.4 Plot the angular part of /(0) for the scattering of a-particles as given by 
Eq. (10.6), by calculating the value of sin 0/sin4 (0/2) at a few angles. Is most of the 
scattering in the forward or backward direction with respect to the original beam? 
When all other factors are constant, are more particles scattered from a high-velocity 
beam or from a low-velocity beam of a-particles? Does the scattering increase or 
decrease as the nuclear charge of the target atoms is increased? 

10.5 Write the electronic configurations of the following species and indicate those 
that are isoelectronic, or have the same number of electrons: Ne, Al, 0“, Cl-, K+, 
Ti, Ar. 

10.6 Without consulting the periodic table, deduce the atomic numbers of all the 
inert gases from the fact that except for helium, all have a valence-electron configura¬ 
tion ns2npe. 

10.7 Without referring to the periodic table, write the electron configurations and 
give the group of the periodic table to which the elements with the following atomic 
numbers belong; 3, 14, 8, 17, 37, 56. 

10.8 Plot a graph of the square roots of the ionization energies versus the nuclear 
charges for the series Li, Be+, B ++, C+3, and Na, Mg+, Al++, Si+3. Explain the 
observed relationship with the help of Bohr’s expression for the binding energy of an 
electron in a one-electron atom. 

10.9 By using the mathematical expression for a 2px-wave function, show that the 
probability of finding a 2px-electron anywhere in the xy-plane is zero. 

10.10 l Jse the expressions in Table 10.4 to show that when one electron occupies 
the 2px-orbital, and another the 2pf/-orbital, the resulting electron distribution 
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W2(Pz) + '/'"’(Pj/)] is cylindrically symmetric about the z-axis. Show also that if there 
is an electron in each of the 2px-, 2pu- and 2p2-orbitals, the atom is spherically 
symmetric. 

10.11 In the previous problem it was shown that if the p-orbitals are each equally 
occupied, the charge distribution in the atom is spherically symmetric. A similar 
conclusion can be reached concerning d-orbitals: a filled or half-filled set of d-orbitals 
is spherically symmetric. Which of the following species has spherical symmetry: 
Na, Na+, Al, Zn, N, F, 0= Cr? 

10.12 The 2s-orbital has a node, or a region where the probability of finding the 
electron is zero. From the expression for \p(2s) given in Table 10.4, find the value of 
r in terms of ao at which this node occurs. 

10.13 What is the difference in energy between the Is- and 2p-orbitals in the hydrogen 
atom? In the x-ray spectrum of copper, radiation of 1.54-A wavelength is emitted 
when an electron changes from the 2p- to the ls-orbital. What is the energy difference 
between these orbitals in copper? 

10.14 From the table of second and third ionization energies, cite some examples 
showing that a half-filled set of p- or d-orbitals has a noticeable extra stability. 

10.15 The following are a few elements and their characteristic x-ray wavelengths: 

Mg 9.87 A Cr 2.29 A 
S 5.36 A Zn 1.43 A 
Ca 3.35 A Rb 0.93 A 

Convert these wavelengths to frequencies, and then plot the square root of the fre¬ 
quency as a function of the position of the element in the periodic table. Determine 
the constants c and b which occur in Moseley’s relation between v and Z, the atomic 
number. Compare your value of c with the evaluated factor 2ir2me4/h3, which is 
taken from the Bohr expression for the frequencies emitted by a one-electron atom. 
Here m is the electron mass in grams, and e is the electron charge in electrostatic units. 
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CHAPTER 11 

THE CHEMICAL BOND 

The existence of stable polyatomic species, whether elemental or compound, 
implies that atoms can act upon each other to form aggregates which have 

lower energy than separated fragments. When this energy lowering exceeds 

approximately 10 kcal/mole of atoms, we say that chemical bonds exist, since 

stabilization energies of this magnitude produce species which have distinct 
and characteristic chemical properties. The existence of structural isomers like 
ethyl alcohol and dimethyl ether, which both have the same molecular formula 

(C2H60) but very different chemical and physical properties, emphasizes that 

the properties of a compound are dictated not only by its empirical composition, 

but by the way its atoms are bonded. A chemical reaction is really just a process 
which exchanges one bonding arrangement for another. Consequent^ an under¬ 

standing of chemical bonding is necessary if we are to understand the chemical 
and physical properties of elements and compounds. 

In science “understanding” means being able to predict or rationalize a 

variety of facts in terms of a few general principles. Before we start developing 
principles of chemical bonding, we should specify what facts we must explain. 

Perhaps the minimum requirement of a chemical bonding theory is that it show 
why compounds have their particular formulas. If we approach this problem 

historically, we encounter one of the most primitive concepts associated with 
chemical bonding: valence. According to the definition introduced in 1850, 
valence is the combining capacity of an element; the number of atoms of hydro¬ 

gen or chlorine with which one atom of the element combines. By using this 



definition, it was possible to characterize some elements with a valence which 
aided in predicting the formulas of some of their compounds. But to say that 

sodium has a valence of one explains nothing; it is just a restatement of the fact 

that sodium and chlorine form a compound whose formula is NaCl. We want 
to know why this formula is NaCl and not something else. We shall find that 

our theory of chemical bonding can relate molecular formulas to the electronic 
structures of the constituent atoms. Thus the concept of valence as just defined 

is not really needed, and it has been largely abandoned and replaced by more 
specific and informative terms. The modern use of the word “valence” is not 

as a noun, but as an adjective meaning “associated with chemical bonding. ” 

Thus we speak of valence electrons, meaning the electrons most weakly bound 

to the atom which may be involved in the formation of chemical bonds. 

As a second requirement, a satisfactory theory should tell us why chemical 
bonds form. We have already given the general answer to this question. Chem¬ 

ical bonds are formed because in so doing atoms can follow the universal 

tendency of all mechanical systems to reach the state of lowest energy. Since 
by forming a bond, a pair of atoms release a certain amount of energy to their 

surroundings, this same amount, called the bond dissociation energy, must be 
delivered to the molecule in order to break the bond. We expect to find in our 
theory of chemical bonding an explanation of how and why bond formation 

lowers the energy of a system of atoms. We should even hope to be able to 
calculate this bond dissociation energy, or at least to be able to understand its 

magnitude qualitatively. The calculation of bond energies has in fact been 
accomplished, but it is a difficult process. A qualitative rationalization of bond 

energies is more nearly within our grasp. 
Another feature that a theory of chemical bonding should explain is the 

geometry of molecules. Why do carbon dioxide and water have the structures 

0 
/ \ 

0=C=0 H H ? 

What is it that makes one molecule linear and the other bent? We shall find 

that there are qualitative answers to this question. 

11.1 PARAMETERS OF MOLECULAR STRUCTURE 

Although the complete quantitative theory of the chemical bond involves the 
rigorous application of quantum mechanics, the ideas about chemical bonding 

which most chemists work with are primarily qualitative in nature and have 
been developed by trying to use the qualitative concepts of quantum mechanics 
to understand experimental facts. This is what we shall attempt to accomplish 

here. In the process of developing a simple theory of chemical bonding, the 
experimental facts about molecular structure have been extremely important 

guides. Therefore, before we approach the theory of chemical bonding, let us 
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examine some experimentally determined values of bond energies, bond lengths, 

and bond angles to see whether there are any obvious regularities that will aid 

in constructing and understanding our theory. 

Bond Energies 

For a diatomic molecule, the bond dissociation energy D is the enthalpy change 

of the reaction in which the gaseous molecule is separated into gaseous atoms. 

For example, 

H2(g) = 2H(g), D(H—H) = AH = 104 kcal/mole. 

Usually bond dissociation energies are given in units of kilocalories per mole of 

bonds broken. Table 11.1 contains a list of the bond dissociation energies for 

some common diatomic molecules. 

Table 11.1 Dissociation energies of 
diatomic molecules (kcal/mole) 

Li2 25 LiH 58 
Na2 17 NaH 47 

k2 12 KH 43 
Rb2 11 RbH 39 
Cs2 10.4 CsH 42 
f2 37 HF 135 
Cl2 59 HCI 103 
Br2 46.1 HBr 87.4 
12 36.1 HI 71.4 
n2 226 NO 150 
o2 119 CO 256 

h2 104 

Some groups of molecules have similar dissociation energies which display 

an obvious trend among successive members of the group. For example, con¬ 
sider the diatomic molecules of the alkali metals. The bond energy of each 

member of the series is comparatively small and decreases as the atomic number 

of the alkali atom increases. Among the hydrogen halides, the bond energies 

are comparatively large and again decrease as the atomic number of the halogen 

increases. In contrast to these smooth trends among chemically related mole¬ 

cules, there can be notable differences between molecules of atoms that are 
near to each other in the periodic table. The dissociation energy of 02 is only 

slightly over half that of its neighbor N2, but is more than three times as great 

as the dissociation energy of F2. We shall find that there are remarkably simple 

explanations for some of the relations between bond energies, while others are 
not understood and offer us a fine chance to use our imagination. 
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It is also possible to define bond dissociation energy for the bonds in poly¬ 

atomic molecules. The dissociation may involve fragmenting the molecule into 
an atom and a group of atoms, called a radical, as in 

H20(g) = H(g) + OH(g), D(H—OH) = 119.7 kcal. 

In other cases, the dissociation may be into two radicals: 

HO—OH(g) = 20H(g), D(HO—OH) = 48 kcal. 

Now a bond between two particular atoms such as O and H may occur in a 

variety of compounds, and it is interesting to see what effect these different 
environments have on the bond dissociation energy. We already know that 
H(H—OH) = 119.7 kcal, and other experiments show that 

OH(g) = 0(g) + H(g), D(0-H) = 101.5 kcal; 

HOOH(g) = HOO(g) + H(g), D(HOO—H) = 103 kcal. 

It is clear that the dissociation energy of the 0—H bond is sensitive to its 
environment, but still the fractional variation in the dissociation energy usually 

is not very large. Variations of a similar magnitude occur in a series of C—H 

bonds: 

CH4(g) = CH3(g) + H(g), D(H—CH3) = 103 kcal; 

CH3CH3(g) = CH3CH2(g) + H(g), D(H-CH2CH3) = 96 kcal; 

(CH3)3CH = (CH3)3C(g) + H(g), H(H-C(CH3)3) = 90 kcal. 

Other C—H dissociation energies lie near or in the range between 90 and 

103 kcal. 
The approximate constancy of bond dissociation energies is very significant, 

for it suggests that the principal factors that determine the energy of a par¬ 
ticular bond are the intrinsic properties of the two bonded atoms and are to 

only a lesser extent properties of the environment provided by the rest of the 

atoms in the molecule. Consequently we can hope to build a theory that 

explains most of the features of chemical bonding in terms of the properties of 

the bonded atoms. 

Use of Bond Energies 

The near constancy of the dissociation energy of a particular type of bond has 

an important practical consequence. It is possible to characterize the C—H 
bond, or any other chemical bond, by an average bond energy e which is the 

approximate energy needed to break that bond in any compound in which it 
occurs. This average bond energy e is different from the bond dissociation 

energy D which refers to the energy needed to break a particular bond in a 

particular molecule. Table 11.2 is a short list of average bond energies. 
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Table 11.2 Average bond energies (kcal/mole) 

C—H 98.7 C—C 82.6 

C—F ~110 C=C 145.8 

C—Cl 80 c=c 199.6 

C—Br 69 c—0 85 

C—1 55 c=o 178 

C—N 80 O—H 110.6 

By using average bond energies, it is possible to estimate the energy released 

when a gaseous molecule is formed from its gaseous atoms. I* or example, AH, 

the energy released at constant pressure for the reaction 

3H(g) + C(g) + Cl(g) = CH3Cl(g), 

is the sum of the energies of three C—H bonds and one C Cl bond, all taken 

with a negative sign because energy is released. That is, 

AH = —3e(C—H) - e(C—Cl) 

= -296 - 80 

= —376 kcal/mole. 

To find the AH for the formation of CH3C1 from the elements hydrogen, chlo¬ 

rine, and carbon in their more usual forms, we must write 

§H2(g) + |Cl2(g) + C (graphite) = CH3Cl(g). 

This reaction is the sum of two processes: 

|H2 -f iCl2 + C(graphite) = 3H(g) + Cl(g) + C(g), 

3H(g) + Cl(g) + C(g) = CH3Cl(g). 

We have already computed the AH for the second of these processes. For the 
first, AH can be expressed in terms of the H2 and Cl2 bond dissociation energies 

and the heat of vaporization of graphite to carbon atoms. That is 

AH = fD(H—H) + Cl—Cl) + AHV(C) 

= f (104) + i(57.9) + 170.9 

= 356 kcal. 

Finally, for the overall reaction, 

fH2(g) + iCl2(g) + C (graphite) = CH3Cl(g), 

AH = -376 + 356 

= —20 kcal. 
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The value of AH found by more direct calorimetry is —19.6 kcal, which differs 

only slightly from the result we have obtained. In some cases, there can be 

discrepancies of a few kilocalories between values of AH calculated from bond 

energy values and those measured calorimetrically, since the average bond energy 
e is only an approximation to the true dissociation energy of a bond in a particular 

molecule. Nevertheless, bond energies do provide a very useful indication 

of the strengths of chemical bonds, and can be used to estimate the energetics 

of chemical reactions when direct calorimetric data are not available. 

Bond Lengths 

In molecules, atoms are always vibrating with respect to each other, so there is 

no single fixed distance between any pair of atoms. However, there is a well- 
defined average distance between the nuclei of two bonded atoms, and this is 

called the bond length or bond distance. If a substance can be obtained in 
crystalline form, it is possible to measure the distances between its atoms by 

x-ray diffraction, and many of the bond distances we shall discuss have been 
obtained from x-ray data. 

Table 11.3 Bond lengths for some 
diatomic molecules (angstroms) 

F 2 1.42 HF 0.92 

Cl2 1.99 HCI 1.27 
Br2 2.28 HBr 1.41 

12 2.67 HI 1.61 
CIF 1.63 H2 0.74 
BrCI 2.14 n2 1.094 
BrF 1.76 02 1.207 
ICI 2.32 NO 1.151 

CO 1.128 

If a substance does not crystallize conveniently, there are other techniques 
available to measure its bond distances. The most important of these is molec¬ 
ular spectroscopy. Just as the spectrum of the hydrogen atom is determined 

by the mechanics of the electron-nucleus system, the spectrum of a molecule is 
determined by the mechanics of its several nuclei and electrons. By analyzing 

molecular spectra, it is possible to locate very accurately all the nuclei in a 
molecule relative to one another and thus to obtain a very detailed picture of 

the nature of the structure of a molecule. Subsequently we shall indicate some 
of the details of how molecular spectra provide structural information. For the 

present, however, we shall concentrate on the results of such measurements. 

Table 11.3 lists bond distances for several common diatomic molecules. 
Note that in a related series of molecules such as the halogens or the hydrogen 

halides, the bond distance increases with increasing atomic number. Such a 
, trend has a reasonable qualitative explanation if we recognize that the bond 

length is the position of greatest stability, or of minimum energy for a pair of 
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Table 11.4 Variation of 0—H, C—C, and C—H bond lengths (angstroms) 

Bond Molecule Bond length 

0—H Water, H20 0.96 

0—H Hydrogen peroxide, H0O2 0.97 

0—H Methanol, CH3OH 0.96 

0—H Formic acid, CHOOH 0.96 

0—H Hydroxyl radical, OH 0.97 

C—C Diamond 1.54 

c—C Ethane, C2H6 1.54 

c—C Propane, C3H8 1.54 

c—C Ethanol, C2H5OH 1.55 

c—C Neopentane, (CH3)3CH 1.54 

C—H Methane, CH4 1.095 

C—H Ethane, C2H6 1.095 

C—H Ethylene, C2H4 1.087 

atoms. The energy lowering associated with bond formation has its origin in 

the way the valence electrons of the bonded atoms behave, and is opposed by 
electrostatic repulsions between the two nuclei and between the inner electron 

shells of the two atoms. The strength of both these sources of repulsion increases 

as the atoms are brought together. Now as atomic number increases in one 
column of the periodic table, the valence electrons lie at successively greater 

distances from the nuclei. Also, the repulsion between two nuclei must increase 
as their charges increase. Consequently the distance at which the energy of 

bonded atoms is a minimum, or the distance at which the bond is strongest, 

tends to increase as atomic number increases. 
In discussing bond energies we found that the dissociation energy of a par¬ 

ticular type of bond was largely independent of the molecule in which the bond 
occurred. Let us see whether the same is true for bond distances. Table 11.4 

gives a comparison of the 0—H, C—C, and C—H bond lengths in various 
compounds. The constancy of each of these bond lengths is remarkable, and 

this supports our earlier hypothesis that the properties of a bond are largely 

determined by the nature of the bonded atoms. 
We must now admit that it is possible to find bonds between the same pair 

of atoms that have quite different lengths and energies in various compounds. 
Consider the data in Table 11.5. In the compounds ethane, ethylene, and acety¬ 

lene there is considerable variation in the length and energy of the carbon- 
carbon bond. Rather than look upon this as a violation of the idea that bond 

properties are independent of molecular environment, it is profitable to take the 
bonds in these compounds as representative of three different types of carbon- 

carbon bond. In the first type, the carbon atoms are each bonded to a total 

of four atoms, in the second, each carbon atom is bonded to a total of three 
atoms, and in the third, each is bonded to two atoms. When more data are 
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Table 11.5 Variations in bond lengths and energies 

Bond Molecule 
Bond length, 

(A) 
Bond energy 
(kcal/mole) 

C—C Ethane, H3CCH3 1.54 83 
Ethylene, H2CCH2 1.34 146 
Acetylene, HCCH 1.20 200 o

 1 
o

 Hydrogen peroxide, H2O2 1.48 48 
0“ in Ba02 1.49 
Or in KO2 1.28 
02 1.21 118 

o2+ 1.12 150 

examined, it is found that the length and energy of each particular type of 

carbon-carbon bond are approximately constant in a variety of compounds. 
Thus our rule of the invariance of bond properties is preserved, and in fact it 
has led us to a discovery that two atoms may be bonded together in more than 

one way. We shall see later in the chapter how the existence of different bond 
types can be explained. 

The bond angle d is the internal angle between lines drawn through 
the nuclei of the bonded atoms. 

Figure 11.1 shows that a bond angle is the internal angle of intersection between 

two lines drawn through the nucleus of a central atom from the nuclei of two 
atoms bonded to it. Because atoms are in constant vibration, there is no definite 
fixed value for a bond angle just as there is no fixed bond length. However, the 

average angle about which the three atoms vibrate is well defined, and it is 

this to which the term bond angle refers. Bond angles, like bond lengths, are 
determined principally from x-ray diffraction measurements and molecular 
spectroscopy. 

Table 11.6 The bond angle about the oxygen atom 

Molecule Z X—0—Y (degrees) 

H20 Water 104.5 
f2o Oxygen difluoride 103.2 
Cl20 Oxygen dichloride 111 

(CH.O2O Dimethyl ether 111 

CH3OH Methanol 109 

FIG. 11.1 

Bond Angles 
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Table 11.6 gives the bond angle about the oxygen atom in a number of its 

compounds. While there is some variation, most of the angles lie in the range 

from 104 to 111 degrees. Similarly, Table 11.7 shows that the H—C—H bond 
angle is near 110° in several simple carbon compounds. As we continue the study 

of descriptive chemistry, we shall find that such regularities in the geometries 
of molecules of a given element are very common, and consequently it is of 

great interest to explain why these regularities occur. 

Table 11.7 Variation of the 
H—C—H bond angle 

Molecule Z H—C—H (degrees) 

109.5 
110.5 
112.0 
111.2 
111.4 
109.3 
109.3 

CH4 
CH3CI 
CH0CI2 
CH3Br 
CH3I 
CH3OH 

c2h6 

When we examine the bond angles in similar compounds of successive mem¬ 

bers of a group in the periodic table, some more striking resemblances appear. 

Table 11.8 gives the bond angles of the hydrides of Groups IV, V, and VI. 

We find that all the hydrides in Group IV have bond angles of 109.5°, which is 

called the tetrahedral angle because it corresponds to having the atoms located 
at the apices of a regular tetrahedron. In Group V, all the hydrides have the 

structure of a regular trigonal pyramid. The bond angle about the central atom 
is 107° for NH3 and decreases to 91° for SbH3. In Group VI, there is a similar 

trend as the angle decreases from 104° in water to 89° in H2Te. 
The bond-angle data we have considered point to the fact that the bond 

angles about a central atom are determined largely by the properties of that 

atom alone. This idea is consistent with the approximate constancy of the bond 

Table 11.8 Bond angles for several hydrides 

Z H—X—H 
(degrees) 

Z H—X—H 
(degrees) 

Z H—X—H 
(degrees) 

CH4 
SiH4 
GeH4 
SnH4 

109.5 
109.5 
109.5 
109.5 

NH3 
ph3 
AsH3 
SbH3 

107.3 
93.3 
91.8 
91.3 

H20 
h2s 
H2Se 
H2Te 

104.5 
92.2 
91.0 
89.5 
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angle about a given atom when different groups are bonded to it. It is also con¬ 
sistent with the fact that similar compounds of atoms in a given group of the 

periodic table have very similar geometries. In particular, this latter observa¬ 

tion suggests that the bond angles about an atom are largely determined by 
its number of valence electrons, for number of valence electrons is the most 

obvious property that members of the same periodic group have. This is a 
simple idea that can be expanded to a satisfactory explanation of the relations 
between bond angles. 

Molecular Spectroscopy 

Molecules, like atoms, have quantized electronic-energy levels. In addition, 
however, molecules have energy levels that are associated with the motions of 

their atoms relative to each other. These internal or relative modes of motion 
usually can be divided into two groups: vibrational motions associated with 

the stretching and bending of bonds, and rotational motions, in which the 
molecule tumbles in space. To a good first approximation, the total energy 

of a molecule (apart from its translational energy) can be written as 

E A electronic ~f" -A vibrational d- -^rotational- 

Each of these modes of motion is quantized, and thus the total energy of a 

molecule assumes only certain definite values. 
The spacing of the electronic-energy levels is determined by the nature of 

the molecular electronic orbitals that are filled and unfilled, while the stiffness 
or vibration frequency of the bonds determines the spacing of the vibrational- 

energy levels. The masses of the atoms and the distances between them deter¬ 

mine the difference in energy between rotational levels. An experimental 
determination of the spacing of the various energy levels allows one to calculate 

what the bond distances, bond angles, and vibration frequencies of the molecule 
are, and what its molecular orbital energy pattern is. Molecular spectroscopy 

is the study of these energy levels through the interaction of molecules with 
light. 

In subsequent sections we shall discuss the molecular orbitals of diatomic 
and polyatomic molecules and the energy-level patterns in which they fall. 

For the present, let us concentrate on the vibrational and rotational levels of 

molecules which are in their most stable electronic state. These internal modes 
of motion for a diatomic molecule are illustrated in Fig. 11.2. We see that there 

is only one vibrational mode of motion, the stretching of the chemical bond. 
There are two rotational motions which are identical, except that the planes in 
which the two rotations occur are mutually perpendicular. The expressions for 

the rotational- and vibrational-energy levels are in this case quite simple, as we 
shall now see. 
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Just as the translational kinetic energy of a molecule can be expressed in 
classical mechanics as the square of the linear momentum divided by two times 

its mass, 

p Plinear 

trans ~ 2m ’ 

the classical rotational energy can be written as the square of its rotational or 
angular momentum divided by two times its moment of inertia I: 

ETOt 
Pangular 

~21~ 

FIG. 11.2 

QyvvwQ 

C^wvvO 

QmwQ 

z 

y 

z 

y 

(a) (b) 

The internal modes of motion of a diatomic molecule, (a) Vibration of the atoms along 
their line of centers, (b) Rotation about their center of mass. 

The moment of inertia of a diatomic molecule consisting of atoms of masses 

nii and m2 and bond distance r<j is given by 

I = 
mim2 2 

j To 
mi + 

~ 2 
mr0, 

where m is the so-called reduced mass (mim2)/(mi + m2). Ihis classical for¬ 
mula can be turned into the correct quantum expression if we replace the 
classical angular momentum by the values allowed by quantum mechanics: 

Pangula r = VJ(J + 1) h, J = 0, 1,2,3,... 

We then get 

„ J(J + 1 )ti~ r — 0 1 o q 
Erot =-27-' ** U, 1, o, . . . 

480 THE CHEMICAL BOND | 11.1 



for the allowed rotational energy levels. The absorption of a photon of appro¬ 

priate energy hv can cause the rotational quantum number of a molecule to 
increase by one. The energy change of the molecule is 

A ETOt = hv=—r [J(J + 1) - J'(J' + 1)]. 

If J’ = J — 1, we have 

A E rot hv = fj W + 1) - (J - 1 )J\ 

h2 h2 
= — [2J] = - J. 

27 7 

Therefore, if the energy of the photon absorbed is known, and the initial 

quantum number .7 is known, the moment of inertia 7 and bond distance r0 
can be calculated. 

Energy 

The potential energy curve for the nuclear motion in a diatomic molecule. Near the mini¬ 
mum, the parabola V = \k(r — r0)2 closely approximates the true curve. 

Let us now consider the vibrational energy-level pattern. Figure 11.3 shows 
how the potential energy of a diatomic molecule varies as the bond is stretched 

or compressed from r0, the position of lowest energy. Near the minimum, the 
true potential-energy curve can be fairly closely approximated by a parabola 

whose algebraic expression is 

V = \k(r - r„)2 = P(Ar)2. 

FIG. 11.3 
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The quantity k is called the force constant of the bond. The origin of this term 

becomes clear if we find, by differentiation, the force exerted b\ the atoms. 

Since, in general, force is the negative derivative of a potential energy, 

F = — 
dV 

d(Ar) 

= -fe(Ar). 

d 
cl{Ar) 

m&r)2} 

Thus, k is the proportionality constant between force and displacement. The 

minus sign indicates that the force exerted by the atoms is in the opposite 

direction from their displacement, and tends to restore them to their most 

stable condition. 
The force constant k has another interpretation. The first derivative of the 

potential energy V is the slope of the V-Ar curve: 

dV 

d(Ar) 

d 
d(Ar) 

m Ar)2] = fc(Ar). 

The second derivative d2V/d(Ar)2 is the curvature of V: 

d2V 
d(Ar)2 

d 
d(Ar) 

k (Ar) = k. 

Thus k is the curvature of the potential-energy curve near its minimum, where 

the parabola is a good approximation to the true curve. 
According to classical mechanics, a system with the potential energy %k(Ar)~ 

will oscillate sinusoidally or harmonically with a frequency v given by 

v = ±(k/m)112, 
17T 

where k is the force constant, and m is the reduced mass (nii + m^). 
According to quantum mechanics, such an oscillator has quantized energy 

levels given by 

tfvib — (v h)kv, v — 0, 1, 2, 3, ... , 

where v is the (integral) vibrational quantum number. Thus the larger k is, 
the stiffer is the bond, and the larger is the spacing between vibrational levels. 
It is clear that determination of the vibrational frequency by molecular spec¬ 

troscopy allows us to learn the general shape of the molecular potential-energy 

curve near the most stable position. 
We see now that the spacing of the vibrational- and rotational-energy levels 

is determined by the stiffness and length of the bond, as well as the atomic 
masses. The bond distance and force constant are themselves determined by 
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the electronic structure of the molecule. If the molecule becomes electronically 

excited, it is very likely that the values of k and r0 in the excited electronic 
state will be significantly different from their values in the ground electronic 

state. By careful analysis of spectra in which electronic excitation occurs, it is 

possible to learn the values of k and r0 for both electronic states. This is how 

the geometric and bonding properties of excited electronic states are determined. 

Excited 
electronic I 

state, -< 
vibrational I 

levels v'- 

Lowest 
electronic 

state, c 
vibrational 

levels 

~100 kcal/mole 

Energy levels of a diatomic molecule. Two electronic states are shown, each with a few fig. 11.4 

of its vibrational and rotational levels. The level spacings are not drawn to scale, but 
typical energy differences are indicated. 

Figure 11.4 is a graphical summary of our discussion. The electronic energy 

levels of diatomic molecules are widely separated, often by as much as 100 
kcal/mole. The vibrational-energy spacings for each electronic state are fre¬ 
quently between 1 and 7 kcal/mole. Rotational-energy levels are much more 

closely spaced, differing in energy by less than approximately 0.03 kcal. 
Transitions between rotational-, vibrational-, and electronic-energy levels 

involve quite different amounts of energy, and therefore, are induced by 

photons of quite different frequencies. Figure 11.5 shows the relationship 
between the frequency and wavelength of photons and the molecular energy 

changes they induce. Because rotational-energy levels are closely spaced, 

transitions between them involve low-energy photons that are produced in the 
radio-frequency region of the spectrum, and have associated wavelengths of 
about 1 cm. Vibrational changes are induced by photons from the infrared 
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region, whose associated wavelengths are 10 4 to 10 3 cm. Photons that pro¬ 

duce electronic transitions have wavelengths of approximately 5000 A (5 X 10”° 

cm) or shorter, and lie, therefore, in the visible or ultraviolet regions of the 

spectrum. 

Affects 
inner 

electrons 
Affects 

valence electrons 
Affects 

vibration 
Affects 
rotation 

X-rays Ultraviolet Visible Infrared Microwave Radio 
waves 

A(cm) 10-6 IQ-5 10 
— 
-4 

1 1 
IQ”3 IQ"2 10 -i 

1 
1 1 

i 
0 

i>(sec J) 3X1015 3X1013 3X10U 3X109 

FIG. 11.5 The regions of the electromagnetic spectrum and the molecular energy levels they affect. 

The spectra of polyatomic molecules are somewhat similar to, but much 

more complicated than, diatomic molecule spectra. A polyatomic molecule 

may have three different moments of inertia, and the expressions for its rota¬ 

tional-energy levels can be quite complex. Nevertheless, bond distances and 

bond angles can be derived from polyatomic molecular spectra. The vibrational 

spectra of polyatomic molecules are simplified somewhat by the fact that certain 

molecular groups, like C—H, C=0, C=C, — N02, etc., have very charac¬ 
teristic vibrational frequencies. The presence of such groups in a molecule of 

unknown structure can be inferred from the vibrational spectrum; and con¬ 

sequently the infrared spectrum of a molecule is an extremely valuable tool for 

the determination of molecular structure and for chemical analysis. 
We have not mentioned the molecular energy levels which arise from the 

interaction of the nuclear spin or electron spin with external magnetic fields, 

and the interaction of the nuclear asymmetry (quadrupole) with the electric 

field produced by the molecular electrons. Study of these levels reveals some 

rather subtle features of the distribution of electrons in a molecule. From these, 

and the foregoing considerations, it is easy to see why the general area of 

molecular spectroscopy is such an active field of research for chemists. 

11.2 IONIC BONDS 

The variety of chemical formulas, bond energies, and molecular geometries 
suggests that a detailed theory of chemical bonding should be very complex. 

This is certainly true. Consequently, in discussing chemical bonds it is common 

to use “models,” or conceptual pictures which sacrifice some accuracy to gain 

considerable simplicity. Accordingly, our discussions will involve two different 

484 THE CHEMICAL BOND | 11.2 



bond types: the ionic bond and the covalent bond. There are a few situations in 

which either of these extremes is found, but the true value of these two models 

is that most chemical bonds have properties which are intermediate but close 

to one or the other. Consequently we will be able to construct explanations of 
most bonding phenomena in terms of these two extreme bond types. 

In the ionic-bond model we imagine the particles that are bonded to be 

spherical entities possessing a net positive or negative charge. Now it is a 

fundamental result of electrostatic theory that a spherical distribution of charge 

behaves as though the net charge were concentrated at the center of the sphere. 
Consequently the major simplification of the ionic-bond model is that we can 

calculate the electrostatic forces acting between ions by using Coulomb’s law, 

just as though the ions themselves were point charges. This approach is not 

exact, and must be refined slightly, but is a good example of how a slight 
simplification can lead to some very useful results. 

Ionic bonding is found in the compounds of very electropositive elements, 

such as the alkali metals, and with very electronegative elements, such as the 

halogens. How do we know that a compound such as solid sodium chloride 

consists of a lattice of positive and negative ions? The fact that the fused salt 

and its aqueous solutions conduct electricity surely is not proof that ions exist 
in the crystalline compound. The best independent evidence for the presence 

of ions comes from spectroscopic investigations which show that the chlorine 

nucleus is surrounded by a complete octet of valence electrons; this is surely 

consistent with the existence of a chloride ion. Supporting evidence comes from 

careful x-ray studies which measure the density of electrons at all points in the 
crystal. It is found that sodium chloride is made up of spherical groups of 10 

and 18 electrons which correspond to the sodium and chloride ions respectively. 

Thus there is no question that ions exist, and that the cohesive forces in the 

crystal are due to the mutual attraction of the oppositely charged species. 

Ionic Lattice Energies 

Let us think about the energetics of the formation of crystalline sodium chloride 

from the elements. The reaction 

Na(s) + |Cl2(g) = NaCl(s) 

is really a very complicated process, since it involves the destruction of the 
bonds both in the chlorine molecules and in metallic sodium, as well as the 

formation of the sodium-chloride crystal lattice. Thus the energy released when 
this reaction occurs, a quantity that measures the stability of NaCl relative to 

metallic sodium and gaseous chlorine, is determined not only by the properties 

of sodium chloride itself, but by the strength of the bonding in metallic sodium 

and molecular chlorine as well. 
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We can see this even more clearly by referring to Fig. 11.6. There we find 

two processes for the formation of sodium chloride from its elements. One is 

the direct conversion of elements to compound, the other is a hypothetical 
three-step sequence that accomplishes the same thing. If energy is conserved, 

the energy released in the direct one-step conversion of elements to the com¬ 

pound must be the same as is released by following the alternative three-step 

process. 

Nn(c) I /<Na) -1(CI)- Na+(g1 + Cl (f?) 

FIG. 11.6 Alternative pathsfortheformation 
of solid sodium chloride from its 
elements. 

A//vap(Na) 

+£D(C12) 
u 

Na(s)+^Cl2(g) A///(NaC1) NaCl(s) 

The first step in this latter path consists of vaporizing the metallic sodium 

and dissociating the chlorine to atoms. To carry out this step we would have 

to put energy into the system, and the amount required per mole of each kind 
of atom is equal to the sum of the enthalpy of vaporization of sodium, AHvap, 

and one-half the bond dissociation energy of chlorine, \D{Cl—Cl). Thus the 

energetics of this first step show how the stability of metallic sodium and 

chlorine molecules affects the energy released by the overall reaction. 
In the second step the gaseous atoms are converted to gaseous ions. To do 

this requires that we put into the system an amount of energy equal to the 

ionization energy of sodium, 7(Na), but we get back an amount equal to the 
electron affinity of chlorine. The net energy required is then 7(Na) — .4(Cl). 

Finally in the third step the gaseous ions condense to the sodium-chloride 

crystal lattice. The energy released by the system in this step is called the 
ionic crystal lattice energy and is a direct measure of the stability of the ionic 

crystal. 
Now let us examine the formation of crystalline sodium chloride in more 

detail. As our starting or reference point we choose the gaseous sodium and 

chlorine atoms. By making this choice, we will be able to concentrate entirely 

on the energetic factors that influence the strength of the ionic bond and we 
will not have to worry about the bonding in metallic sodium or molecular 

chlorine. In order to expose the factors which control the strength of ionic bonds, 
we shall imagine that the formation of the sodium chloride crystal is carried 

out in three steps: the first is the formation of the isolated gaseous ions from the 
atoms, the second is the formation of the gaseous sodium-chloride diatomic 

molecule from the ions, and the third is the formation of the ionic crystal. 
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As we have remarked, to form a gaseous sodium ion and an electron from 

a gaseous atom we must supply an amount of energy equal to the ionization 
energy of sodium, 118.4 kcal/mole. However, by transferring this electron to a 

chlorine atom we obtain an amount of energy equal to the electron affinity of 

chlorine, 83.4 kcal/mole. Consequently, the net energy required to form the 
ions from the gaseous atoms is given by 

Na = Na+ + e— AE = /(Na) = 118.4 
e“+ Cl = Cl- AE = —A (Cl) = -83.4 

Na + Cl = Na+(g) + Cl“(g) AE = 35.0 

To form the ions from the atoms requires 35 kcal/mole of ion pairs. This result 

by itself is very significant. One “explanation” of chemical bonding which has 

been offered is that bonds are formed because atoms have a “desire” to form 

octets of valence electrons. Our calculation shows that 35 kcal are required if 
sodium and chlorine are to do nothing more than form completed valence 

octets. Thus the atoms have no mutual “urge ” simply to reach the octet struc¬ 
ture, and we must look further for a more concrete reason for bond formation. 

Variation with distance of the potential fig. 11.7 
energy of oppositely charged ions. 

We will consider the formation of a gaseous sodium-chloride molecule from 
the ions. Coulomb’s law of electrostatics shows that bringing two opposite 

charges of magnitude e from infinity to a distance r of each other lowers their 
potential energy by an amount —e2/r. This “attractive” potential energy, 

plotted as a function of distance, is shown in Fig. 11.7. When the two ions are 

quite close together, their outermost electrons start to occupy the same space, 
and a strong repulsive force develops. Correspondingly, a “repulsive” potential 

energy rises abruptly. The sum of the attractive and repulsive contributions 

gives the net potential energy of the two ions, as is also shown in Fig. 11.7. 
The distance r0 at which the potential energy is a minimum is the distance at 

which the ions would come to rest if all their kinetic energy were removed, and 

is the equilibrium bond distance. 
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From the shape of the net potential-energy curve, we can see that the poten¬ 

tial energy of the ions at their equilibrium separation is closely approximated 

by the attractive contribution, —e2/ro, alone. The gaseous diatomic sodium- 
chloride molecule, produced by evaporation of solid sodium chloride, has been 

studied and its internuclear separation is found to be 2.38 A. Thus the Coulomb 

potential energy is 

. (4.8X10 esu)_ _ _9 qg x 10-12 ergs 
r0 2.38 X 10-8 cm 

= —139.3 kcal/mole. 

We see that to this approximation the energy of a mole of diatomic molecules 

is 139.3 kcal lower than that of the separated ions. To find the energy released 

when the molecule is formed from the gaseous atoms, we need only combine the 

three steps: 

Na(g) = Na+(g) + e 

e- + ci(g) = cr(g) 
Na+(g) + Cl-(g) = NaCl(g)_ 

Na(g) + Cl(g) = NaCl(g) 

AE = 118.4 kcal/mole 

AE - -83.4 

A E = -139.3_ 

AE = —104.3 kcal 

The fact that the energy change is negative shows that the energy of the ionically 

bonded sodium and chlorine is lower than that of the separated atoms. The 

reason for the stability of the molecule is clear. Even though some investment 
of energy is required to form the ions, this is more than compensated by the 

energy due to their mutual Coulomb attraction. 

Part of a one-dimensional sodium Na+ Cl Na+ Cl Na+ Cl Na+ Cl Na 

chloride "crystal.” ir.Q 3r<) 2r0 r0 0 r0 2r0 3r0 4r0 

While it is possible to obtain and study the gaseous diatomic molecules of 

the alkali halides at high temperature, these ionic compounds are solids with 
extremely low vapor pressures at room temperature. It is not difficult to under- 

stand this if we examine the simplified model of the solid state shown in big. 
11.8. This is a hypothetical one-dimensional “crystal” consisting of alternate 

sodium and chloride ions. To find the energy of formation evolved when such 

a crystal is formed from the gaseous ions, we must calculate the Coulomb 

potential energy of one sodium ion as it is acted upon by all other ions in the 

crystal. 

488 THE CHEMICAL BOND 11.2 



To begin, the two neighboring chloride ions located at a distance r0 con¬ 

tribute —2e2/r0 to the potential energy, while the two nearest sodium ions 

give +2e2/2r0. The positive sign arises because of the repulsion between like 
charges on the sodium ions. Continuing this procedure for all ions in the crystal 

gives the potential energy as a sum of an infinite number of terms, which we 
write as 

Since each term in the brackets is a positive number, the value of the bracket 
must be greater than the value of the first term. Therefore, U, the potential 

energy, must be more negative than —e2/r0. Consequently, the potential 

energy of a sodium ion in this one-dimensional crystal is lower than it is in the 
diatomic molecule. 

The calculation we have outlined can be extended to real three-dimensional 

crystals, and the sum of the infinite series evaluated. The attractive Coulomb 

energy of any ionic lattice can be expressed as —il/e2/r0, where M, called the 
Madelung constant, depends on the geometric arrangement of the ions. For 

the sodium-chloride crystal lattice, M is 1.75; thus if all other things are con¬ 
stant, the ionic solid has a 75% lower energy than the gaseous diatomic molecule. 
This extra energy lowering occurs because a sodium ion in the solid is bonded 

through Coulomb forces to all chloride ions in the crystal. The separation of the 
ions in the sodium-chloride crystal is 2.80 A, somewhat larger than that found 

in the diatomic molecule. Consequently the numerical value of the Coulomb 

energy for the sodium-chloride lattice is 

U = -1.75 — = -1.75 
r o 

(4.80 X 10-10)2 

2.80 X 10-8 

= —1.44 X 10 11 ergs 

= —207 kcal/mole. 

Strictly, the lattice energy U is the energy evolved when the solid is formed 
from its gaseous ions. We have evaluated only the contribution due to Coulomb 

forces between the ions considered as point charges. Because of the finite size 
of the electron cloud around each ion, there exist repulsive forces between 
neighboring ions that we have not included in our calculation. The effect of 

these repulsions is to make the actual lattice energy about 10% less negative 
than the value given by the Coulomb forces alone. Thus the true lattice energy 

of sodium chloride is —183 kcal/mole. Comparing this number with —139.5 
kcal/mole, the Coulomb energy calculated for the diatomic molecule, leaves no 
question that the crystal is more stable. This is the reason that sodium chloride 

is a solid with a very low vapor pressure at room temperature. 
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Now that we have a value for the energy evolved when the crystal lattice is 

formed from the gaseous ions, we can find how much energy is released when 

solid sodium chloride is formed from gaseous sodium and chloride atoms. We 

have 
Na(g) + Cl(g) -> Na+(g) + Cl“(g) AE = 35 kcal 

Na+(g) + Cl~(g) -> NaCl(s) AE = -183 kcal 

Na(g) + Cl(g) -♦ NaCl(s) AE = -148 kcal 

Since AE for the overall process is negative, energy is evolved when solid sodium 

chloride is formed from its gaseous atoms. Consequently we can say that 

crystalline sodium chloride is more stable than its gaseous atoms, and the 
source of this stability is Coulomb attraction of the ions in the crystal lattice. 

Now that we have completed our analysis of the energetics of formation of 

sodium chloride from its atoms, it is interesting to see how the ionic lattice 
energy is calculated when the repulsion between neighboring ions is taken into 

account. As we have remarked, this repulsion is a result of the finite size of 

the ions and is of the same nature as the van der Waals repulsions between 

neutral atoms. The refined expression for the potential energy of the crystal 

is now 

U = — 
Me2 B 

y* yTl 

The term B/rn represents the repulsions between neighboring atoms, and the 

value of n ranges from 9 to 12, depending on the types of ions in the crystal. 

Often n can be evaluated by studying the compressibility of the crystal. The 

coefficient B measures the strength of the repulsive forces and differs for dif¬ 
ferent ions. However, B can be eliminated from the expression for the lattice 

energy by recognizing that at the value of r for which the crystal is most stable, 

U is a minimum and dU/dr = 0. Therefore we carry out the differentiation 

of U : 

dU^ - _ nB 

dr r2 rn+l 

Setting this expression equal to zero we get 

d _ _*»—i 

B~ n r° ’ 

where r0 is the distance at which dU/dr vanishes, 
for B back into the equation for U gives us 

U = 
Me _e_ 

r0 n r0 

Substituting the expression 
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This is the potential energy evaluated at the most stable ionic distance, r0. 

Since n is approximately 10, we see that the true lattice energy is only about 
10% different from the energy of Coulomb interaction alone. 

In general there is very satisfactory agreement between the calculated and 

measured values of the lattice energies of the alkali-metal halides. Having 

accounted for the bond energy of these substances, we can now try to explain 
their formulas. We shall suppose that the formulas found have the lowest 

energy of all those that are possible. Possible ionic compounds are those that 

are stable with respect to their gaseous atoms; this requires that the Coulomb 
potential energy obtained upon formation of the crystal lattice be larger than 

the energy which must be expended to form the gaseous ions from the atoms. 

To see how these two energies depend on the ionic charge, let us examine 

the formation of solid calcium oxide from its gaseous atoms. The reactions and 
associated energies necessary to form the gaseous ions are 

Ca(g) = Ca+(g) + e 

Ca+(g) = Ca++(g) + e~ 

0(g) + e = O (g) 

0~(g) + e~ = 0=(g)_ 

Ca(g) + 0(g) - Ca++(g) + 0=(g) 

A E — 141 kcal/mole 

A E = 273 
A E = -34 

A E = 210_ 

AE = 590 kcal/mole 

Compared with the analogous process for sodium chloride, an enormous energy 

investment is required. Considerable energy is needed to remove both electrons 
from the calcium atom. Moreover, note that a net of 176 kcal/mole is required 

to attach both electrons to the oxygen atom. Unlike the chloride ion, gaseous 
0= is unstable with respect to the loss of an electron. 

Now let us see whether the lattice energy of calcium oxide can compensate 

for our expenditure. The Madelung constant for CaO is 1.75, and the interionic 
distance is 2.4 A. Since there is a charge of magnitude 2e on each ion, the 

lattice energy is approximately 

U = -1.75 
(2e)2 

ro 

= -1.75 X 
4 X 23 x ur20 

2.4 X 10-8 

= —967 kcal/mole. 

—6.7 X 10 11 ergs 

Thus when one mole of solid calcium oxide is formed from the atoms, the energy 

change is 590 — 967 = —377 kcal. This is a considerable overestimate, since 

we have neglected the repulsion of neighboring ions. The correct value of U is 

—862 kcal/mole. Although our calculation is crude, it shows that the lattice 
energy increases as the product of the charges on the two ions. This suggests 

that in ionic compounds, each atom would try to assume as great a charge as 
possible. This tendency toward a high charge is limited by the increasing values 
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of the successive ionization energies of the atoms. For instance, reference to 

Table 10.6 shows that to form gaseous Na++ requires an amount of energy 

equal to the sum of the first and second ionization energies of sodium, or 118 + 
1091 = 1209 kcal/mole. To form 0= requires 176 lccal more. Our calculations 

for calcium oxide suggest that a lattice of Na++ and 0= ions could not supply 

more than 1000 kcal/mole lattice energy. Hence NaO cannot be formed: the 
energy required to make the gaseous ions is greater than the expected lattice 

energy of the crystal. The same conclusion can be reached for all the alkali 

metals. The second ionization energy of these elements is so large that the 
characteristic charge of the alkali-metal ions is never more than plus one. The 

alkali-earth metals have two valence electrons which can be removed without 

excessive energy expenditure; therefore they can assume a charge of +2 and 

form extremely stable ionic compounds. 
Just as the maximum positive charge which can be assumed by an element is 

limited by its number of valence electrons, the maximum negative charge of 
an ion is set by the number of vacancies in low-energy valence orbitals. For 

example, all the halogen atoms can accept one electron to fill their valence 
p-orbitals. There are then no more low-energy orbitals available to accept 

additional electrons. The oxygen and sulfur atoms have two vacancies in their 

valence p-orbitals. Both these atoms readily accept one additional electron, 
but as we have noted above, O- and S— are unstable with respect to loss of an 

electron when they are isolated. However, the doubly negative ions exist in 

ionic crystals where the extra lattice energy from the double charge compen¬ 

sates for the instability of the isolated ion. 
A possibility for formation of a triply negative ion exists for nitrogen and 

phosphorus, which have three half-filled valence p-orbitals. In some com¬ 

pounds, such as Mg3N2 and Mg3P2, the nitride and phosphide ions, N~3 and 
P-3, are believed to exist. Judging from the relative instability of 0= and S=, 
it is not surprising that examples of triply negative ions are rare. In general, 

then, the number of valence orbital vacancies appears to limit the number of 

electrons which an atom can acquire, and the more highly charged negative 

ions tend to be unstable. 

Crystal Lattice Geometry 

We have called attention to the abrupt rise in the potential energy that occurs 

when two ions are brought closer than their equilibrium separation r0, and have 

attributed this rise to the overlapping and repulsion of the outermost electrons 
of the ions. We would expect then that the distance at which the repulsion 
becomes important should be determined in large measure by the extension of 

the electron “cloud” that surrounds each ion. Of course, this charge cloud 
extends to infinity, but the electron density at any distance from a particular 
isolated ion is determined by the electronic structure of that ion. This in turn 

suggests that we might try to characterize each ion by a radius, and hope that 

492 THE CHEMICAL BOND 11.2 



the internuclear separation in any ionic compound could be calculated to a good 

approximation by adding the radii of the positive and negative ions. This 
scheme is in fact workable. 

Table 11.9 Ionic radii (angstroms) 

Li + 
0.68 

Be++ 
0.30 

0“ 
1.45 

F~ 
1.33 

Na+ 
0.98 

Mg++ 
0.65 

AI+3 
0.45 

S= cr K + Ca++ Sc+3 Ga+3 
1.90 1.81 1.33 0.94 0.81 0.60 

Se= Br“ Rb+ Sr++ Y+3 ln+3 
2.02 1.96 1.48 1.10 0.90 0.81 

Te= 1“ Cs+ Ba++ La+3 TI+3 
2.22 2.19 1.67 1.29 1.06 0.91 

From x-ray measurements on a crystal it is possible to determine the separa¬ 

tion of the nuclei of adjacent ions. In order to assign ionic radii, one must find 
some basis for dividing the observed internuclear separation for sodium chloride, 

for example, into a contribution from Na+ and a contribution from Cl-. We 
will not explore the detailed basis for this division, but merely say that from a 

few observed internuclear distances it has been possible to generate the set of 

ionic radii shown in Table 11.9. These ionic radii should not be taken to mean 
that the electronic cloud does not extend beyond a certain distance; the only 

quantitative significance of ionic radii is that when they are added together 
they give a good approximation to the observed interionic spacing. As the com¬ 

parison in Table 11.10 shows, the agreement between calculated and observed 

internuclear separation is good, but not exact. 

Table 11.10 Interionic distances in some alkali-halide crystals (angstroms) 

Li+ Na+ K+ Rb+ Cs+ 

Radius sum Cl 2.49 2.79 3.14 3.29 3.48 
Observed distance 2.57 2.81 3.14 3.29 3.47 

Radius sum I- 2.87 3.17 3.52 3.67 3.86 
Observed distance 3.02 3.23 3.53 3.66 3.83 

Examination of Table 11.9 shows that the trends in ionic size are what we 
might expect on the basis of the electronic structures of the ions. In each column 

of the periodic table the ionic radius increases with atomic number. This is 
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consistent with the fact that electrons of successively higher principal quantum 

number are found, on the average, at successively greater distances from the 
nucleus. Furthermore, comparison of positive and negative ions which have 

the same number of electrons, for example, Na+ and F—, Iv+ and Cl , shows 
that the negative ion is always the larger. The reason for this is that the nega¬ 

tive ion has a smaller nuclear charge and consequently a more expanded charge 

cloud than the positive ion. The effect of increasing nuclear charge can also 

be seen by comparing the sizes of isoelectronic positive ions. For example, 
Al+3 is smaller than Mg++, which in turn is smaller than Na+; all have the 

(ls)2(2s)2(2p)6 configuration. 

Table 11.11 Crystal-lattice energies of the alkali halides* (kcal/mole) 

LiF 246.7 NaF 219.0 KF 194.3 

LiCI 202.3 NaCI 186.0 KCI 169.3 

Li B r 193.0 NaBr 177.0 KBr 161.8 

Lil 180.0 Nal 165.7 Kl 153.3 

RbF 185.4 CsF 173.6 

RbCI 162.3 CsCI 155.5 
RbBr 155.9 CsBr 149.3 
Rbl 147.3 Csl 141.4 

* The positive values given here are the energies required to vaporize the solid 

to the separated ions. 

The ionic radii can be used to understand the variations in the lattice energies 

of the alkali halides. Table 11.11 shows that, for any given positive ion, the 

lattice energy becomes smaller as the negative ion becomes larger. The same 

trend is found if we examine the compounds of any one negative ion: the lattice 
energy decreases as the size of the positive ion increases. An even more detailed 

interpretation is possible. Since the magnitude of the lattice energy depends 

on l/(r+ + r_), the lattice energy will be relatively insensitive to the size of 

the positive ion, if r_ » r+. A comparison of the difference in the lattice 
energies of Lil and Nal with the corresponding number for LiF and NaF 

illustrates this effect. 
Besides determining internuclear separation, ionic radii influence the co¬ 

ordination number, or the number of immediate neighbors which can be grouped 

around a central ion. Figure 11.9 shows the sodium-chloride crystal lattice, in 

Avhich each ion has a coordination number of six. A sodium ion is surrounded 
by six chloride ions, and each chloride ion is surrounded by six sodium ions. 

We might expect that increasing the coordination number would increase the 

stability of the ionic lattice, since each ion would then have more near neighbors 
of the opposite charge. In the cesium-chloride lattice shown in Fig. 11.10 the 

coordination number is eight. Accordingly, the Madelung constant for this 
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lattice is 1.7G3, while that of the sodium-chloride lattice is 1.748. Thus, for 

equal internuclear distances, the cesium-chloride type of lattice is about 1% 
more stable than the sodium-chloride lattice. 

The sodium-chloride lattice, showing 
the sixfold coordination of the ions. 

Part of the cesium-chloride lattice, 
showing the eightfold coordination of 
the ions. 

Despite this apparent extra stability of the cesium-chloride lattice structure, 
most of the alkali halides crystallize in the sixfold coordinated sodium-chloride 

structure. The reason for this preference for the seemingly less stable lattice 
is not difficult to understand. When one tries to pack eight large negative ions 

about a small central positive ion, it is found that the distance of closest ap¬ 
proach of the positive and negative ions is not determined by r+ + r_, but by 

the radius of the negative ion alone. This is illustrated schematically in Fig. 
11.11. Because of their large size, eight negative ions will “touch” each other 

before any of them come very close to the positive ion. In this situation the 

lattice energy is not so large as possible, because the distance between positive 

FIG. 11.9 

FIG. 11.10 

11.2 IONIC BONDS 495 



and negative ions is not so small as r+ -f- r_, the sum of the crystal radii. The 

difficulty is somewhat relieved if fewer negative ions are placed around the posi¬ 

tive ion; this allows ions of opposite charge to approach each other more closely. 

FIG. ll.li Schematic representation of how the size of the negative 
ion alone may determine the distance between ions of 

opposite charge. 

Thus a coordination number of six is preferred when the ionic sizes are quite 

different, which is the general situation for most of the alkali halides. When 

the ions are of comparable sizes, as in CsCl, CsBr, and Csl, the ions can enjoy 
the slightly greater stability of eightfold coordination. Thus by using the 

geometric properties of the lattices, it is possible to predict which lattice will be 

preferred for a given ratio of ionic radii. In the cesium-chloride lattice all the 

positive and negative ions touch simultaneously if r_|_/r— = 0.73. If the cation 

becomes any smaller relative to the anions, the sodium chloride lattice is 
preferred. More details of the correlation between ionic size and lattice geometry 

have been discussed in Section 3.5. 

11.3 THE SIMPLEST COVALENT BONDS 

The essential feature of the ionic bond is electrical asymmetry. Transfer of 
electrons from atoms of low ionization energy to atoms of high electron affinity 

produces oppositely charged ions whose mutual Coulomb attraction results in 

a stable crystal. However, such a simple picture cannot explain the strong 

bonds in such homonuclear diatomic molecules as H2, N2, 02, and Cl2. In 

these instances both bonding partners have the same ionization energy and the 

same electron affinity. Consequently there seems to be no reason to expect a 

permanent transfer of charge from one atom to the other, and indeed the 
measured properties of these molecules show that electrons are symmetrically 

divided between the two nuclei. The formation and stability of these sym¬ 

metrical molecules are associated with an equal sharing of valence electrons; 

hence they are said to be examples of covalent bonding. In this section we shall 
examine the nature of this electron sharing and see why it produces chemical 

bonding. We must recognize, however, that the covalent bond has many subtle 

features, not all of which can be explained in simple language. Therefore we 
shall try to expose only the aspects of covalent bonding which have the most 

general applicability, and shall reserve detailed discussion of some special 

situations for later chapters. 
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The Hydrogen-Molecule Ion 

The simplest of all molecules is the hydrogen-molecule ion, B.f, which occurs 

in electrical discharges through hydrogen gas. To those accustomed to thinking 
of covalent bonding only in terms of pairs of electrons, the existence of may 

seem surprising. Nevertheless, the bond in is quite strong; 64 kcal/mole 

are required to dissociate the molecule into its constituent proton and hydrogen 

atom. The equilibrium separation of the two nuclei in Hi}" is 1.07 A, a distance 

which is comparable to other covalent-bond distances. These “normal” values 
of bond energy and bond length suggest that in the electronic structure of H^, 

we will find at least some of the important properties which are responsible for 
covalent bonding in all molecules. 

Because of its simplicity, can be treated in exact detail by the methods 

of quantum mechanics. From these theoretical calculations, values of the bond 

energy and bond length can be derived which are in exact agreement with those 
found experimentally. This success very strongly suggests that quantum 

mechanics provides a completely adequate theoretical framework for under¬ 
standing the covalent chemical bond. 

Representations of the electron density in Ht: (a) contours of constant density and (b) vari- fig. 11.12 

ation of density along internuclear axis. 

In order to extract the qualitative reason for covalent-bond formation from 
the mathematics of quantum mechanics, we can examine the probability of 

finding the electron at all points in the molecule. The graphical representa¬ 
tion of the distribution found from the quantum-mechanical treatment is shown 

in Fig. 11.12. Figure 11.12(a) shows the lines of constant electron density 

which lie in a plane that contains both nuclei. The other graph (Fig. 11.12b) 
shows how the chance of finding the electron varies as we proceed along a line 

that runs through the two nuclei. Both representations show that the electron 

distributes itself symmetrically about both nuclei in the molecule. Consequently 
we say that the electron moves in a molecular orbital and belongs to the mole¬ 
cule as a whole, rather than to either nucleus. 

The exact electron distribution in this simplest of covalent bonds is consistent 
with the qualitative concept that in covalent bonds an electron is shared by 

two nuclei. To get a better idea of what the word “sharing” really implies, it is 
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profitable to compare the electron distribution in with the electron density 
around two hydrogen atoms which are not bonded. This is shown in Fig. 11.13. 

The electron density around each nonbonded atom has been drawn to half 

scale, so that we are really comparing one electron distributed between two 

nonbonded atoms with the one-electron distribution in H+. The difference in 

density curves then reveals the difference between the behavior of an electron 

in a bond, and an electron which spends half its time near each of two non¬ 

bonded nuclei. The figure shows that forming the bond moves some of the 

electron density from the regions outside both nuclei to the regions near to, and 

in between, the nuclei. 

FIG. 11.13 Electron sharing in the h£ molecule. The dashed lines represent one electron distributed 
between two nonbonded atoms, while the solid line represents the actual variation of 
electron density in h£. 

The potential energy of an electron located at a distance rA from nucleus A 

and tb from nucleus B is 

Consequently the potential energy of the system is lowest (most negative) when 

the electron is very close to either nucleus, or when it is in a region relatively 
near both nuclei at the same time. It would appear then that bond formation, 

or sharing of the electron by two nuclei, permits the electron to spend more time 

in regions of space where its Coulomb potential energy is low, thereby lowering 

the total energy of the molecule. Detailed quantum-mechanical calculations 

substantiate this qualitative assessment of the origin of bond energy. 
We can make a slightly more detailed analysis of the energy changes which 

accompany bond formation if we make use of a general principle called the 

virial theorem. As is shown in Section 2.2, the general form of the virial theorem 

relates the average value of the kinetic energy to the virial, which is the sum 

of rF over all particles and coordinates r: 

KE - i X rF. 

If the force F is given by Coulomb’s law 

F = qiq2/r2, 
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where q\ and q2 are the charges on the particles, we get 

KE = \ X QiQz/r. 

The quantity §ig2/r is just the potential energy of interaction of two charged 

particles, and the sum of this quantity over all particles gives the total Coulomb 

potential energy of the system. Therefore, for a system which obeys Coulomb’s 

law, the average potential energy and the average kinetic energy are related by 

KE = —£PE. 

The total energy of the system is E — KE + PE, so using the virial theorem, 

we can write 
E = KE + PE = -KE = iPE. (11.1) 

Now let us ask what happens to the total energy wdien we bring together two 

atoms to form a bond. If the bond is stable, E must decrease, or AE, the change 

in energy, must be negative. According to Eq. (11.1), AE is related to the 

change in the average potential energy by 

A E=\ APE. 

If AE is negative, APE, the change in the average potential energy, must also 
be negative. Thus formation of the covalent bond is accompanied by a decrease 

in the potential energy, and this, as we noted, is a result of the shared electron 

spending more time close to, and in between, the nuclei. 

* 
/ \ 

/ \ 
/ \ 

Forces exerted by an electron on the nuclei A and B of a diatomic molecule. In (a) the FIG. 11.14 

electron exerts a force which separates the nuclei, while in (b) the electron tends to bind 
the nuclei together. 

There is another way to show why electron sharing tends to hold atoms 

together. Instead of thinking about the energy of the molecule, we consider the 

forces that an electron exerts on the nuclei. If, as showm in Fig. 11.14(a), an 

electron is in the region “outside” of both nuclei, the force, e2/r2, which it 
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exerts on the nearer nucleus is greater than the force, e2/r], it exerts on the 
farther nucleus. If we resolve those forces into components perpendicular and 

parallel to the internuclear axis, as shown in Fig. 11.14(a), we find that the 

electron tends to draw both nuclei in the direction of the internuclear axis, but 

with different forces. The difference between these two forces is a net force 
which tends to separate the nuclei. Therefore, whenever an electron is in the 

region “outside” both nuclei, it exerts forces which tend to oppose bond forma¬ 

tion. However, when an electron is between the nuclei, the forces it exerts tend 
to draw the nuclei together, as shown in Fig. 11.14(b). The hyperbolic surfaces 

which separate the regions where the electron tends to bind or separate the 

nuclei are shown in Fig. 11.15. If we compare these boundary surfaces with 
the electron distribution in H^", we see that bonding is accomplished by allow¬ 

ing the electron to spend time in regions between the nuclei, where the forces 

it exerts draw the nuclei together. 

fig. 11.15 Boundary surfaces for electron binding in a homonuclear diatomic molecule AB. Any 
electrons in the shaded region serve to bind the nuclei together. 

A little reflection shows that covalent and ionic bonding are alike in that 

both result from a redistribution of electron density which causes the total 

energy of the system to decrease. The difference between the two types is that 
we can easily characterize the redistribution associated with ionic bonding by 

saying that an electron is transferred from one atom to another, while the 
redistribution associated with covalent bonding is much more subtle and difficult 

to describe. While we can distinguish between the complete electron transfer of 
ionic bonding and the equal electron sharing which occurs in covalent molecules 

like H^, we should realize that these are not two rigid classifications into which 
all bonds can be forced. We will find that in most chemical bonds there is an 

unequal sharing, or partial transfer of electrons; distributions result which are 
intermediate between the two extreme models. The existence of a continuous 

range of bond properties from extreme ionic to extreme covalent is not hard to 
understand if we recognize and remember the similarities, as well as the differ¬ 

ences, between ionic and covalent bonding. 
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The molecular orbital that we have examined is only one of many possible 

orbitals of which the electron may occupy. It is, however, the orbital of 
lowest energy, and since its occupancy leads to a stable bond it is called a 
bonding molecular orbital. The lowest-energy excited electronic state of H^ 

corresponds to the electron occupying the molecular orbital shown in Fig. 11.16. 
Note that once again the electron divides its time equally between the two ends 

of the molecule. However, in the important regions between the nuclei there is 

a deficiency of electron density. The electron spends most of its time in the 
peripheral regions, relatively far from both nuclei. All of these features contrast 

with the properties of the low-energy bonding orbital discussed earlier. Con¬ 
sequently it should not be surprising to find that H^~ in its lowest excited state 

is unstable with respect to dissociation to a proton and a hydrogen atom. Not 

only does no bond exist in this state, but there is a strong repulsive force 
between the two fragments. This excited electron distribution is therefore called 

an antibonding orbital. Its properties emphasize that the mere sharing of an 
electron by two nuclei does not automatically lead to bond formation. The impor¬ 

tant factor in bond formation is that the electron is shared in such a way that 
the total energy of the system decreases. This occurs when an electron occupies 

a bonding molecular orbital, but does not when the electron enters an anti¬ 
bonding orbital. 

The antibonding orbital of Ht: (a) contours of constant electron density and (b) variation fig. 11.I6 

of electron density along internuclear axis. 

The consequences of putting the electron in the bonding or antibonding 

molecular orbital of are summarized in Fig. 11.17. We see there the total 
energy of the system H+ + H plotted as a function of the separation of the 

two nuclei. At great internuclear distances the energy of the system is rather 
insensitive to the magnitude of the separation. When the nuclei are near each 

other, there are two possibilities. If the electron is in the bonding orbital, the 
total energy of the system is less than that of the separated particles H+ + H, 

and consequently we say a bond has formed. The minimum in the energy 
corresponds to the most stable configuration, and occurs at the equilibrium 
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bond distance. The depth of this energy “well,” corrected for the zero-point 

vibrational energy \hv, is the bond dissociation energy D{Hj). If the electron 

in occupies the antibonding orbital, the total energy of at any finite 

internuclear distance is greater than the energy of the separated fragments 
H+ + H. This is represented by the upper, or “repulsive” energy curve in 

Fig. 11.17. 

E (kcal/mole) 

FIG. 11.17 The total energy E of the Ht system as a function of internuclear distance r. The lower 
curve represents the situation when the electron is in the a-bonding orbital, while the 
upper curve gives the behavior of the energy when the electron is in the c*-antibonding 
orbital. 

The Hydrogen Molecule 

Our examination of revealed the basic phenomenon from which the covalent 

bond derives its stability. However, the existence of the covalent bond has 

been commonly associated with the sharing of two electrons whose spins are 
opposite, or paired. Consequently the idea of “pairing two electrons to form a 

bond” has been an important empirical concept in valence theory. 
Why is it important that the two electrons involved in a covalent bond have 

opposite spin? To find out, we need only examine the bonding in the hydrogen 
molecule from the point of view of the Pauli Exclusion Principle. For atoms, 

the Exclusion Principle states that no two electrons may have the same set of 

quantum numbers, and we saw in Chapter 10 that this means that two electrons 
may occupy the same atomic orbital only if they have different spin. The 

Exclusion Principle applies to the occupancy of molecular orbitals in the same 
way. Thus the consequence of the Exclusion Principle is that only two electrons 

may occupy the same molecular orbital, and then only if they have opposite spin. 
With this in mind, let us build the hydrogen molecule by starting with the two 

nuclei and feeding the electrons into the available molecular orbitals. 
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Just as atoms can be constructed by using orbitals resembling those of the 

hydrogen atom, molecules can be made up of molecular orbitals resembling those 

of H^\ At this point we are aware of two of these molecular orbitals; one is the 
low-energy bonding orbital, and the other is the higher-energy antibonding 

orbital. The first electron in H2 will then surely occupy the low-energy bonding 

orbital. If the spin of the second electron were the same as that of the first 
electron, only one of them could occupy the bonding orbital, and to avoid 

violation of the Exclusion Principle, the second electron would be forced into 

the antibonding orbital. The result would then be an energized molecule, and 
experiments show that this molecule is unstable with respect to dissociation to 

the atoms. On the other hand, if the spins of the two electrons are opposite, 

or paired, both electrons can occupy the low-energy bonding orbital without 
violating the Pauli Exclusion Principle and thus both can contribute to the 

bonding of the molecule. The role of electron-spin pairing in chemical bond 

formation is therefore somewhat indirect. Pairing of the spins allows both 
electrons to behave in a way which strengthens the bond. 

The increased effect of two bonding electrons is reflected by the bond energy 

and bond length of the hydrogen molecule. It takes 104 kcal/mole to dissociate 
hydrogen to its atoms; this is over 50% greater than the bond energy of 

Furthermore, the internuclear separation of H2 is 0.74 A, which is less than the 

bond distance in H^“ by 0.3 A. Thus in H2 the two electrons are better able to 
overcome the nuclear Coulomb repulsion and bring the two nuclei closer together 

than their equilibrium separation in H^. 
We have developed an argument that rationalizes the fact that many 

covalent bonds involve the sharing of a pair of electrons by two atoms. Can 

we use our argument to discover why two helium atoms do not form a stable 

diatomic molecule? Imagine building the hypothetical He2 molecule by starting 
with the two nuclei and feeding the four electrons into the available molecular 

orbitals. The first two electrons, with opposed spins, would occupy the low- 
energy bonding molecular orbital which we have used in and H2. The 

third and fourth electrons would then be accommodated in the antibonding 

orbital. The net result of two bonding electrons and two antibonding electrons 
is no bond at all. In fact, experience shows that the effect of antibonding elec¬ 

trons is stronger than that of bonding electrons, and consequently there is a 

very strong repulsive force between the two atoms when they are closer than 
2.5 A. 

It is of interest now to compare the energies of the species H^, H2, He^", and 
IIe2 as a function of their internuclear separation, since in these molecules there 
are respectively 1, 2, 3, and 4 electrons in the bonding and antibonding molecular 

orbitals. Figure 11.18 shows that as one proceeds from to H2, the bond 
strength increases. In passing to HeJ, the bond energy decreases, since He^” 

has one antibonding electron in addition to the two bonding electrons. Finally 

in He2, the presence of two antibonding electrons prevents bond formation, as 

discussed above. 
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E (kcal/mole) 

r(A) 

fig. 11.18 Total energy as a function of distance for H2, H2l He£, and He2. For He2, the bonding due 
to van der Waals forces is too small to be seen on this scale. Note that the (0')2(cr*)1 con¬ 
figuration in He2 gives a weaker bond than the one a electron in Ht. 

11.4 ATOMIC AND MOLECULAR ORBITALS 

As we examine the electronic structures of different molecules we will encounter 
a variety of molecular orbitals that must be described and classified if they are 

to help us understand chemical properties. The first step in classifying a 
molecular orbital is to specify whether it is bonding or antibonding. Second, 

something must be said about the general shape of the electron distribution. 

The orbitals we discussed in Section 11.3 were cylindrically symmetric; the line 
which joined the two nuclei formed a natural symmetry axis for the electron 

distribution. Molecular orbitals that have cylindrical symmetry and are bonding 

are labeled as cr-orbitals; those that are cylindrically symmetric and antibonding 
are denoted by <r*. 

The third aspect of the classification of molecular orbitals has to do with the 

behavior of the molecular orbital as the bond is broken. Imagine pulling the 
hydrogen molecule apart into its constituent atoms. As the atoms separate, 

the molecular orbital occupied by the two electrons changes shape and even¬ 
tually separates into two atomic ls-orbitals. This suggests that we might 
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describe any molecular orbital by giving the atomic orbitals into which it sepa¬ 
rates when the atoms are removed from each other. Thus the molecular orbital 
in the hydrogen molecule is described as o'Is, which indicates that it is cylin- 
drically symmetric, bonding, and separates to give Is atomic orbitals. In a 
similar manner, the bonding orbital in the fluorine molecule is designated as 
cr2p, which shows that it is cylindrically symmetric, bonding, and separates into 
two fluorine 2p atomic orbitals. 

The idea of classifying molecular orbitals by the atomic orbitals into which 
they separate has a useful dividend. Note in Fig. 11.13 that the o-ls-orbital of 
molecular hydrogen resembles two Is atomic orbitals which have been partially 
superimposed. Consequently we might picture the molecular orbital as being 
“built” of two overlapping atomic orbitals. This description of a molecular orbital 
is not exact, but it does have some useful consequences which offset its lack of 
rigor. Picturing a molecular orbital as built of two atomic orbitals gives us a 
scheme by which we can describe, at least approximately, something which is 
complicated (the molecular orbital) in terms of something reasonably familiar 
(the atomic orbital). Moreover, the idea suggests a useful empirical rule for 
predicting the number of covalent bonds which an atom can form. Since our 
discussion suggests that formation of a fully occupied bonding orbital can arise 
from a half-filled atomic orbital of each of two atoms, the number of covalent 
bonds formed by an atom should be equal to the number of half-filled valence orbitals 
it can have. For example, the fluorine and hydrogen atoms each have only one 
half-filled atomic valence orbital, and each almost invariably forms only one 
covalent bond. The oxygen atom has two half-filled orbitals and characteris¬ 
tically forms two covalent bonds, as in H20 and F20. Similarly, the nitrogen 
atom has three half-filled p-orbitals and forms NH3 and NF3. 

The carbon atoms provides an interesting test of the rule since in its normal 
electron configuration carbon has only two half-filled orbitals: ls22s22p*2p^. 
However, the maximum number of half-filled orbitals it can have is four: 
ls22sx2pl2pl2p], Indeed, carbon characteristically forms four covalent bonds, 
as in CH4 and CF4. Boron provides a similar example. Even though in its 
normal electron configuration, ls22s22/P, it has only one half-filled orbital, the 
maximum possible number of partially filled orbitals is three. Correspondingly, 
boron does form three covalent bonds in BF3, B(OH)3, and other of its com¬ 
pounds. Both these examples show that the number of covalent bonds which 
an atom will form may be given by the maximum number of half-filled orbitals 
which the atom can have, rather than by the actual number in the ordinary 
electronic configuration. 

The ion NH^ might appear at first to violate our simple rule, since it suggests 
that the nitrogen atom, which has a maximum of three half-filled orbitals, can 
form four covalent bonds. This difficulty is removed if we recognize that NH^ 
can be thought of as a compound of N+ and four hydrogen atoms. Like the 
carbon atom, X+ can have a maximum of four half-filled valence orbitals, and 
this is consistent with the formation of NH4 . Similarly, the ions BHT and 
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BF4 present no problem if they are thought of as compounds of B and four 

hydrogen or fluorine atoms. 

Electron-Dot Structures 

A primitive but often convenient way to represent the disposal of electrons in 

molecules is to use electron-dot structures. Thus the equation 

H- + H- —► H : H 

symbolizes the formation of an occupied bonding orbital by the overlap of two 

half-filled atomic orbitals. Similarly, the structure 

H : F : 

is a simple way of saying that in HF there is an electron-pair bond and that six 
of the valence electrons of fluorine are “nonbonding”; that is, they remain 

localized near the fluorine atom and do not participate in the bonding. Electron- 
dot formulas allow us to decide rapidly how many bonds an atom may form. 

If we write the nitrogen atom as 

: N • 

then it is immediately clear that three covalent bonds can be formed: 

H 

: N • + 3H- -» : N : H 

H 

While electron-dot structures can be helpful, they must be used and inter¬ 

preted carefully. The true geometry of molecules is often ignored in electron-dot 

structures for typographical reasons. Molecules like NH3, which have a three- 
dimensional structure, are often represented as planar, as we have done. We 
will encounter other limitations of electron-dot structures in subsequent sec¬ 

tions, where we will find that some molecules cannot be represented by only one 

electron-dot structure. 

The Octet Rule 

Another simple device that can sometimes be used to decide how to represent 

the electronic structure of a molecule is the octet rule, which states that an 
atom other than hydrogen tends to form bonds until it is surrounded by eight 
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electrons. As the formulas 

H 

H : B : H 

H 

: F : 

: F : C : F : 

: F : 

II 

: N : H : 0 : H II : F : 

H H 

: Ne 

show, the rule is consistent with the behavior of atoms in the second row of the 

periodic table. For these atoms the octet rule is equivalent to our statement 

that the number of covalent bonds equals the maximum number of half-filled 
atomic orbitals. Atoms of the second periodic row have only four valence orbitals 

and thus cannot form more than four covalent bonds. In forming these bonds 

they can surround themselves by no more than 4X2=8 electrons, exactly 
as suggested by the octet rule. 

The octet rule is often not obeyed by atoms outside the second row of the 
periodic table, and thus it is of somewhat limited value. For example, phos¬ 

phorus forms two chlorides, PC13 and PC15. The first of these is analogous to 
NH3 or NC13 and obeys the octet rule. However, in PC15 the phosphorus atom 

is surrounded by ten electrons. While this compound violates the octet rule, 
its formation can be understood in terms of the maximum possible number of 

half-filled valence orbitals available in the phosphorus atom. Usually the con¬ 

figuration of the valence electrons in phosphorus is 3s23pl3p]3pl. However, 
the 3d-orbitals of the atom are not much higher in energy than the 3p-orbitals, 
and consequently we can say that the maximum number of half-filled valence 

orbitals is five, corresponding to the configuration 3s13pl3p^3pl3d1. 

Other “violations” of the octet rule, such as the existence of SI'6 and SF4, 
can be rationalized in a similar manner. The sulfur atom has the valence- 

electron configuration 3s23pl3p]3p], and does form compounds like H2S, 
whose formulas seem directly related to this electron configuration. However, 

the sulfur atom can also have four half-filled valence orbitals as in the configura¬ 
tion 3s23pl3pl3p]3(ll, or six half-filled orbitals as in 3s13pl3py3pj3d13d1. The 

existence of these possibilities provides a simple way of explaining the formulas 
of SF4 and SF6, respectively. Consequently the rule that the number of covalent 

bonds an atom forms is related to the possible number of unpaired valence 
electrons it can have is consistent with the formulas of a much larger number 

of compounds than is the octet rule. Nevertheless, the octet rule does provide 
a useful guide to the electronic structures of many compounds, particularly 

those containing elements from the second row of the periodic table. 
It is appropriate to remark that the trick of rationalizing apparent violations 

of the octet rule by invoking the participation of d-orbitals in the bonding 

scheme is a matter of some controversy. Some scientists feel that the d-orbitals 
lie so high in energy that they should not be treated as valence orbitals, but as 

excited orbitals which cannot confer any appreciable stability to chemical bonds. 
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Others feel that while d-orbitals are of high energy in free atoms, their energy 
decreases as other atoms approach to make bonds. This author has not been 

convinced of the absolute validity of either side of this argument, and interprets 

the controversy merely as more evidence that the description of chemical bonds 

in terms of a few atomic orbitals is a highly approximate procedure. The most 
convincing reason for invoking d-orbitals in chemical bonding is that it is a 

simple idea which works, if it is used carefully and not overinterpreted. 
At this point it is well to reconsider and review the idea that molecular bond¬ 

ing orbitals are built of overlapping atomic orbitals. Originally we introduced 

this point of view so that we could describe the electron-charge cloud in a 

molecular orbital in terms of the simpler atomic orbitals with which we were 

familiar. We noted that this description is not perfect. Then we realized that 

the formulas of compounds like H20, NH3, and HF could be immediately 
explained if the number of bonds that an atom formed was equal to the number 

of its atomic orbitals that were half-filled with electrons. The idea behind this 

statement was that a bonding orbital could be “built” from one atomic orbital 

of each of two atoms, and then occupied by the two electrons originally asso¬ 
ciated with the atoms. Finally, to explain the formulas of CH4, BF3, and the 

halides of phosphorus and sulfur, we had to say that the number of covalent 

bonds an atom forms is not exclusively related to the number of half-filled 

orbitals it has in the lowest electronic configuration, but is related to the various 

numbers of half-filled orbitals it can possibly have. The rule in this form is 
useful, for it is consistent with the formulas of a large number of compounds. 

The idea that molecular orbitals are built from atomic orbitals has more than 

qualitative significance. In the quantum-mechanical treatment of the chemical 
bond, this idea is the basis for one method of finding the mathematical functions 

that describe molecular orbitals. The results of these mathematical treatments 
of chemical bonding show that picturing molecular orbitals as being built from 

overlapping atomic orbitals is a severe approximation. Therefore, although this 
approach gives us a simple rule for rationalizing the formulas of molecules, we 

must always keep in mind that the fundamental reason atoms form bonds is 
that in so doing they reach a state of lower energy. 

Because of the complications and subtlety of electron behavior, the criterion 

that bonds form when half-filled atomic orbitals are possible may be too crude 
to lead to correct predictions in all instances. Therefore, while we can use this 

idea profitably, we must be careful not to use it too rigidly. 

11.5 MOLECULAR GEOMETRY 

Having discussed the basis for understanding bond formation and molecular 

formulas, we can now turn to the problem of explaining the various experi¬ 
mentally observed bond angles. The bond angles in a molecule represent the 

condition of minimum energy for the molecule, and therefore, to rationalize the 

observed structures, we should start by deciding why varying the bond angles 

might affect energy. Since we have pictured the covalent chemical bond as a 
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pair of electrons in a c-molecular orbital largely confined near to and in between 

two nuclei, we can take the attitude that in fixing the angle between bonds, we 

really are fixing the distance between the regions in which the electrons in the 
two bond orbitals spend most of their time. How can this distance affect the 
energy of a molecule? 

Our general experience indicates that electrons try to avoid each other as 
much as possible. Of the two reasons for this, one is obvious: there is a strong 

repulsive Coulomb force between two electrons, and the energy of two electrons 

is lowered when the electrons are kept apart. The second reason electrons tend 
to stay apart is more subtle. While the Pauli Exclusion Principle can be inter¬ 

preted to mean that two electrons with the same spin cannot occupy the same 
atomic or molecular orbital, a more detailed intepretation is that two electrons 

with the same spin have a vanishing probability of being in the same region of 

space. In other words, any two electrons with the same spin tend to avoid each 
other. It is important to realize that this would be true even if the electrons were 

uncharged, for this property is a consequence of the Pauli Exclusion Principle, 
and not of Coulomb’s law'. 

We find then that all electrons tend to avoid each other because of their like 

charge, but those with the same spin have a particularly low probability of 
being close to each other. These considerations suggest that there is a correlation 

in the instantaneous locations of electrons in atoms and molecules. If one 
electron is localized in a particular region of space, any other electron, especially 

one with the same spin, is most likely to be found in some other region of space. 

It is this correlation between the electron locations that is used to explain the 
geometry of molecules. 

Let us consider mercuric chloride, which when vaporized exists as discrete 
gaseous molecules that have a linear arrangement of atoms, Cl—Hg—Cl. In 

the free mercury atom there are two valence electrons in the configuration 6s2, 

and it is these electrons that are involved in a pair of cr-bonds in the HgCl2 
molecule. Why does this molecule have linear geometry? We can see that the 

linear arrangement puts the two pairs of electrons involved in the twro bonding 

molecular orbitals as far away from each other as is possible. Moreover, it 
allows electrons with the same spin to have a high probability of being on op¬ 

posite sides of the mercury atom, as wre can see by representing the molecule by 

ci T! Hg ti ci. 

Thus, if there are two pairs of bonding valence electrons around the mercury 

atom, the linear configuration is likely to be the arrangement of lowest energy. 
We might expect to find this geometry also in other molecules that have only 

two pairs of valence electrons about a central atom, and indeed, the molecules 

Cl—Zn—Cl, Cl—Be—Cl, Cl—Mg—Cl, and H3C—Hg—CH3 

all have the linear geometry indicated. 
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Now let us examine some molecules that have three pairs of valence electrons 

about a central atom. For example, 

F Cl OH CH3 

B B B B 

/ \ / \ / \ / \ 
F F Cl Cl HO OH CH3 CH3 

and the other halides of boron all are symmetric molecules in which the bond 

angles about the boron atom are 120°. Consequently the boron atom and the 

three atoms bonded to it lie in the same plane. A little reflection shows that this 
is the configuration in which the three pairs of bonding electrons can spend 

much of their time farthest from each other. 
On the basis of the foregoing arguments and data, it is easy to understand 

the geometry of methane, CH4. There are four pairs of valence electrons in 

bonds around the central carbon atom. Electrostatic repulsions will be mini¬ 

mized, and electrons with the same spin will be farthest apart when the bond 
orbitals are directed toward the corners of a regular tetrahedron, as illustrated 

in Fig. 11.19. Other molecules in which there are four pairs of valence electrons, 

such as NH^, CC14, and SiF4, also have tetrahedral geometry. 

fig. 11.19 The geometry and schematic electronic structure of methane. The hydrogen atoms lie at 
the apices of a regular tetrahedron, and the electrostatic repulsion between electrons 
is minimized. 

fig. 11.20 The geometry and schematic electronic structure of ammonia. The hydrogen atoms lie 
at three of the apices of a slightly irregular tetrahedron, with a nonbonded electron pair 
in the region of the fourth apex. 
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How can we rationalize the structure of ammonia from this point of view? 
As noted in Section 11.2, ammonia is a pyramidal molecule in which the 

H—N—H bond angle is 107°, not much different from the value for the 

H—C—H bond angle in methane. Like methane, the ammonia molecule has 
four pairs of valence electrons about a central atom. However, in ammonia 

three pairs of valence electrons are involved in bonding while the other pair is 
not. It is still reasonable to expect that the central nitrogen atom will direct the 

three pairs of bonding electrons to three corners of a tetrahedron, and the pair 
of nonbonding electrons to the fourth corner, as illustrated in Fig. 11.20. The 

tetrahedral geometry is not expected to be regular, since the four pairs of elec¬ 

trons are not equivalent. Consequently the bond angles in ammonia deviate 
slightly from the regular tetrahedral angles of 109.5°. 

The same argument can be applied to the water molecule. The four pairs of 

valence electrons around the oxygen atom are directed tetrahedrally, to mini¬ 

mize repulsions. Since the four pairs are not equivalent, the observed H—0—H 
bond angle (104°) does not correspond to the regular tetrahedral angle, but is 
only slightly smaller. 

Now we have encountered enough examples to be able to formulate a more 

refined working hypothesis for discussing the bond angles in more complicated 
molecules. It seems that the pairs of valence electrons about a central atom, 
whether bonding or nonbonding, lie in orbitals that are directed in a manner 

that minimizes Coulomb repulsions between the electron pairs and keeps elec¬ 

trons of the same spin as far from each other as possible. The fact that the 
bond angles in water and ammonia are smaller than 109.5°, the regular tetra¬ 

hedral angle, suggests that electron pairs in nonbonding orbitals in effect take 

up more space than electron pairs in bond orbitals. 

The geometry and schematic electronic struc- fig. 11.21 

ture of gaseous phosphorus pentachloride. 
The chlorine atoms lie at the apices of a regular 
trigonal bipyramid. 
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As a first application of these ideas to more complicated molecules, consider 

phosphorus pentachloride. The PC15 molecule has a central phosphorus atom 

surrounded by five pairs of electrons that constitute the bonds to the chlorine 

atoms. The geometry that minimizes electron interaction is the trigonal bi¬ 
pyramid structure shown in Fig. 11.21. The three “equatorial” chlorine atoms 

lie in the same plane as the phosphorus atom and the Cl—P—Cl angle in this 

plane is 120°. The two “polar” chlorine atoms lie above and below this equa¬ 

torial plane on the axis of the bipyramid. The angle defined by a polar chlorine 

atom, the phosphorus atom, and an equatorial chlorine atom is 90°. Thus the 
polar and equatorial chlorine atoms are not equivalent, and in fact the polar 

P—Cl bonds are a bit longer (2.19 A) than the equatorial bonds (2.04 A). 

Other molecules with five electron pairs have structures related to that of 

PC15. The molecule SF4 has the geometry shown in Fig. 11.22(a), where we 

see that one of the five electron pairs occupies an equatorial nonbonding orbital 
while there are two equatorial and two polar bonds to fluorine atoms. The 

distortion of the molecule from the regular bipyramidal geometry is in the 

direction expected. Figure 11.22(b) shows that the structure of C1F3 can also 

be rationalized if we imagine that two of the five electron pairs occupy non¬ 
bonding orbitals in the equatorial plane. 

fig. n.22 The geometry and schematic electronic structures of (a) sulfur tetrafluoride and 
(b) chlorine trifluoride. In both molecules the electron pairs tend to be directed toward 
the apices of distorted trigonal bipyramids. 

There are several compounds in which a central atom makes bonds to six 

other atoms, or is surrounded by six electron pairs. Sulfur hexafluoride, SF6, 

has the regular octahedral structure shown in Fig. 11.23. All fluorine atoms 
are equivalent and all F—S—F bond angles are 90°. This octahedral geometry 
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once again minimizes electron repulsion between pairs of electrons. Con¬ 

sequently the species IF5 and IC1F> which also have six electron pairs about 
the central atom, have structures related to that of SF6, as Fig. 11.23 illustrates. 

(a) (b) (c) 

The geometry and valence electron disposition of (a) SF6, (b) IFS, and (c) ICU. In each fig. 11.23 

case bonding or nonbonding electron pairs lie at the apices of an octahedron. 

The foregoing observations on molecular geometry can be summarized in the 

following way. To predict the approximate geometry of a molecule, determine 

how many pairs of valence electrons, bonding and nonbonding, exist around a 

given atom. These electron pairs will be directed in space in a manner which 
minimizes electron-electron repulsion. Thus 2, 3, 4, 5, and 6 electron pairs lead 

respectively to linear, trigonal, tetrahedral, trigonal bipyramidal, and octahedral 

geometries. When some electron pairs are bonding and others nonbonding, the 

geometry will be distorted from the regular polyhedron, with nonbonded elec¬ 
tron pairs apparently occupying more space than bonded pairs. 

While we seem to have a satisfactory scheme for explaining the bond angles 

found in the compounds of the nontransitional elements, we must remark that 

there is a good deal of conjecture in the arguments we have developed. We 
have assumed, for example, that we know that in PC15 all the bonds consist of 

electron pairs localized between two atoms so that there are five electron pairs 
involved in the bonding. In fact, it is not known whether this is really an 

accurate description of the bonding in this molecule, for not enough is known 

about the detailed electron distribution. The same criticism can be leveled at 
our assertions that the bonding in the other molecules is always of the electron- 

pair type; this assumption seems reasonable, but it is not known to be true. 

Consequently we must realize that while the scheme we have discussed allows 
us to see regularities and relations between bond angles in different compounds, 

not all the assumptions used in this application have been proved. 
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Hybridization 

FIG. 11.24 

In discussing the bond angles in polyatomic molecules, we have avoided describ¬ 

ing how the bond orbitals are built from the atomic orbitals. This is the matter 
to which we turn now. To analyze the bonding in polyatomic molecules, it is 

helpful to add to our ideas the concept of hybrid atomic orbitals. In order to 

understand what hybrid orbitals are, let us see why they are needed. We have 
remarked that the mercuric-chloride molecule is a linear, symmetric arrange¬ 

ment of atoms. Both Hg—Cl bonds are of equal length and strength. Can our 

present picture of covalent bonding explain these facts? 
The mercury atom has a valence-electron configuration of 6s2, and thus its 

maximum number of half-filled atomic orbitals is two, consistent with the 

molecular formula HgCl2. The most obvious approach to the detailed con¬ 
struction of the bonds would be to imagine the two electrons of Hg unpaired to 

the configuration 6s1 Op1. Then we could picture one bond being formed from 

the mercury 6s-orbital and a chlorine 3p-orbital, while the other bond was made 
from the mercury 6/)-orbital and the 3p-orbital of the other chlorine atom. 

This is an unsatisfactory and incorrect picture, for it implies that the two bonds 
in HgCl2 should have different properties, since they are constructed from 

different atomic orbitals. This implication is inconsistent with the experimental 

fact that the two bonds are identical. Therefore we must modify our ideas so 
that they account for the equivalence of the bonds, and this is done by using 

the concept of hybridized atomic orbitals. 

Schematic representation of the hybridization process. The orbitals are displaced from 
their common origin for clarity, and the sign of the wave function is indicated. 

A hybrid atomic orbital is the result of a mathematical combination (algebraic 

addition) of the functions which describe two or more atomic orbitals. When 
the functions which represent s- and p-orbitals are added, a new hybrid function 
is produced; when the p-function is subtracted from the s-function, a second 

hybrid function results. This hybridization process and its consequences are 
shown in Fig. 11.24. The two ways of combining an s- and a p-function yield 

two sp hybrid orbitals which are equivalent, except that one has its greatest 
electron density in a direction 180° from the other. Since these orbitals effec¬ 

tively “point” in opposite directions, it is easy to imagine two equivalent bonds 

of a linear molecule being formed from them. 
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Schematic representation of the formation of sp2-hybrid orbitals. Note how the combination FIG. 11.25 
of the positive s-wave function with the positive lobes of the p-wave functions produces a 
large positive lobe in the hybrid function. Similarly, cancellation of the positive s-function 
by the negative p-function lobe produces a small negative lobe in the hybrid. 

By introducing sp hybrid orbitals we can account not only for the equivalence 
of the bonds in HgCl2, but also for the linearity of the molecule. However, it 
is fair to ask how “real” hybrid atomic orbitals are. Are they a good description 
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of how electrons behave, or are they just an artificial concept used to patch up a 
failing theory? The answer is that they are just as real as the hydrogenlike 

atomic orbitals we have been using to describe many-electron atoms. The 
hydrogenlike orbitals are appropriate for describing the behavior of one electron 

at a time. The hybrid orbitals are a very effective way of describing the relative 
motions of two or more electrons at a time. Consequently hybrid orbitals are 

most useful in discussions of the bonding in polyatomic molecules. 
Now let us examine hybridization in situations where there are more than 

two valence electrons. There are three ways of combining an s-orbital and 

two p-orbitals to produce three equivalent sp2 hybrid orbitals, as shown in 
Fig. 11.25. The hybrid orbitals are identical in all respects, except that their 

directions of maximum electron density lie 120° from each other, necessarily 

in the same plane. The boron atom has three valence electrons, and we might 
expect it to display this type of hybridization. This is in fact found, for in 
BF3, BC13, and B(CH3)3 all bonds to the boron atom are equivalent, in the 

same plane, and the angle between any two of them is 120°. We will find that 
there are other molecules that display the planar, triangular geometry about 

the central atom characteristic of sp2-hybridization. 

FIG. 11.26 Schematic representation of the boundary 
surfaces of the four sp3 hybrid orbitals. 

Hybridized atomic orbitals provide a satisfactory description of the bonding 

in methane and its derivatives. There are four independent ways of combining 
one s- and three p-orbitals so as to produce four new equivalent hybrid sp3- 

orbitals. The geometric properties of the sp3 hybrid orbitals are shown in Fig. 

11.26. Like the bonds in the methane molecule, each sp3 hybrid orbital is 
directed toward an apex of a regular tetrahedron. Consequently we say that 

the bond orbitals in methane are formed from carbon sp3 hybrid atomic orbitals 
and the ls-orbitals of the hydrogen atoms. This description is also appropriate 

for the derivatives of methane obtained by simple substitution for the hydrogen 

atoms, such as CH3C1, CF4, etc. Furthermore, the ions NH^ and BH^ have 
the same number of electrons as does methane, and the same tetrahedral geom- 
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etry, so the boron and nitrogen atoms are said to display sp 3-hybridization in 
these compounds. 

So far we have emphasized the role of hybridization in highly symmetric 

compounds like CH4 and BF3, where all valence electrons of the central atom 

are engaged in bonding. Let us now think of ammonia NH3, from the point of 
view of hybridization. We might first imagine four sp3 hybrid orbitals about the 

central nitrogen atom. Three of these orbitals would be used to make bonds to 
the three hydrogen atoms, and thus would account for six of the eight valence 

electrons in the molecule. The remaining pair of electrons would occupy the 

last sp3 hybrid orbital. While an apparent consequence of this scheme is that 

the HXH angle should be 109.5°, the tetrahedral angle, the observed value is 
107°. We have already pointed out that this deviation from tetrahedral geom¬ 

etry is a consequence of the nonequivalence of the four electron pairs. 
The sp3-hybridization scheme can be applied to the water molecule. The 

total of eight valence electrons in H20 occupy four sp3 hybrid orbitals centered 

on the oxygen atom. Two of these four pairs of electrons form the two bonds to 
the hydrogen nuclei, while the other two pairs are nonbonding electrons. If 

this were an accurate picture, the angle between the two bonds in water should 
be 109.5°; the observed value is 105°. Once again the deviation from the regular 

tetrahedral angle can be attributed to the fact that the four pairs of valence 
electrons are not equivalent. 

To describe electron-pair bonding in molecules like PC15 and SF6, d-orbitals 
have to be brought into the hybridization scheme. The combination of one 

d-, one s-, and three p-orbitals does not produce five equivalent hybrid orbitals, 

but rather a pair of equivalent, oppositely directed orbitals, and another group 
of three equivalent hybrids. The relation between these groups is shown in 

Fig. 11.27. The two polar hybrid orbitals make an angle of 90° with the three 
equatorial hybrids, which in turn lie 120° from one another. We have already 

remarked that the five bonds in PC15 are not equivalent, and the dsp3 hybrid 

orbitals are consistent with this feature of the molecule. 

Schematic representation of the formation of dsp3 hybrid orbitals. FIG. 11.27 
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The situation pertaining to SF0 and similar molecules is somewhat simpler. 
Combination of two cl-, and one s-, and three 7>-orbitals does give six d2sp3 

hybrid orbitals that are equivalent to one another. These hybrid orbitals are 

directed to the corners of a regular octahedron, and thus are consistent with 

the geometry of SF6. 
From our discussion we can conclude that it is possible to construct sets of 

hybrid orbitals that have directional properties consistent with the bond angles 

found in many molecules. As a result, we can picture an electron-pair bond in a 

polyatomic molecule as being formed by the overlap of the appropriate hybrid 

orbital of one atom with an orbital from another atom. It is best to think of 
hybridization as a means by which we can retain our picture of localized electron- 

pair bond formation by atomic-orbital overlap, rather than to feel that hybrid¬ 

ization is the reason why molecules display a given geometry. It is not possible 

to see why a certain hybridization leads to a particular geometry without using 

mathematics, and consequently the characteristics of each hybrid set must be 
memorized. However, using the hybridization concept will help us uncover a 

number of regidarities in the geometry of molecules, as we shall see in later 

chapters. 

11.6 BOND POLARITY 

Earlier we noted that one of the differences between ionic and covalent bonding 

is the nature of the charge distribution. In a covalent bond between two 
identical atoms the bonding electrons are symmetrically distributed about both 

nuclei, whereas in an extreme ionic bond one or more electrons are transferred 
from one atom to the other. We anticipated, however, that for the most part 

we would encounter molecules with intermediate charge distributions in which 

a pair of electrons was shared, but not equally, by two nuclei. This type of bond 

is called polar covalent, since it combines the feature of electron sharing with the 

existence of positive and negative regions, or electrical poles. Covalent bonds 

between different atoms are of this type. 
Gaseous hydrogen chloride consists of individual HC1 molecules which have 

relatively little attraction for each other; these are characteristics of a cova¬ 

lently bonded molecule. Yet the electronic properties of the hydrogen and 
chlorine atoms are different. While the ionization energy of the hydrogen atom 

is 313.G kcal/mole, and that of chlorine is 299 kcal/mole, the electron affinity 

of hydrogen is only 17.4 kcal, much less than the 83.4 kcal/mole of the chlorine 
atom. This difference in electron affinities shows that the chlorine atom has a 
greater attraction for an additional electron than does the hydrogen atom. 

Consequently we expect the HC1 molecule to be electrically asymmetric, or 

polar, with more negative charge concentrated near the chlorine atom, and an 

excess positive charge near the hydrogen atom. 
Experiments confirm this expectation; HC1 is said to have a dipole moment. 

Two equal and opposite charges of magnitude 8 separated by a distance l 

518 THE CHEMICAL BOND 11.6 



constitute a dipole and produce a dipole moment p defined by /x = 6 X l. 

Thus the size of the dipole moment, proportional both to the magnitude and 
separation of the charges, is a convenient measure of charge asymmetry in a 

molecule. Two opposite charges of magnitude o = e = 4.8 X 10“10 esu 

separated by 1 A have a dipole moment of 4.8 X 10“10 X 10-8 = 4.8 X 
10-18 esu-cm. Consequently, 10"18 esu-cm is a convenient unit in which to 
measure the dipole moments of molecules, and one debye (abbreviated D) is 

defined as 10-18 esu-cm. Thus the dipole moment of two fundamental charges 
separated by one angstrom unit is 4.8 D. 

The dipole moment of the HC1 molecule is 1.03 D. We can better appreciate 

what this implies for the charge asymmetry' in HC1 if we imagine that in the 
molecule a net charge +6 is located at the hydrogen atom and a net charge — 6 
at the chlorine atom. Since the bond distance of HC1 is 1.27 A, the magnitude 
of 6 can be found by dividing the measured dipole moment by 1.27 X 10-8 cm. 
Thus 

5 = 
l 

1.03X10 18 esu-cm 

1.27 X 10-8 cm 
= 0.81 X 10-10 esu. 

Our calculation shows that the electron distribution in HC1 is equivalent to 

net opposite charges of 0.81 X 10“10 esu residing at each nucleus. This is the 

same as 0.81/4.8 = 0.17 of a full fundamental charge, which shows that while 

the electron distribution is asymmetric, it is surely not accurate to say that 
one electron has been transferred from hydrogen to chlorine. Accordingly, we 
say that the bond in HG1 is polar, but covalent, not ionic. 

All of the hydrogen halides have dipole moments caused byr the relatively 
great attraction that halogen atoms have for electrons. However, the atomic 

quantities which measure this attraction, the ionization energy and the electron 
affinity, show a general decrease in the sequence F, Cl, Br, I. Thus we can 

expect the dipole moments of the hydrogen halides to decrease as the atomic 

number of the halogen increases. Table 11.12 shows that this is what is found 

experimentally. Since the ionization energies and electron affinities of atoms 
close to each other in the periodic table are often very' similar, we might expect 

the diatomic molecules of neighboring elements to have relatively small polarity. 
This is often true, as the examples of CO, XO, and C1F in Table 11.12 show. 

Table 11.12 Dipole moments of gaseous molecules (debyes) 

nh3 1.47 H20 1.86 HF 1.98 

ph3 0.55 h2s 1.1 HCI 1.03 
AsH3 0.22 H2Se 0.4 HBr 0.79 
SbH;j 0.12 H2Te <0.2 HI 0.38 
CIF 0.88 N20 0.14 NO 0.16 
CIBr 0.57 no2 0.3 CO 0.13 
BrF 1.29 O 3 0.52 
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In general, we can expect a dipole moment to be associated with any covalent 

bond between two different atoms. This principle can be used, together with 

measured dipole moments, to make conclusions about the structure of poly¬ 

atomic molecules. For example, the existence of the dipole moment of carbon 
monoxide suggests that all carbon-oxygen bonds should be polar, yet the meas¬ 

ured dipole moment of carbon dioxide is zero. These two facts can be reconciled 

if the C02 molecule has a symmetric structure in which the polarities of the 
two carbon-oxygen bonds cancel each other. Thus carbon dioxide must have a 

linear symmetric structure, 

5- 26+ 5- 
0-C-0, 

rather than a bent structure, 

26 + 
C 

6- / \ 5- 
O 0 

Net dipole, 

which would have a dipole moment. Similarly, the boron-fluorine covalent 

bond must be polar, because the ionization energies and electron affinities of 

boron and fluorine are different. However, the boron-trifluoride molecule has 

no dipole moment, because BF3 has a planar symmetrical structure in which 

the effects of bond dipole moments cancel each other: 

5- 

F 
I 35 + 

B 
5- / \ 6— 

F F 

Quite a different situation is found in PF3, which has a pyramidal structure, 

35+ +\ 
p 

5- 

Net dipole. 

Here the dipole moments of the individual bonds add constructively, and a net 
molecular dipole moment is produced. If PF3 were planar, it would have no 

dipole moment. These examples show that the absence or presence of dipole 
moment in a polyatomic molecule can be a revealing clue to the structure, or 

atomic arrangement, of the molecule. 
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While we have chosen to speak of polar covalent bonds, we might ask how 

polar must a bond be before it is considered to be ionic. This is often a difficult 
question to answer. It might be supposed that the electrical conductivity of a 

pure substance would indicate whether or not ions were present. The equiva¬ 
lent conductivity of a fused salt is the current that flows when 1 volt is applied 

to a pair of plates 1 cm apart between which there is one equivalent of salt. 

Table 11.13 shows the equivalent conductivity of various halides at their 
melting points. It is clear that the alkali halides, our best examples of ionic 

compounds, are good electrical conductors and that the halides of the Group IV 
elements, normally thought of as covalently bonded, are good insulators. 

Furthermore, electrical conductivity, and hence ionic bond character of halides, 

tends to decrease from left to right along a row, and except for the alkali halides, 
increase from top to bottom in a column of the periodic table. However, there 

is no clear dividing line between those compounds which are conductors and 

those which are not. Both BeCl2 and A1C13 show small, but finite, electrical 
conductivity, demonstrating the presence of a few ions, but suggesting that 

most of the fused salt consists of polar covalent molecules. 

Table 11.13 Equivalent conductivities of fused chlorides (at their m.p., in ohm ’) 

LiCI 166 BeCI2 0.086 bci3 0 ecu 0 
NaCI 134 MgCI2 29 aici3 1.5 X 10~5 SiCI4 0 
KCI 104 CaCI2 52 ScCI3 15 TiCU 0 

Earlier it was suggested that a compound consisting of small covalently 

bonded molecules would have a relatively low boiling point. In contrast, ionic 
substances, where the forces which hold the condensed phase together are very 

strong, should have high boiling points. Table 11.14 shows the boiling points 
of several halides. As we suggested, the boiling temperatures of the alkali 

halides are high, while those of the Group IV molecules are low. The trends 
along rows and columns roughly parallel the trends in electrical conductivity. 

Once again, BeCl2 and A1C13 have intermediate properties, and it is not possible 
to classify either as an obviously covalent or ionic compound. The failure of 
compounds to fit into either of the two extreme classifications should neither 

surprise nor disappoint us. On the contrary, it is satisfying that there is an 

essentially continuous change in bond properties as the differences in the elec¬ 

trical characteristics of the bonded atoms steadily become more pronounced, 
and we must expect to find other examples of this situation. 

Table 11.14 Boiling points of some chlorides (°C) 

LiCI 1380 BeCI2 490 bci3 12.5 CCIj 76 
NaCI 1440 MgCI2 1400 A1C13 183 SiCU 57 
KCI 1380 CaCI2 1600 ScCI3 1000 TiCU 136 
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11.7 MULTIPLE BONDS 

In some molecules, two or even three pairs of electrons serve to bind tyo atoms 
together. For example, the bond dissociation energy of the nitrogen molecule is 

226 kcal/mole, which is nearly three times as large as the dissociation energy 
of most covalent electron-pair bonds. Since one nitrogen atom commonly forms 

single bonds to three other atoms, it is not difficult to imagine that a pair of 

nitrogen atoms would form three electron-pair bonds with each other. The 
electron-dot representation of the bonding in N2 is 

: N ::: N : 

which shows that the triple-bond picture is consistent with the octet rule. 

To obtain a more detailed picture of the triple bond in the nitrogen molecule, 
we bring together 2 nitrogen atoms, each stripped of its valence electrons, and 
then feed these 10 valence electrons into the available molecular orbitals. To 
form the molecular orbitals, it is best to start by arranging on each nitrogen 

atom a pair of sp hybrid atomic orbitals, as in Fig. 11.28(a). Two of these 
sp-hybrids overlap and form a cr-molecular orbital which accommodates 2 

valence electrons. The other two sp-hybrids point away from the bonding 

region and thus are not involved in bond formation. Each accommodates 2 
electrons, and consequently we have found orbitals for 6 of the 10 valence 

electrons. 

FIG. 11.28 Schematic representation of the formation of (a) the cr-bond orbital and two nonbonding 
orbitals, and (b) the ^-bonding orbital of nitrogen. Another 7r-bonding orbital is formed 
from py atomic orbitals. 

522 THE CHEMICAL BOND 11.7 



Two of the remaining valence electrons enter a bonding molecular orbital 

formed by the overlap of the p^-orbitals of the two atoms. This is a new type 
of electron distribution which is called a 7T-bonding molecular orbital, and the 
two electrons which occupy it are said to form a 7r-bond. As Fig. 11.28(b) 

shows, the 7r-bond does not have the cylindrical symmetry associated with a 

cr-bond. A second 7r-bonding orbital is formed by the overlap of the atomic 
Py-orbitals, and accommodates the last pair of valence electrons in the nitrogen 

molecule. Thus, of the six electrons which link the two atoms, one pair is in 
a cr-orbital, the second pair is in a TT^-orbital with greatest density in the x-direc- 

tion above and below the internuclear axis, and the third pair is in a Tr^-orbital 
with its greatest density in the y-direction. In other words, a triple bond con¬ 

sists of one cr-bond and two 7r-bonds. This is what we represent when we write 

N=N or : N ::: N : 

The bonding in other diatomic molecules which have 10 valence electrons is 
also properly described by this scheme. The most obvious example is carbon 

monoxide, which has 4 valence electrons contributed by the carbon atom and 

6 by the oxygen atom. These 10 electrons are disposed among the 5 orbitals 
just as in the nitrogen molecule, and the large dissociation energy of CO, 
256 kcal/mole, attests to the presence of a triple bond. The ion NO+, observed 

in gaseous discharges and in crystalline salts, also has 10 valence electrons and 
also has a substantial dissociation energy of 244 kcal/mole. Finally, the bond 

energy of cyanide ion, CN-, also a 10-valence electron molecule, is not known 

exactly but has been estimated to be greater than 200 kcal/mole. All other 
known properties of CN~ suggest that the carbon and nitrogen atoms are 

triply bonded. 
There is a slightly different description of the triple bond, which may be 

more accurate for some molecules. Instead of regarding the a component as 

made from the overlap of two sp-hybrid orbitals, we simply take it as generated 

from the overlap of the two pure p-orbitals. In addition, the 2s-orbitals are 
pictured as nonbonding. The corresponding description of N2 would be that, 

of the 10 valence electrons, four occupy nonbonding 2s-orbitals, two occupy 

the o' 2p-bonding orbital, and four occupy the two tt 2p-bonding orbitals. The 

true picture of nitrogen probably lies somewhere between the extremes of sp 
hybridization and pure p character for the cr bond. 

There is a double bond between the two carbon atoms in the ethylene mole¬ 

cule, whose structure is shown in Fig. 11.29. To explain the geometry and 
electronic structure of ethylene, we can start with sp2 hybrid atomic orbitals on 

each carbon atom. Two of these sp2-hybrids overlap to form a (7-bond between 
the two carbon atoms. Four other cr-bonds to the 4 hydrogen atoms are then 

made from the remaining lobes of the sp2-hybrids and the ls-orbitals of the 
hydrogen atoms. This system of cr-bonds accommodates 10 of the 12 valence 

electrons of ethylene. The last pair of electrons enters a 7r-bonding orbital 
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which results from the overlap of the px atomic orbitals of the 2 carbon atoms. 

Thus the double bond in this and other molecules can be pictured as one cr-bond 
and one 7r-bond. 

Besides accounting qualitatively for the large dissociation energy (145 

kcal/mole) of the carbon-carbon bond in ethylene, our bond description is 

consistent with the geometry of the molecule. The use of sp2 hybrid orbitals 
on the carbon atom was, indeed, suggested by the fact that the angles between 

the bonds in ethylene are near to 120°, as Fig. 11.29 shows. Moreover, the 
formation of the 7r-bond can occur only when the contributing p-orbitals are 

aligned parallel, which happens only when all the atoms lie in the same plane. 
Rotating the two CH2 groups in opposite directions would destroy the 7r-bond, 

which is consistent with the experimental fact that ethylene is a planar molecule 

that resists rotation about the C=C bond. 

FIG. 11.29 The geometry and schematic electronic structure of ethylene. The a-orbitals are directed 
along the bond axes and the 7r-orbital has its electron density above and below the plane 
that contains all the atoms. 

The rigidity of the double bond has an interesting consequence which is 
displayed by the N2F2 molecule. The two nitrogen atoms can be pictured to 

be sp 2-hybridized, and linked by a <r—re double bond. On each nitrogen atom 
one of the sp2 hybrid orbitals is used to form a bond to fluorine, and the other 

is occupied by a nonbonding pair of electrons. As shown in Fig. 11.30, the 

fluorine atoms may be on the same or on opposite sides of the double bond 
leading, in this case, to two isomers which are separable and distinguishable by 
physical methods. Since the isomers differ only in their geometry and not in the 

sequence in which atoms are arranged, they are said to be geometric isomers. 
The compound which has both fluorine atoms on the same side of the bond is 

called the cis isomer; that with fluorine atoms on opposite sides is called the 

1.25 A / 

N=N 
1.44 Ay^ 

/ 115° 
fig. 11.30 The structures of the trans and cis isomers 

of N 2 F 2. trans cis 

N=N 
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trails isomer. The two are separable because they can only be interconverted 
by destroying the double bond, which requires considerable energy. 

An analogous situation is found in compounds related to ethylene. There 
are cis and trans isomers of 1,2-dichloroethylene, CHC1CHC1, whose structures 
are 

Cl Cl 
/ 

c=c 
/ \ 

H H 

and 

II Cl 
\ / 

c=c 
/ \ 

Cl Id 

cis dichloroethvlene 
/x = 1 D 

trans dichloroethvlene 
H = 0 

Note that the trans isomer of dichloroethylene has a symmetric structure in 

which the dipole moments of the bonds point in opposite directions and cancel 
each other, giving a molecular dipole moment of zero. In cis dichloroethylene 
the dipole moments of the two C—Cl bonds and the C—H bonds are aligned 

roughly in the same direction, and consequently the molecule has a dipole 
moment. 

The lowest-energy molecular orbital of H3. The nuclei lie FIG. 11.31 

at the apices of an equilateral triangle, and the electron 
density is distributed symmetrically between them. 

11.8 MULTICENTER BONDS 

So far we have encountered situations in which one pair of electrons bond only 

two atoms. However, there are many instances in which one electron pair holds 
several atoms together. In these cases we say that multicenter, or delocalized, 

bonding exists. The simplest molecule which displays multicenter bonding is 
H3 , an ion found in electrical discharges through hydrogen gas. There have 

been no experimental determinations of the structure of H^, but because of its 
simplicity, theoretical predictions about it are very reliable. These show that 
H;j is an equilateral triangular molecule and that the two electrons occupy a 
molecular orbital which covers all three nuclei, as pictured in Fig. 11.31. Con¬ 

sequently, in H;+, two electrons bond three atoms together. The representation 
of the molecular orbital in Fig. 11.31 is a reasonably accurate, but not very 

convenient, way of showing the electronic behavior. However, our usual 
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method of representing an electron-pair bond by a line or a pair of dots, as in 

H + H 

/ or 
[h hJ H H 

completely fails to show the most important features of the molecule: both 

electrons visit all three nuclei, and identical forces hold all pairs of atoms 
together. To retain the simplicity of electron-dot or line pictures and still 

adequately describe the bonding in H;j~, we adopt what is known as resonance 
notation. This is a scheme in which the true electron distribution is represented 

by a superposition or blend of several electron-dot or line pictures. For 

these are 

II + H + H 

/ <—» \ <—> 
[h hJ [_II Hj H H 

The double-headed arrows are meant to indicate that no one of these structures 

is the true electron distribution, but that the three pictures are to be taken 

together to indicate that two electrons bond the three nuclei in a symmetric 
fashion. It is conventional to say that Hj is a resonance hybrid of the three 

extreme structures shown. Note that the need for the concept of resonance 
arises because we choose to represent the behavior of electrons by electron-dot or line 

pictures. Just one of these pictures cannot show that electrons visit more than 
two nuclei, so we resort to drawing several resonance structures. Despite this 

rather artificial nature, the resonance concept does provide a very helpful 

means of discussing the electronic structure of many molecules. 
The bond structure of the carbonate ion, CO^, can be conveniently discussed 

in terms of resonance structures. The ion has a planar structure in which all 

carbon-oxygen bonds are identical: 

O 

C 
/ \ 

|_o oj 
Since only elements of the second period are involved, we might expect the 

octet rule to be satisfied. However, a little experimentation shows that it is 
impossible to draw electron-dot structures which at the same time satisfy the 

octet rule and show that all C—O bonds are identical. We can only draw 

: 0 : 0 : : 0 : 

# # *-> • • <-* •• 

C C C 

;'o. ' .o'; *o ’ .o'; ;'o. '. o. 
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In each of these resonance structures one of the carbon-oxygen links is a double 
bond while the other two are single bonds. Taken together the structures mean 
that all carbon-oxygen bonds are identical; there is a <x-bond from the carbon 
atom to each oxygen atom, and in addition there is one pair of electrons occupy¬ 

ing a molecular orbital which binds all three oxygen atoms to the central carbon 
atom. Each C—O link is intermediate between a single and double bond; in a 
sense, each is a 1^ bond. 

There are other four-atom chemical species which, like COjf, have a sym¬ 

metrical planar structure and 24 valence electrons. Two of the more common 
examples are nitrate ion, NO^, and sulfur trioxide, SO3. Since both these 

molecules have the same structure and number of valence electrons as CO^, 
their bonding can be represented by resonance structures: 

0 — 0 — 0 

N <—> N N 
/ \ \ / \ 

|_o oj 
O

 

O
 [0 oj 

O 
I 
S 

/ \ 
o o 

o 

s 

^ \ 
o 0 

As another example of a group of isoelectronic molecules which require 
resonance notation, consider O3, S02, and NO^~. All have 18 electrons, and all 

are symmetrical triangular molecules in which the two bonds are identical: 

S 

/ \ 
0 0 

The resonance structures for ozone which satisfy the octet rule and which 

taken together show the equivalence of the two bonds are 

O 0 

Analogous structures for S02 and N02 are 

S S 

✓ \ - / \ 
0 0 0 0 

N 1 - N 

/• \ / \ 
Lo oj Lo oj 
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The resonance concept is particularly helpful in discussing the properties of 

organic molecules. To take a specific example, a variety of chemical and physical 

measurements show that benzene, CgHg, is a planar regular hexagon of carbon 
atoms, to each of which is attached a hydrogen atom. The detailed bond 
structure cannot be one of the two obvious possibilities: 

H H 

C C 

H : : C C : : H H : : C C : : H 

H : : C C : : H H : : C C : : H 

' C ‘ C ’* 

H H 

for in each of these structures there are two different types of carbon-carbon 

bonds. Consequently the molecule is pictured as a resonance hybrid of the two 
structures, which we can briefly indicate by 

where the presence of the carbon and hydrogen atoms is understood. The idea 

that benzene is a resonance hybrid of two conventional structures is consistent 
not only with the geometric structure, but with its chemical properties, as we 
will see in Chapter 16. 

11.9 METALLIC BONDING 

Since three-quarters of the elements in the periodic table are metals, it is im¬ 
portant to analyze the nature of the metallic bond. Once again we would like 

to be able to relate the nature and strength of the bonding to the properties 

of the individual atoms, and there are two particularly significant characteristic" 
common to virtually all atoms of metallic elements. First, the ionization 

energies of the free atoms of the metallic and semimetallic elements are generally 

small, almost always less than 220 kcal/mole. The exception is mercury, whose 
ionization energy is 240 kcal/mole. In contrast, the atoms of the nonmetals 

usually have ionization energies greater than 220 kcal/mole. The second 

characteristic of a metallic atom is that the number of its valence electrons is 

less than the number of its valence orbitals. This observation is consistent with 
the fact that the metallic elements occur on the left-hand side of the periodic 

table, and are separated from the distinct nonmetals by the elements boron, 
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silicon, germanium, and antimony. Let us investigate the consequences of 
these characteristics and see how they are related to metallic bonding. 

A low ionization energy means that- an atom has relatively little attraction 
for its valence electrons and suggests that it has very little affinity for any 

additional electrons. We have stressed that the stability of a covalent bond 
results from the potential-energy lowering that valence electrons experience 

when they move under the influence of more than one nucleus. If each of the 
two atoms that are being bound has rather slight attraction for electrons, we 

cannot expect the energy lowering of their valence electrons in the molecule 
to be at all substantial. Consequently we should not be surprised to find that 
the atoms of metallic elements form relatively weak electron-pair bonds with 

each other. Examination of Table 11.15 shows that this is true. The bond 

energies of the known diatomic molecules of the metallic elements are all very 
small, and there are many possible diatomic molecules of metallic elements that 

are unknown. Presumably this is true because they are not energetically stable. 

Table 11.15 Dissociation energies of molecules 
of metallic elements (kcal/mole) 

U2 25 Zn2 5.7 
Na2 17 Cd2 2.0 
k2 12 Hg2 1.4 
Rb2 11 Pb2 16 
Cs2 10.4 Bi2 39 
NaK 14 NaRb 13 

While the interaction of a metallic atom with one other atom does not often 

lead to significant energy lowering, it is possible that greater stability can be 
achieved if the valence electrons of one atom move under the influence of 

several other nuclei. It is the second characteristic of metallic atoms, fewer 
valence electrons than valence orbitals, that makes this type of interaction 
possible. The fundamental limitation on the number of electrons that can be 

close to a given nucleus is imposed by the Pauli Exclusion Principle. For free 

atoms, the Exclusion Principle tells us exactly how many electrons of a given 
principal quantum number there can be. For aggregates of atoms, the applica¬ 

tion of the Pauli Principle is more difficult, but general observations and theo¬ 

retical arguments suggest that the greatest number of valence electrons of loiv 
energy, shared or unshared, that can surround a given atom in any aggregate is 

equal to twice the number of its atomic valence orbitals. This is the basic 
reason for saturation of valence—the reason why NF3 but not NF5, PC13 and 

PC15 but not PCI7, exist. The fact that the atoms of metallic elements have 

few valence electrons means that when in a condensed phase, each atom may 
share the electrons of many nearest neighbors in a manner that is energetically 
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favorable, without violating the Pauli Exclusion Principle. Indeed, the charac¬ 
teristic feature of metallic crystals is that the coordination number of the atoms 
is high: 8 in the body-centered cubic lattice, and 12 in the hexagonal and cubic 
closest-packed structures. 

(a) 

OoO 
000^*00 

fig. n.32 Formation of molecular orbitals and the accompanying energy change for (a) Li2 and (b) Li3. 

As an example of how the high coordination number in metals does not lead 
to a violation of the Exclusion Principle, consider the element aluminum, which 
has a cubic closest-packed lattice. We can take the attitude that each atom 
shares its 3 valence electrons with each of its 12 nearest neighbors. On the 

530 THE CHEMICAL BOND 11.9 



average, then, a given atom receives T% of an electron from each of its neighbors, 

or a total of 3 from all its neighbors. Consequently the total average number 
of electrons shared by any atom is 6, 3 of which come from itself and 3 from its 

neighbors. We see, therefore, that despite the high coordination number, the 
average number of electrons near a single atom does not exceed twice the 
number of valence orbitals. 

So far our argument suggests that the reason metallic crystals are more stable 

than the separated atoms is that in the crystal, the atomic valence electrons 
can move in the electric field of several nuclei. This idea can be extended in a 

way that shows that metals are extreme examples of the delocalized or multi¬ 
center bonding we discussed in Section 11.8. To see how this comes about, let 

us imagine building a one-dimensional lithium crystal by bringing together 
two, three, and then many lithium atoms. 

Figure 11.32(a) illustrates the formation of Li2 from two lithium atoms. 
The figure shows both the potential energy of an electron and its total energy 

in both the separated atoms and the diatomic molecule. When the atoms are 
brought together, the energy levels of the 2s atomic electrons split into two 
new levels, labeled a2s and a*2s, which correspond to bonding and antibonding 

molecular orbitals. In Li2, both electrons occupy the <r2s-orbital, but any elec¬ 

trons in the cr2s- or <r*2s-orbitals are the property of the molecule as a whole. 
On the other hand, the ls-electrons are largely localized near particular atoms, 

since their total energy is less than that needed to pass over the potential-energy 
barrier that exists between the two atoms. 

E 

The behavior of the energies of the valence orbitals of lithium when the metallic crystal FIG. 11.33 

is formed from many separated atoms. 

When three atoms are brought together, the situation is as pictured in Fig. 

11.32(b). There are three molecular orbitals, and once again electrons in any 
of these orbitals are the property of the molecule as a whole, and not of any 

one particular atom. The situation that obtains when many lithium atoms are 
brought together is shown in Fig. 11.33. For N atoms there are N molecular 
orbitals that arise from the overlap of the 2s-orbitals alone, and the energies 

of these orbitals now form a band of closely spaced levels. More orbitals are 
contributed by the overlap of the 2p atomic orbitals, and the energies of these 
also lie in a dense band that is joined continuously to the band formed from the 

2s-orbitals. Any electron in one of these orbitals is the property of the crystal 
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as a whole, and serves to bind many nuclei together. It is in this sense that 

metals represent an extreme case of multicenter bonding. 

The qualitative conclusions we have drawn hold true for three-dimensional 
crystals. In general, all the valence orbitals of the free atoms are converted to 

a group of nonlocalized or multicenter orbitals in the metallic crystal, and the 
energies of these orbitals form a closely spaced group called the valence band. 

One way to describe the electronic situation in metals, then, is to picture the 

crystal as a collection of ions like Li+ immersed in a “sea” of mobile valence 
electrons. This electron sea is responsible for the cohesion of metals, and for 

their unique mechanical, electrical, and thermal properties, as we shall see in 

subsequent chapters. 

11.10 CONCLUSION 

Chemical bonding is an interesting but complex subject. In this chapter we 

have exposed the most useful fundamental concepts, and have suggested a few 
rules which will be helpful in discussing and understanding the relation be¬ 

tween bonding and chemical properties. However, it must be realized that 

bonding phenomena are so complex that there exist “violations” of almost 
every simple bonding rule. In particular, it was long believed that the rare gas 

atoms could never form any true compounds because of their “complete valence 

octet.” The synthesis in 1962 of the xenon fluorides removed this last “safe” 
application of the otherwise flimsy octet rule. Consequently, in order to deepen 

our understanding of the valence rules, and to be sure that they do not need 
revision or modification, we must constantly test them by application to known 

chemical phenomena. This will be our purpose in subsequent chapters. 

SUGGESTIONS FOR FURTHER READING 

Cartmell, E., and G. W. A. Fowles, Valency and Molecular Structure. London: 
Butterworth, 1961. 

Companion, A. L., Chemical Bonding. New York: McGraw-Hill, 1964. 

Coulson, C. A., Valence. New York: Oxford, 1961. 

Day, M. C., and J. Selbin, Theoretical Inorganic Chemistry. New York: Reinhold, 
1962. 

Gray, H. B., Chemical Bonds. Menlo Park, Calif.: W. A. Benjamin, 1973. 

Griswold, E., Chemical Bonding and Structure. Lexington, Mass.: Raytheon Education 
Co., 1968. 

Harvey, K. B., and G. B. Porter, Introduction to Physical Inorganic Chemistry. 
Reading, Mass.: Addison-Wesley, 1963. 

532 THE CHEMICAL BOND 



Linnett, J. W., Wave Mechanics and Valency. London: Methuen, 1960. 

Pauling, L., The Nature of the Chemical Bond. Ithaca, New York: Cornell, 1960. 

Ryschkewitsch, G. E., Chemical Bonding and the Structure of Molecules. New York: 
Reinhold, 1963. 

PROBLEMS 

11.1 In which of the following compounds would you expect to find the smallest 

separation between the nuclei of neighboring ions? All have the sodium chloride 

lattice structure: Nal, KC1, LiF. Which should have the most stable crystal lattice? 

11.2 If the alkali-halide crystals were truly ionically bonded, their crystal-lattice 

energies would be proportional to 1/ro, where ro is the separation between neighboring 

ions. Use the following data for ro and those in Table 11.11 to show that a plot of 

crystal-lattice energy as a function of 1/ro is linear: 

LiF 2.01 A KF 2.66 A 

Li Cl 2.57 A KBr 3.29 A 

LiBr 2.75 A KI 3.53 A 

Lil 3.02 A 

11.3 All of the alkaline-earth oxides have the sodium-chloride crystal lattice structure. 

Calculate the contribution to the lattice energy due to the Coulomb forces between 

ions. The separation in angstroms of neighboring nuclei are: 

MgO 2.10 SrO 2.57 

CaO 2.4 BaO 2.76 

11.4 By considering the energy factors that determine the stability of ionic crystal 

lattices, and the ease of formation of the free ions themselves, try to explain why 

although both T1F and TIF3 exist, Til exists but TII3 does not. 

11.5 Predict the geometries of the following molecules and ions: 

BF- PF- 

TeCl4 XeF4 

I3~ CuCl, 

PbCl2 

Justify your predictions by citing for each case an analogous or isoelectronic species 

whose geometry you know. 

11.6 The sulfate ion, SO^, consists of a central sulfur atom surrounded by four 

oxygen atoms located at the corners of a regular tetrahedron. All the sulfur-oxygen 

bonds are equivalent. Draw the electron-dot structure(s) that are consistent with the 

equivalence of the bonds. 

11.7 What feature of electron sharing is it that gives the covalent bond in H2 its 

stability? Is the sharing of an electron by two atoms a sufficient condition for the 

formation of a stable bond? 

11.8 Phosphorus exists in one of its allotropic forms as P4 molecules. In a P4 mole¬ 

cule, the phosphorus atoms are at the corners of a regular tetrahedron, each atom 

is bonded to three others, and all bonds are equivalent. Draw the P4 molecule, and 
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indicate its electron-dot structure. What is the P—P—P bond angle? How does 

this compare with the bond angles in PH3? On this basis do you find the existence of 

P4 tetrahedra surprising or something to be expected? 

11.9 The rule that the number of covalent bonds an atom can form is related to the 

possible number of unpaired valence electrons it can have is consistent with the 

formulas of a large number of known compounds. Show that this rule leads to the 

prediction of the existence of compounds like XeF2 and XeF4. 

11.10 Discuss how electron spin influences (a) the number of covalent bonds an 

atom can form, and (b) the geometries of covalent compounds. 

11.11 The linear geometry of HgCD suggests that we think of the central mercury 

atom as displaying sp-hybridization. What form of hybridization is associated with 

the central atom when the atoms bonded to it are located at the corners of (a) an 

equilateral triangle, (b) a regular tetrahedron, (c) an octahedron, (d) a trigonal 

bipyramid? 

11.12 The antibonding o-*ls differs from the bonding als-orbital of Hj in that the 

antibonding orbital has a deficiency of electron density in the region between the 

nuclei. In effect, the cr*ls-orbital is divided by a nodal plane of zero electron density 

which is perpendicular to the internuclear axis. With this in mind, draw what you 

think an antibonding 7r*2p-orbital should look like. 

11.13 The molecules of nitrogen N=N and acetylene HC=CH are isoelectronic, and 

both incorporate a triple bond. By reviewing the electronic structure of nitrogen, 

predict the geometry of acetylene, and discuss its electronic structure in terms of 

hybridization about the carbon atom, and the type of molecular orbitals occupied 

by electrons. 

11.14 The molecule PF3 is polar, with a dipole moment of 1.02 D, and thus the 

P—F bond is polar. Judging from the proximity of silicon and phosphorus in the 

periodic table, we expect that the Si—F bond would also be polar, but the molecule 

SiF4 has no dipole moment. Explain why this is so. 

11.15 The gaseous potassium chloride molecule has a measured dipole moment of 

10.0 D, which indicates that it is a very polar molecule. The separation between the 

nuclei in this molecule is 2.67 X 10~8 cm. What would the dipole moment of a KC1 

molecule be if there were opposite charges of one fundamental unit (4.8 X 10-10 esu) 

located at each nucleus? Is the picture of a completely ionic KC1 molecule entirely 

satisfactory? 

11.16 In nitryl chloride, O2NCI, the chlorine atom and the two oxygen atoms are 

bonded to a central nitrogen atom, and all atoms lie in a plane. Draw the electron-dot 

resonance structures that satisfy the octet rule and which together are consistent with 

the fact that the two nitrogen-oxygen bonds are equivalent. 

11.17 In the formulas of the following molecules, the element given first is a “central” 

atom to which the other atoms are attached. What do you expect their geometric 

structure to be? ASF3, AsFs, XeF2, AlFj", PCI4“, PClj^. 

534 THE CHEMICAL BOND 



CHAPTER 12 

MOLECULAR ORBITALS 

In Chapter 11 we examined a number of simple descriptions of the chemical 

bond. We emphasized that, regardless of the model or picture of the bond, the 

physical phenomenon responsible for molecular stability is the lowering of the 

Coulomb potential energy that occurs when valence electrons can move under 

the attraction of two or more nuclei. The wave functions that describe how 

the electrons in molecules are distributed are called molecular orbitals. These 

molecular orbitals can be used to calculate the geometry, energy levels, and 

other properties of molecules. It is possible, however, from the qualitative 

characteristics of molecular orbitals, to deduce or rationalize some important 

qualitative properties of molecules. In this chapter we shall extend and broaden 

our ideas about molecular orbitals so that we will be able to use them to under¬ 

stand the structure and stability of a variety of molecules. 

12.1 ORBITALS FOR HOMONUCLEAR DIATOMIC MOLECULES 

In Section 11.3 we discussed the characteristics of the two molecular orbitals 

of which have the lowest energy, crls and cr*ls. In preparation for our 

encounter with more complex systems, it is desirable to review and summarize 

what was said about these simplest molecular orbitals. 

By solving the Schrodinger equation for the motion of one electron in the 

field of two fixed protons, it is possible to obtain exact, but quite complicated, 

descriptions of the molecular orbitals of H^b A description which is mathe- 
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matically much simpler, though definitely an approximation, can be obtained 

by regarding these molecular orbitals as Linear Combinations of Atomic Orbital 

Molecular Orbitals, conventionally denoted as LCAO-MO’s. This means simply 

that to find the molecular-orbital wave function, we linearly combine (add or 

subtract) the atomic-orbital wave function of one atom with the atomic-orbital 

wave function for the other atom. We have then, for two protons a and b, 

<rl$ = 1 [iAa(ls) + *b(l«)J, 
V‘2(l + A') 

<T*18 ^ [^a(ls) — ^b(l«)]. 
V2(l - S) 

The factors of l/\/2(l ± A) normalize the molecular wave function so that the 

probability of finding an electron somewhere in all space is unity. The quantity 

S is called the overlap integral, which is explicitly 

where dr is the differential clement of volume. The overlap integral S is a 

measure of how closely the two atomic wave functions coincide. Usually S is 

approximately equal to 0.2 or 0.3. 

A pictorial representation of this LCAO procedure appears in Fig. 12.1. 

When the two 1$ functions are added they reenforce each other everywhere, 

and most notably in the region between the two nuclei. This buildup of electron 

density between the nuclei helps to lower the Coulomb potential energy. As a 

result, this orbital has bonding characteristics and is denoted crls. When one 

atomic orbital is subtracted from the other, they exactly cancel each other in a 

plane midway between the nuclei, and thereby produce a nodal plane. The 

molecular wave function is of opposite sign on either side of this nodal plane. 

When the wave function is squared, the resulting probability density is of 

course everywhere positive, except on the nodal plane, where it is zero. This 

deficiency of electron density in the internuclear region helps to raise the 

Coulomb potential energy of the system, and the node in the wave function 

produces an increase in the electron kinetic energy. Consequently the total 

energy is high, the molecule is not bound, and the orbital is described as 

antibonding. 

The phenomena associated with the formation and description of these two 

molecular orbitals should be noted carefully, since they will aid us in the con¬ 

struction of other molecular orbitals. Briefly, we can expect the following: 

Linear combination of two atomic orbitals will produce two molecular orbitals, 

one of higher and one of lower energy than the atomic orbitals. If the molecular 

orbital has a node between the nuclei, it will tend to be antibonding. If there is 

a buildup of electron density between the nuclei, the molecular orbital will 

tend to be bonding. 
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We can now examine the molecular orbitals needed to describe the homo- 

nuclear diatomic molecules of the second row of the periodic table, Li2) Na. 

02, etc. To begin, we note that the 1« atomic orbitals of these atoms are held 

quite close to the nuclei, and are very little affected by whether the atom is 

free or bonded chemically. We can, therefore, regard these inner-shell electrons 

as nonbonding, and concentrate only on molecular orbitals which we can gen¬ 

erate from the valence atomic orbitals. 

Two ways of schematically representing the formation of bonding and antibonding molec- fig. 12.x 
ular orbitals by addition and subtraction of atomic orbitals. 

By linearly combining a 2#-orbital on atom a with a 2*-orbital on atom b 

we get approximations to the bonding and antibonding <t2« molecular orbitals: 

<r2* a; w.(2s) + *b(2s)], 

<r*2s a; N*IM2s) - M2«)]. 
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The procedure is completely analogous to that used for crls and o'* Is of H^\ 

The quantities N and N* are the normalization factors. The cr*2s-orbital has a 

nodal plane between the two nuclei. Consequently it is antibonding and is of 

higher energy than <t2$, which does not have this nodal plane and is bonding. 

Formation of the <t2s- and <x*2s-orbitals is illustrated in Fig. 12.2. Note that 

there is a nodal surface that surrounds the nuclei in both the <t2s- and a*2s- 
orbitals, which distinguishes them from the a- and <7*-orbitals generated from 

Is atomic functions. 

FIG. 12.2 Formation of the cr2s bonding and a*2s antibonding orbitals by addition and subtraction of 
2s atomic orbitals. The plus and minus signs refer to the sign of the wave functions, and 
not to nuclear or electronic charges. 

fig. 12.3 Schematic representation of the formation of the a2p bonding and a*2p antibonding or¬ 
bitals by linear combination of 2pz atomic orbitals. 

Proper combination of the 2p-orbitals associated with the two nuclei pro¬ 

duces another pair of (X molecular orbitals, cr2p and <x*2p. If we take the inter- 

nuclear line to be the 2-axis, and then recognize that the 2p2-orbital of each 

nuclear center has cylindrical symmetry about this axis, we see that combining 

such atomic orbitals will indeed produce a cylindrically symmetric, or cr, 

molecular orbital. 
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la forming the linear combinations of 2p3-orbitals, we must be careful to 

take proper account of the fact that the sign of \p(2pz) is different in the two 

lobes of the wave function. To avoid confusion we first set up the atomic 

orbitals as shown in Fig. 12.3, with the positive lobe of each function pointed 

into the internuclear region. Then, since the overlapping lobes of the two 

orbitals are both positive, adding the two functions together will increase the 

electron density in the internuclear region, and produce a bonding <r2p-orbital. 

Subtraction of one function from the other produces a nodal plane midway 

between the nuclei, and the resulting molecular orbital, designated <r*2p, is 

antibonding. Thus we have 

a2p Q* N[M2P.) + M2p*)} 
and 

cr*2P =* N*[M2Pz) ~ 4'b(2pz)] 

as the LCAO approximations to these two molecular orbitals. Figure 12.3 

shows a schematic representation of these orbitals. 

Formation of the bonding 7r and antibondingx* molecular orbitals by linearcombination of fig. 12.4 
atomic orbitals. 

Formation of 7r molecular orbitals from p atomic orbitals has been discussed 

in Section 11.7. As indicated there, adding the px-orbital on nucleus a to the 

Px-orbital on nucleus b in such a way that the positive and negative lobes of one 

orbital overlap with respectively the positive and negative lobes of the other 

orbital produces a 7r2px-bonding orbital. The LCAO approximation to this 

orbital is 

tt2px ^ W»(2p,) + i£b(2px)], 
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and its pictorial representation is given in Fig. 12.4. While the 7r-orbital has a 

nodal (yz) plane which contains the nuclei, there is an increase in electron density 

between the nuclei, and the orbital is bonding. 

Subtraction of one 2px-function from the other produces an approximation 

to a 7r* antibonding orbital 

tt*2 px = Ar*['/'a(2px) — ib(2px)], 

which is shown in Fig. 12.4. Now in addition to the nodal plane which contains 

the nuclei, we have a node between the nuclei, and concomitant antibonding 

character. 

An exactly analogous argument can be applied to the combination of atomic 

2p!/-orbitals. A bonding 7r2p!/-orbital and an antibonding 7r*2p!/-orbital can be 

generated which are oriented perpendicular to the 7t2px- and 7r*2px-orbitals. 

Thus the total of four atomic p-orbitals which are perpendicular to the inter- 

nuclear axis generates a total of four tv molecular orbitals—two of which are 

bonding, and two of which are antibonding. 

The eight molecular orbitals which we have discussed are all that can be 

generated for a diatomic molecule from the total of eight atomic orbitals of 

principal quantum number n = 2. Molecular orbitals of higher energy can be 

formed from linear combinations of 3s- and 3p-orbitals, but no new ideas are 

involved, and it is not necessary to discuss these higher-energy orbitals 

explicitly. 

We turn now to the problem of determining the order of increasing energy 

of the molecular orbitals that we have discussed. Three general rules are helpful. 

(1) The energy of the molecular orbitals is strongly influenced by the energy of 

the atomic orbitals to which they are related. (2) If two atomic orbitals are 

largely confined to regions near their respective atomic nuclei and, therefore, do 

not overlap extensively, the molecular orbitals formed from them will be neither 

very strongly bonding nor strongly antibonding. (3) If the atomic orbitals do 

overlap extensively, the bonding orbital will have an energy quite a bit lower 

than that of the atomic orbitals, and its antibonding partner will have a corre¬ 

spondingly higher energy. The quantitative description of molecular-orbital 

energies can come only from experiment or, in favorable cases, from extensive 

quantum-mechanical calculation; and each molecule and ion has its own unique 

energy-level pattern. Just as is true for atomic energy levels, however, certain 

useful qualitative generalizations can be made. 

Figure 12.5a shows the molecular-orbital energy pattern which applies to 

the homonuclear diatomic molecules 02, F2, and their positive and negative 

ions. The valence orbitals of lowest energy are the cr-cr* bonding-antibonding 

pair generated from the 2s atomic orbitals. These lie lowest in energy, princi¬ 

pally because the 2s atomic orbitals from which they are formed lie well below 

the 2p-orbitals in the free atoms. The 2s-orbitals, particularly in fluorine, are 

so low in energy that they do not overlap and interact extensively. As a result 
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the <r2s-orbital is not strongly bonding, nor is the or*2s-orbital very strongly 

antibonding in oxygen and fluorine. 

Since the atomic 2p-orbitals all have the same energy, the molecular orbitals 

generated from them have somewhat similar energies. The overlap of the 

2pz-orbitals along the internuclear line is relatively large, and consequently, 

the <r2pz bonding orbital has lower energy, and its antibonding partner cr*2pz 

has higher energy, than the other molecular orbitals from atomic 2p-orbitals. 

The itx and Ty bonding orbitals have the same energy, since they are equivalent 

except for their orientation in space. They lie somewhat below, and their anti¬ 

bonding partners 7r* and 7r* lie somewhat above, the energy of the atomic 

orbitals used to generate them. 

Molecular-orbital energy patterns for homonuclear diatomic molecules, (a) Diagram for fig. 12.5 
molecules with low-lying 2s-orbitals. (b) Diagram for N2 and lighter homonuclear diatomics. 

For the diatomics Li2, Be2, B2, C2, and N2, the molecular orbitals fall in a 

very slightly different pattern, shown in Fig. 12.5(b). In these molecules, the 

cr2p-orbital lies a bit higher in energy than the two bonding 7r2p-orbitals. This 

feature is a consequence of the repulsion between electrons that occupy the 

cr‘2s- and <7*2s-orbitals and any electrons in the c2p-orbital. These repulsions, 

and the resultant elevation of the energy of the cr2p-orbital, occur because both 

the a2p and cr2s electrons tend to occupy the same region of space in these 

lighter diatomic molecules. This effect is diminished in 02 and F2 because in 

the atoms O and F, the 2s atomic orbitals are quite low in energy, and are largely 

confined to regions close to the nucleus. This characteristic is maintained in 

the a2s bonding and antibonding orbitals of 02 and F2. Consequently, the <r2s 
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electrons do not seriously interfere with the c2p electrons, and in the heavier 

diatomics, the energy of a2p is below the level of the 7r2p-orbitals. 

Now we can examine the electronic structure and bonding of the homo- 

nuclear diatomic molecules of the second-row elements by feeding the appro¬ 

priate number of electrons into the orbital energy-level patterns of Fig. 12.5. 

We begin with Li2, which has a total of six electrons. Four of these are Is 

electrons, two on each atom. The energy of these “core” electrons is very low, 

and since they are largely confined to regions near the nuclei, they do not con¬ 

tribute to chemical bonding. We shall therefore ignore them in Li2 and in the 

other diatomics of higher atomic number. We are left then with two electrons 

which can be accommodated with paired spins in the <r2s-orbital. Since Li2 has 

two electrons in a bonding orbital, we say it has a single electron-pair bond. 

For Be2, we have in addition to the core Is electrons, four valence electrons 

to accommodate. Two of them enter the <r2s bonding orbital. The other two 

must enter the next available orbital of lowest energy, which is the (r*2s anti¬ 

bonding orbital. Since Be2 has two bonding and two antibonding electrons, its 

situation is much like that of He2. We expect, therefore, that Be2 will not be 

a bound molecule, and in fact no stable Be2 is known. 

The molecule B2 is known to exist as a gaseous species, and to have two 

unpaired electrons. Let us see if this is consistent with our molecular-orbital 

energy-level diagram. Of the six valence electrons, a total of four enter the 

cr2s- and cr*2s-orbitals. The remaining two electrons would pair and enter the 

cr2p-orbital, if that were the orbital of lowest energy available. In B2, however, 

the 7t2px- and 7r2pj/-orbitals lie lower in energy than a2p, as we have discussed 

earlier. Since the 7r-orbitals have the same energy, the most favorable situation 

is for each to be occupied by one electron. The spins of these two electrons are 

parallel, just as are the spins of the electrons in the half-filled 2p atomic orbitals 

in C, N, and 0. In B2 then, we find four bonding valence electrons, and two 

antibonding electrons, for a net of 4 — 2 = 2 bonding electrons. Thus we can 

say that there is a single bond in B2. However, a more accurate description 

would be that there are two half bonds, since the last two bonding electrons are 

in different orbitals. 

The molecule C2 occurs in flames and electrical discharges through carbon- 

containing gases. It has a bond energy of 150 kcal/mole, which suggests that 

the atoms are linked by a double bond. The molecule has eight valence elec¬ 

trons, two more than B2. The most stable valence-electron configuration of C2 

has been found to be (tT2s)2(a*2s)2('jr2px)2('jr2px)2. The net number of bonding 

electrons is four, and thus the molecule has a double bond. The bonding is 

rather unusual in that the double bond consists of two ir bonds, rather than 

the more usual cr-7r combination. Another unusual feature of C2 is that the 

electron configuration (<r2s)2(cr*2s)2(%2px)2(Tr2py)x{c2p)1 is only 2.3 kcal/mole 

higher in energy than the ground state. This shows that the ir2p- and <r2p- 

orbitals are quite close in energy. 

The next molecule in the sequence is N2. As indicated in Section 11.7, the 

electron configuration of N2 is (a2s)2(a*2s)2(Tr2px)2(Tr2py)2(cr2p)2, which corre- 
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sponds to a triple bond. The a'2s-a*2s bonding-antibonding pair can almost as 

well be regarded as two nonbonding 2s atomic orbitals, only slightly distorted 

by interaction with each other. Thus the triple bond consists of two 7r bonds 

and a cr bond. 

In N2, all bonding orbitals are filled, and any additional electrons in sub¬ 

sequent molecules must enter antibonding orbitals. The 02 molecule, for 

example, has 12 valence electrons, two more than N2. The first ten of these 

can be accommodated as were the electrons in N2, but the last two must enter 

the 7r* antibonding orbitals. The configuration of lowest energy has one of 

these last two electrons in the 7r*-orbital, and the other in the 7r*-orbital. The 

configuration of 02 is therefore 

(<r2s) 2(<t*2s) 2(<r2p) 2(Tx2p)2(Ty2p)2(T*2p)1 (ir*2p)1, 

and there is a net of 8 — 4 = 4 bonding electrons. We find what is in effect a 

double bond in 02, which is consistent with its fairly large bond energy of 118 

kcal/mole. The double bond is somewhat unique, however, in that it seems to 

consist of a triple bond opposed by two half antibonds. The molecular-orbital 

description of 02 provides a simple explanation for the paramagnetic properties 

of the molecule, since the two electrons which occupy the two separate anti¬ 

bonding orbitals have parallel spins. 

The fluorine molecule F2 has two more electrons than 02, and consequently 

has the valence electron configuration (<r2s)2(<r*2s)2(cr2p)2(7r2p)4(7r*2p)4. The 

net of 8 — 6=2 bonding electrons corresponds to a single electron-pair bond. 

This bond has a dissociation energy of only 35 kcal/mole, which is compara¬ 

tively small. One possible explanation of the small bond energy is that the four 

electrons in the 7r* antibonding orbitals exert a greater antibonding effect than 

the bonding effect of the four electrons in the -k bonding orbitals. 

In contrast to the molecular-orbital approach, the valence-bond picture of 

F2 treats the 2s-orbitals and two of the 2p-orbitals on each atom as nonbonding 

or atomic in character. These nonbonding orbitals accommodate six electrons 

on each atom, and the single electron-pair bond is formed by the overlap of the 

two remaining p-orbitals. Thus the treatment of the bond is essentially the 

same in the two pictures, but the electrons which are treated in the molecular- 

orbital method as bonding and antibonding pairs are described simply as 

nonbonding or atomic in the electron-pair valence-bond method. 

Question. In the following pairs of molecules, which would have the greater dissociation 

energy? 0^, 0^; Be2, Be£; B2, B^; C2, C^. 

12.2 HETERONUCLEAR DIATOMIC MOLECULES 

In forming the LCAO approximations to the molecular orbitals for homonuclear 

diatomic molecules we combined with each other atomic orbitals of the same type 

from each atom. We did this because from the symmetry of homonuclear 

molecules we expect that electrons in a given molecular orbital are shared 
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equally between the two identical nuclear centers. The molecular orbitals of 

heteronuclear molecules do not have this symmetric character. However, if the 

diatomic molecule is composed of atoms of rather similar atomic numbers, as is 
true for CO, NO, and CN, the asymmetry is not pronounced, and the electronic 

structure can be described satisfactorily in terms of the molecular orbitals 

which we used for homonuclear diatomics. Therefore, the CO molecule, which 

lias ten valence electrons, has the valence-electron configuration 

(<r2*) 2(<x *2.s) 4 (cr2p)2, 

just as does N2. The qualitative difference is that because of (he greater charge 
on the oxygen atom, the bonding molecular orbitals put more electron density 

near the oxygen atom. For the antibonding orbitals, the opposite is true, as 

we shall see. 

Schematic representation of the formation of <r2s and a*2s in BN. The bonding a orbital is 
more concentrated near the more electronegative nitrogen, and the antibonding orbital has 
greatest amplitude near boron. 

Let us consider forming the <r and a* pair of molecular orbitals from two 

atomic orbitals of different energy, such as the 2s-orbital of B and the 2s-orbital 
of N. Because of the greater nuclear charge of nitrogen, the 2s atomic orbital 

on this nucleus lies lower in energy than does the 2s-orbital on the boron nucleus. 
We expect, consequently, that the lowest-energy or bonding a orbital formed 

by this combination will be concentrated largely at the nitrogen atom, since 

this is the region of low potential energy. In the mathematical description of 
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this orbital, this asymmetry can be produced by adding the two atomic orbitals 

together with coefficients chosen to ensure that N 2s is more important than 
B 2h. Thus the simplest LCAO approximation for the cr-bonding molecular 
orbital is 

<j = C'b^b(2«) + CnV'n(2s), 

where C's > Cb > 0, and \f/R and \ps are atomic wave functions centered on 
boron and nitrogen, respectively. 

The corresponding antibonding orbilal will have a node between the nuclei, 

and will be of higher energy. Because of the smaller nuclear charge on boron, 

the region around this nucleus is of higher potential energy than the region 
around the nitrogen nucleus. Consequently we expect that the antibonding 

orbital will be concentrated largely near the boron nucleus. The mathematical 
description is 

** = CMb(2«) - CMn(2«), 

with Cit > C's. A pictorial description of the formation of a and cr* for BN is 
given in Fig. 12.0. 

<7*2/, 

<7*2* 

<72* 

e 
A B 

Molecular-orbital energy-level diagram for a heteronuclear diatomic molecule AB in which 
B is more electronegative than A. 

Formation of the other bonding-antibonding molecular-orbital pairs for 

, diatomic molecules whose nuclei do not differ greatly in atomic number follows 

the pattern we have just discussed. The bonding orbitals are more concentrated 
around the nucleus of higher atomic number, and antibonding orbitals have 

greater density near the nucleus of lower charge. An orbital energy-level 
diagram is given in J ig. 12.7. From it we can deduce that the valence-electron 
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configuration of BO is {a2s)2 {a*2s)2 (ir x2p)2 (tt y2p)2 ((T2p)x. The configuration 

of BN, which is not obvious from the diagram, is 

(o-2s)2 (<r *2s)2 {tt x2p) 2{ttv2 p)1 (a2p)1. 

When the difference in the atomic numbers of the combining atoms is large, 

one must take special care in describing the molecular orbitals. In these cases, 

molecular orbitals are formed not by combining atomic orbitals of similar desig¬ 

nation (such as 2s with 2s, etc.) but by combining orbitals of similar energy. 

The molecule HF provides a good example. The hydrogen Is atomic orbital 

does not combine with the fluorine ls-orbital to form a molecular orbital 

because the Is electrons of fluorine are very strongly bound, and are confined to 

regions quite near the fluorine nucleus. The same is true for the 2s electrons of 

fluorine. Because the binding energy associated with the ls-orbital of hydrogen 

and the 2p-orbitals of fluorine are somewhat similar, overlap and interaction 

of H(ls) and F(2pz) does occur and produces a bonding-antibonding pair of 

molecular orbitals. The 2px- and 2py-orbitals of fluorine remain as nonbonding 

atomic orbitals in HF. Since the ionization energy of H is 313.6 kcal/mole, and 

that of F is 402 kcal/mole, we expect that the electron pair in the cr bonding 

orbital of HF will spend more time near the fluorine nucleus. Consequently, 

HF should be a polar molecule, as is indeed observed. 

The gaseous molecule LiF provides an example of extremely unequal sharing 

of electrons in a molecular orbital. A cr-cr* pair is generated by the interaction 

of the lithium 2s-orbital and a fluorine 2p-orbital. Because the ionization energy 

of lithium is so much smaller than that of fluorine, the electron pair in the 

bonding orbital spends almost all of its time in the vicinity of the fluorine atom. 

Therefore, LiF is a very polar molecule, so much so that we say that the bonding 

is nearly purely ionic. Thus, by proper choice of the coefficients of the contribut¬ 

ing atomic orbitals, the molecular-orbital concept can be used to represent the 

pure covalent bond of homonuclear diatomics, and as well, the ionic bond of 

the alkali halides. 

Question. The energy level diagram in Fig. 12.7 is appropriate for molecules composed 
of the lower atomic number elements Be, B, C, and N. What modification should be made 
to make it satisfactory for a molecule like OF? 

12.3 TRIATOMIC MOLECULES 

We begin with the simplest triatomic neutral molecule which we can imagine, 

H3. Let us assume that this molecule has a linear symmetric geometry, and 

later justify this assumption. For simplicity, we deal only with molecular 

orbitals built from hydrogen ls-orbitals. Since there are three atomic orbitals, 

we expect to be able to generate three such molecular orbitals. The molecular 

orbital of lowest energy, shown in Fig. 12.8, consists of a linear combination of 

the three ls-orbitals, all taken with the same sign. Because it is cylindrically 

symmetric with no nodes between the nuclei, it is a cr-bonding orbital. Even 
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though it covers and binds together three nuclei, it accepts only two electrons 

with paired spins. 

The orbital of next higher energy in Fig. 12.8 has a node at the central 

hydrogen atom. As a result, the orbital does not produce bonding between the 

outer and center atoms, and, in fact, the orbital is weakly antibonding between 

the end atoms. Thus an electron in this orbital tends to force the molecule 

apart. 

(a) Molecular orbitals of linear H3 and (b) wave functions for a particle in a box. fig. I2.r 

The third orbital of H3 is obtained by combining the hydrogen ls-orbitals 

with alternate signs: 

<r* « -HM1*) ~ ^b(ls) + ’Ac(ls). 

This produces an orbital with nodes between adjacent nuclei, as Fig. 12.8 shows. 

Consequently this orbital has very strong antibonding character. 

Figure 12.8 also shows a comparison between the molecular orbitals which 

we have generated for H3 and the wave functions for a particle in a box. The 

resemblance between the two sets of functions is not accidental, since a collec¬ 

tion of three protons does produce a Coulomb field which is somewhat like a 

box for electrons. The major difference is that the electron potential energy in 

H3 is not constant along the internuclear axis, but becomes markedly more 

negative near each nucleus. This is what is responsible for the sharp peaks in 

the H3 wave functions which do not appear in the particle-in-a-box function. 

We see, on the other hand, that the energy of the a orbitals of H3 increases 

as the number of nodes increases, just as is found for the particle-in-the-box 

functions. 

In H3, two electrons enter the lowest cr-bonding orbital. The third electron 

enters the next higher a orbital, which is relatively weakly antibonding between 

the end atoms and nonbonding between end and center atoms. The net effect 

of this orbital occupation is that H3 is stable with respect to dissociation to 
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three atoms by approximately 94 kcal/mole: 

H3 = 3H, AH = 94 kcal. 

This is approximately what we should expect for a molecule which has two 
bonding electrons and one electron which is weakly antibonding. We must not 

conclude, however, that H3 is a stable molecule. The antibonding effect between 

the end atoms is great enough so that H3 is slightly unstable with respect to 

H2 and H: 
H3 = Ho + H, AH = -8 kcal. 

Consequently, H3 is a transient species which cannot be isolated in quantity. 

The energy and structure of H3 are important because it does occur as a tran¬ 

sient intermediate in the reaction between a hydrogen or deuterium atom and 

hydrogen molecules: 

D + H2 -» [DHH] -> DH + H. 

From this we see that the activation energy of the hydrogen atom-hydrogen 

molecule reaction is just the energy needed to form H3 from H and H2, or 

—(“8 kcal. 
The most stable geometry of H3 is linear, rather than bent, since the last 

electron is in an orbital which is antibonding between the two end atoms. Any 

bending of the molecule brings the two end atoms together, and this is opposed 
by the antibonding electron. 

The situation in H^" is different, because this molecule-ion has no electron 

in the antibonding orbitals. There are two major consequences of this. First, 
is stable with respect to dissociation: 

H3+ = H+ + H + H, AH = 204 kcal, 

= H+ + H2, AH = 105 kcal. 

Second, is not linear, but has the geometry of an equilateral triangle. The 
molecular orbital of lowest energy, occupied by two electrons, is formed by the 

mutual overlap of three Is atomic orbitals. Another way of describing the 
bonding in H^~ was discussed in Section 11.8. 

In describing H3 we have made the first use of molecular orbitals which are 

delocalized (i.e., which cover more than two atoms). This technique is a neces¬ 
sary extension of the simpler idea that molecules are bonded by electron pairs 

localized between pairs of nuclei. In Section 11.8 we saw how multicenter 

bonding can be described in terms of resonance structures. The delocalized 

molecular-orbital method is the more useful and natural technique for mathe¬ 
matically describing multicenter bonding; but the localized electron-pair idea 

with resonance structures is often more convenient for generalizing a qualitative 
picture of molecular binding. In subsequent discussions, we shall try to draw 

attention to the relation between the localized and delocalized pictures. 
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Triatomic Hydrides 

In comparing H3 with we have encountered a very important general 
phenomenon. The geometry of molecules can be profoundly influenced by a 

relatively small change in the number of electrons or in the molecular orbitals 

which a given number of electrons occupy. Our next example again illustrates 
this idea. 

We shall now examine the electronic structure of methylene, CH2. Methylene 
is a stable but very reactive molecule, and consequently exists only as a tran¬ 
sient species in certain chemical reactions. Nevertheless, high-speed molecular 

spectroscopy has provided a fairly clear picture of its molecular structure. 

A triatomic molecule like CH2 may have either a linear or bent structure, 
and it is not at all immediately clear which is the more stable. To begin, we 

shall assume a linear geometry, construct the molecular orbitals, and then 

repeat the process for a bent CH2. Then we shall compare the electronic struc¬ 
tures of the two forms, and draw conclusions. 

For the linear H—C—H we can construct a sigma bonding-antibonding pair 

of molecular orbitals from the carbon 2s-orbitals and the hydrogen ls-orbitals. 
The forms of these orbitals would be 

(Ts = C^lSa + C22sc + CjlSb 

and 

<r* = C3lsa — C42sc + C3lsb, 

where 2sc stands for the 2s wave function of carbon, and lsa, lsb stand for the 
ls-orbitals of hydrogen atoms a and b. The coefficients of the two hydrogen- 

atom functions in a given molecular orbital are the same, since the methylene 

molecule is symmetric. Notice that these orbitals are very much like the lowest- 

and highest-energy orbitals of H3, except that the carbon 2s-orbital substitutes 
for the central hydrogen orbital. 

A second cr bonding-antibonding pair can be constructed for CH2, this time 

using the 2pz-orbital of carbon. The mathematical forms of these orbitals are 

<Tp = C5lsa -J- Cd2pc C5lSb, 

(T p —— C7lsa Cg2j)(' C^lSb* 

A pictorial representation of these orbitals is given in Fig. 12.9. Note that since 

the carbon 2p*-orbital has two lobes of different sign, the hydrogen-atom orbitals 
must be added in with opposite signs to give a bonding orbital with no inter- 

nuclear nodes. The antibonding orbital is obtained by using the same combina¬ 
tion of hydrogen orbitals, but with the sign of the carbon 2pz-orbital reversed. 

Note also that so far as its nodal properties are concerned, the <xp-orbital is 

somewhat analogous to the cr-orbital of intermediate energy in H3. The methy¬ 

lene orbital is different in that it is bonding between the end and center atoms, 

because it includes a contribution from the carbon 2pz-orbital. As a result it is 

bonding between end and center atoms, but antibonding between end atoms. 
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From the four atomic orbitals 2s, 2pz of carbon, and Is from the hydrogen 

atoms, we have generated four molecular orbitals. Hydrogen has no low-energy 

p-orbitals to interact with the 2px- and 2py-orbitals of carbon, and so these 

remain as localized nonbonding orbitals in linear methylene. 

FIG. 12.9 Schematic representation of the formation of the a and a* molecular orbitals of linear 
methylene. 

The orbital energy-level diagram for linear methylene is shown in Fig. 12.10. 

The total of six valence electrons fill the two a-bonding orbitals, and half-fill 

each of the two nonbonding carbon 2px- and 2pj/-orbitals, with the latter two 

electrons having parallel spin. Thus we can describe methylene as held together 
by two three-center a bonds. We can also conclude that linear methylene will 

have unpaired electron spins, and this has been experimentally verified. 

It is edifying to construct the localized valence-bond picture of methylene, 
and compare it to the molecular-orbital picture. We begin by constructing 

sp hybrid atomic orbitals on the carbon atom. We then construct two localized 
electron-pair bonds to the hydrogen atoms by combining each sp hybrid with 

the appropriate H Is function. Each of these valence-bond orbitals accommo¬ 

dates two electrons with paired spins, and the last two valence electrons remain 
in nonbonding carbon 2p-orbitals. Thus the delocalized molecular-orbital 
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picture and the valence-bond sp-hybrid picture are fairly closely related, in 
that in both models the bonding electrons occupy <r orbitals generated from 

carbon 2s- and 2pz-orbitals in combination with atomic hydrogen ls-orbitals. 

We can generate t he orbital-energy diagram for bent CH2 simply by examin¬ 

ing what happens to the energy of the individual molecular orbitals as linear 
Cl 12 is bent. The lowest-energy a orbital constructed of the nondirectional 

carbon 2s- and hydrogen ls-orbitals is relatively unchanged in energy by bending 
the molecule. However, the next higher a orbital becomes weaker bonding and 

higher in energy as the molecule bends, because t he overlap between the carbon 
2pz- and the hydrogen ls-orbitals decreases as the hydrogen atoms move off 

the 2-axis, and because this orbital, being antibonding between end atoms, 
increases in energy as the hydrogen atoms approach each other. 

Molecular-orbital energy-level diagram for linear methylene. FIG. 12.10 

If we imagine that the bending of the molecule takes place in the xz-plane, 
we can conclude that the energy of the carbon 2p„-orbital is left unchanged. 

This orbital has a node in the xz-plane, and since it is cylindrically symmetric 
about the y-axis, it is insensitive to the angular positions of the hydrogen atoms. 

The situation is quite different for the carbon 2pz-orbital, however. Figure 12.11 
shows that, as the molecule bends, the carbon 2pz-orbital begins to overlap 

with the ls-orbitals of the hydrogen atoms. This overlap lowers the energy of 
the 2pz-orbital, for instead of being nonbonding, the 2pz-orbital acquires bond¬ 

ing character in the bent methylene molecule. 
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fig. 12.11 Schematic demonstration of the increase in overlap and bonding character that occurs 
between hydrogen ls-orbitals and the carbon 2px-orbital when methylene is bent in the 
xz-plane. 

FIG. 12.12 The molecular-orbital energy-level diagram for bent methylene and other bent XH2 mole¬ 
cules. The cr designation of the orbitals is not fully accurate since cylindrical symmetry is 
lost in a bent molecule. These cr orbitals are further described by giving the principal 
contributing atomic orbital on the central atom. 

Figure 12.12 gives the resulting orbital energy-level diagram for the bent 

methylene molecule, which also applies to other bent molecules of the XH2 type. 

We see that the energy of crpz has been increased and that of px has been lowered 
relative to their energies in linear CH2, but otherwise the pattern differs rela¬ 

tively little from that shown in Fig. 12.10. One important detail is that in the 

bent molecule the bonds no longer have cylindrical symmetry, so the notation 

a and a* is strictly no longer applicable. For the present, however, it is better 

to retain the improper cr-cr* notation in order to emphasize the relationship 

between the orbitals in the bent and linear molecules. 
The six valence electrons of bent CH2 can enter the three low-energy orbitals 

with paired spins, and leave the nonbonding 2p1/-orbital empty. Thus, in con- 
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trast to the linear molecule, bent methylene should have no unpaired electron 

spins. This has been found experimentally. The question of whether the linear 
or bent molecule is the more stable cannot be answered merely by examining the 
orbital-energy diagrams. Bent CH2 achieves some stability by having, in 

addition to its two pairs of bonding electrons, a third pair of electrons in the 

0-P;e-orbital which has some bonding character. On the other hand, while linear 

methylene has only two pairs of bonding electrons, it avoids some electron 
repulsion by having only one electron in the 2px- and 2pj/-orbitals. The actual 

condition of the CH2 molecule found experimentally is a compromise between 

these two effects. In its lowest electronic state, the molecule has one electron 

each in the 2px- and 2p,rorbitals, and is slightly bent so that the 2px-orbital 
energy is lowered somewhat. 

The qualitative variation of the FIG. 12.13 

orbital energies of the XH2 mole¬ 
cules as a function of the XH2 bond 
angle. 

A localized valence-bond model for bent methylene would involve three sp2 

hybrid orbitals on the carbon atom. Two of these would be used to form electron- 

pair bonds to each hydrogen atom. The third sp2 hybrid would be occupied by 
a pair of nonbonding electrons, but would be of fairly low energy because of the 

partial s-orbital character. The carbon 2p-orbital perpendicular to the plane 

of the molecule would be unoccupied. Thus again the localized valence-bond 

model is fairly closely related to the delocalized molecular-orbital picture. 
By plotting the qualitative dependence of orbital energy as a function of 

bond angle, we can generate the diagram shown in Fig. 12.13 which can be used 
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to predict or rationalize the geometries of triatomic hydrides. For example, the 

transient molecule BeH2 has four valence electrons, just enough to occupy the 
two low-energy a bonding orbitals. As Fig. 12.13 shows, these orbitals have 

lowest energy in the linear configuration, and hence we expect BeH2 to be a 

linear molecule. 
Passing to BH2, we have five valence electrons, four of which enter the 

a bonding orbitals. The fifth electron enters what is an atomic 2p-orbital of 

boron in the linear configuration. Figure 12.13 shows, however, that the energy 

of this orbital is lower if the molecule is bent. In BH2 this energy-lowering upon 
bending is enough to overcome the rise in energy of the crpz orbital, and BH2 is 

a bent molecule. In electronically excited BH2, however, the last electron 

occupies the p„-orbital, and from Fig. 12.13 we expect this excited BH2 will be 

a linear molecule. This is found experimentally. 
The next molecule in the series is CH2, which we have discussed in detail, 

and noted that the linear configuration with the lower electron repulsion is 

favored. In NH2, however, there is an additional electron, and double occu¬ 
pancy of orbitals cannot be avoided. Thus the bent geometry of NH2 is favored, 

since after four electrons have occupied the two lowest bonding orbitals, two 

electrons must occupy the o^-orbital whose energy decreases as the molecule 

bends. The last electron enters the nitrogen p^-orbitai. 
In the water molecule, the eight valence electrons occupy the two strong 

a bonding orbitals, the in-plane nonbonding (r-orbital which is of low energy 

in the bent form, and the nonbonding p^-orbital of the oxygen atom. Thus 

water should be, and is found to be, a bent molecule. 

Question. Would you expect the following triatomic hydrides to be linear or bent mol¬ 

ecules? CH^, NH^. BH^, BHjf. 

Triatomic Nonhydrides 

We turn now to the molecular-orbital description of the linear symmetric mole¬ 

cule C02. The orbitals which we generate for it can be generalized and applied 
to a discussion of the structure of other triatomic molecules which do not 

contain hydrogen. 

For simplicity we take the 2s-orbitals of the two oxygen atoms to be non¬ 
bonding atomic orbitals even in the molecule. Then one a-a* pair of molecular 

orbitals can be generated from overlap of the carbon 2s-orbital with the 2px- 

orbitals of oxygen. Another u-cr* pair can be made from combination of the 

carbon 2p2-orbital with the oxygen 2p2-orbitals. The simplest LCAO approxi¬ 

mations to these four molecular orbitals are 

&2s = Ci2pa(0) + C22s(C) -+- Ci2pb(0), 

4* = C32pa(0) - C42S(C) + C32pb(0), 
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and 
&2v = c52pa(0) + C62p(C) — C52pb(0), 

<r*P = C72pa(0) - C82p(C) - C72pb(0). 

The signs have been chosen so that there are no internuclear nodes for the 
bonding orbitals, but there are nodes between the nuclei in the antibonding 
orbitals. These orbitals have their lowest energy when the molecule is linear. 
The pictorial representation of these orbitals appears in Fig. 12.14. 

A schematic representation of the formation of the bonding, nonbonding, and antibonding FIG. 12.14 

orbitals of linear C02. 

12.3 | TRIATOMIC MOLECULES 555 



The 7r molecular orbitals are generated from the overlap of the atomic 

p-orbitals which are perpendicular to the internuclear axis of the molecule. 

There are six such atomic orbitals, so we expect six 7r molecular orbitals. Three 

of these will be 7rx-orbitals, and three will be equivalent 7rw-orbitals. The 
7T-orbital of lowest energy has the form 

7I"x = Cg‘2pa(0) + Cio2p(C) + Cg2p},(0), 

where px atomic orbitals are used. There is a Tr^-orbital of the same form and 
same energy. Both are strongly bonding. 

FIG. 12.15 The molecular-orbital energy-level diagram of linear symmetric C02 and other linear 
triatomic molecules. 

The 7r-orbital of next higher energy involves only the oxygen atoms. It is 
nonbonding to the carbon atom, and weakly antibonding between the oxygen 
atoms. Its form is 

7rxh * 2pa(0) — 2pb(0), 

and there is a 7r£h-orbital of the same form and energy. The notation 7rnb draws 

attention to the nonbonding character of the orbital, but it must be remembered 
that there is also a weak antibonding interaction between the oxygen atoms. 

The third and highest-energy 7r-orbital is 

7r* = Cn2pa(0) - C 122p(C) + Cn2pb(0), 
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which is antibonding between carbon and oxygen. The 7T*-orbital has the same 
form and energy. 

We see that the combinations of the p-orbitals produces a pair of strongly 
bonding 7r-orbitals, a pair of essentially nonbonding 7rnb-orbitals, and a pair of 
strongly antibonding 7r*-orbitals. The form of these 7T-orbitals is shown in 

Fig. 12.14. Comparison of this set of ir orbitals with the cr-orbitals of H3 shows 

that they have the same bonding, nonbonding, and antibonding pattern, and 
the same internuclear nodal properties. 

Figure 12.15 shows the energy-level pattern of the molecular orbitals of 

linear symmetric C02. The 16 valence electrons fill the two oxygen 2s atomic 
orbitals, the two a bonding orbitals, the two tr bonding and the two 7r nonbond¬ 
ing orbitals. Since there is a total of eight bonding electrons, the two C—O 

links can be regarded as double bonds, just as is done in the electron-dot or 

valence-bond representations. We also notice that the orbitals which are 

occupied are all more stable when the molecule is linear, which is, in fact, found 
to be the geometry of C02. 

The molecular orbitals which we have just discussed can be used to describe 

other triatomic molecules which have 16 or fewer valence electrons. Other 
16-electron molecules which have the expected linear geometry and which are 

strongly bound are N20, NT, CS2, OCS, OCN-, and NO^j~. In molecules like 
CS2, where the valence atomic orbitals of sulfur have principal quantum number 
n = 3, the form of the molecular orbitals is quite analogous to that which 
occurs in C02. 

The transient reactive molecules NCO, NCN, CCN, and C3 have respec¬ 
tively 15, 14, 13, and 12 valence electrons. They all have eight electrons in the 
two a and two 7r bonding orbitals, and between three and zero tv nonbonding 

electrons. Like C02, they are all linear molecules. 

If more than 16 electrons must be accommodated in a linear molecule, some 
would have to enter the 7r* antibonding orbitals, as Fig. 12.15 shows. This 

unfavorable situation can be relieved somewhat if the molecule departs from 
linearity. If the molecule is bent in the rz-plane, the iry bonding, nonbonding, 

and antibonding orbitals remain largely unchanged in character and energy. 

The 7rx-, 7rxlb-, and 7r*-orbitals change considerably, however. They revert to 
2px atomic nonbonding orbitals on the two end atoms, and a pz-orbital on the 

central atom. This orbital is also largely nonbonding, but as we found in the 
discussion of CH2, the orbital energy lowers as the molecule bends by overlap¬ 

ping and combining with the cr bonding system. 

Figure 12.16 summarizes the behavior of the molecular orbitals of a triatomic 
molecule as it is bent, and Fig. 12.17 shows the orbital energy-level pattern that 

can be applied to most bent triatomics. If we enter the 17 electrons of N02 
into these orbitals, for example, we find six bonding electrons, 11 nonbonding 

electrons, and no antibonding electrons. Of the three bonding orbitals, two are a 
and one tv, and all three cover all nuclei. Thus there are on the average 6/2 = 3 

electrons per chemical bond; this corresponds to two 1J bonds in N02. This is 
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IG. 12.16 The qualitative variation of the 
orbital energies of the XY2 mole¬ 
cules as a function of the XY2 bond 
angle. 

FIG. 12.17 Molecular-orbital energy-level dia¬ 
gram for benttriatomic molecules. 
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consistent with the conclusion drawn from the electron-dot resonance structures 

N N 

0 .0 

We expect that the bond energy of N02 is less than that of C02, which has 
two double bonds. This is found experimentally: 

N02 = NO + 0, AH = +72 kcal, 

C02 = CO + 0, AH = +127 kcal. 

Even though bending N02 reduces the number of 7r bonds, this is evidently 

energetically more favorable than retaining the linear geometry, and forcing 
the last electron to enter a 7r* molecular orbital which is strongly antibonding. 

In the nitrite ion, N0J7 and ozone, O3, there are 18 valence electrons. On 
the basis of the arguments just given, we expect these molecules to be bent, and 
to have the electron configuration given in Fig. 12.18. The bond angle of NOjf 
is 115°, smaller than that of N02 (135°), as expected. The bond angle in O3 

is 117°, very similar to that of N0^“. 

bC 

0) 
C 

W 

2«b 

2sa 

The molecular-orbital occu- fig. 12.18 

pancy for 03, N07, and other 
18-electron triatomic mole¬ 
cules. 
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Passing to molecules like NF2 and OF2 with 19 and 20 valence electrons 

respectively, we see from Figs. 12.16 and 12.18 that electrons 19 and 20 enter 

the 7r* antibonding orbital whose energy is not sensitive to bond angle. Conse¬ 

quently these molecules are bent, just as are molecules with 17 and 18 electrons. 
For OF2, Fig. 12.18 shows that there are three pairs of bonding electrons, eight 

pairs of nonbonding electrons, and one antibonding pair, for a net of four 

electrons binding three nuclei. We could picture the binding in OF2 as due to 

a pair of single bonds. The small bond energy of 45 kcal/mole suggests that the 

effect of the 7r* antibonding electrons is quite pronounced. 

The molecule OF2 is a case in which the delocalized molecular-orbital ap¬ 

proach provides a better qualitative description of the molecule than does the 

simplest valence-bond picture. In the latter, there are electron-pair bonds 
between the oxygen and the two fluorine atoms, and the rest of the electrons 

are considered nonbonding. To account for the low bond energy, repulsions 

between the nonbonded electron pairs of the oxygen and fluorine are postulated. 

In the delocalized molecular-orbital picture, these “repulsions” are described 

naturally by the effect of the antibonding electrons. 

As examples of molecules with 22 valence electrons we have Ijj" and the other 
trihalide ions, as well as KrF2 and XeF2. From Fig. 12.16 we see that electrons 

21 and 22 in these molecules must be in the strongly antibonding cr*-orbital. 

The energy of this orbital is lowest in the linear configuration. This effect is so 

strong that the most stable geometry of molecules with 21 or 22 valence elec¬ 

trons is linear. From Fig. 12.15, we deduce that such molecules as KrF2, XeF2, 
and Ijj~ have four pairs of bonding electrons, four pairs of nonbonding electrons, 

and three pairs of antibonding electrons. This leaves a net of two bonding 

electrons to hold together three atoms, or effectively one electron per inter- 

nuclear linkage. As a result, these 22-electron molecules are not very stable 
with respect to dissociation. 

We should note that this delocalized molecular-orbital description of XeF2 

is quite different from the simple valence-bond picture. In the latter, two 

5d-orbitals of Xe would be combined with the 5s- and 5;;-orbitals to give a 

d2sp3 hybrid set. Two of these hybrids would be used to form electron-pair 
bonds to the two fluorine atoms, while the three other hybrids would be filled 

with six nonbonding electrons. In this manner, the ten valence electrons which 

surround xenon in XeF2 can be accommodated. It is not yet clear whether this 

valence-bond description or the delocalized molecular-orbital picture is a better 

approximation to the actual electronic structure. 

12.4 TRIGONAL PLANAR MOLECULES 

We select for our discussion the nitrate ion, NO^", which, as noted in Section 

11.8, is a planar symmetric molecule with the oxygen atoms at the apices of an 
equilateral triangle. The orbital pattern we will generate applies to other 

molecules of this geometry, such as SO3, BF3, and COjf. 
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The detailed mathematical description of the molecular orbitals for trigonal 
planar molecules is noticeably more complicated than what we have encountered 

for diatomic and triatomic molecules. Rather than become involved in this 

detail, we shall proceed intuitively, using our previous experience as a guide. 

We begin by dividing the molecular orbitals into two groups: the cr-orbitals 
which have greatest density in the plane of the molecule, and the 7r-orbitals, 

which have greatest density above and below the nuclear (or xy) plane. Again 
we regard the three oxygen 2s-orbitals as atomic nonbonding orbitals. 

Let us concentrate first on the a molecular orbitals. To construct them, we 

have available the 2px~, 2py-, and 2s-orbitals of the central nitrogen atom, as 

well as the one p-orbital from each oxygen atom which points along the N—0 
axis. This is a total of six atomic orbitals, and we expect six cr molecular orbitals, 
three bonding and three antibonding. 

Formation of ovorbitals for a planar trigonal molecule. FIG. 12.19 

One pair is easy to generate, as Fig. 12.19 shows. These orbitals arise 
from the interaction of the 2p-orbitals of oxygen with the 2s-orbital of nitrogen. 

The strongly bonding component is designated crs, and its strongly antibonding 
partner cr*. 

The atomic 2px- and 2p!/-orbitals of nitrogen are equivalent, and thus we 

might expect to generate from them and the p-orbitals of oxygen two equivalent 
bonding <rp-orbitals, and their equivalent antibonding components. The two 

equivalent bonding orbitals are shown in Fig. 12.20, and their antibonding 

partners can be generated by choosing the signs of the oxygen p-orbitals so that 
internuclear nodes appear. The two <xp bonding orbitals have the same energy, 

although this fact is not obvious from Fig. 12.20. Likewise, the two <r*-orbitals 
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FIG. 12.20 Schematic representation of the formation of the two equivalent ap bonding orbitals for a 
planar trigonal molecule. The two antibonding partners can be obtained by reversing the 
signs on the central p-orbital. 

FIG. 12.21 The molecular-orbital energy levels for N03 and other planar trigonal molecules. 

have the same energy. The two ap bonding orbitals, two a* antibonding 
orbitals, and the over* bonding-antibonding pair give us the six a molecular 

orbitals which we expected to generate from the six available atomic orbitals. 

These six molecular orbitals appear in the energy-level pattern for NO^ as 
indicated in Fig. 12.21. 
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Each oxygen atom has a 2p-orbital which lies in the xy or molecular plane, 
but which is perpendicular to its X—O bond axis. These three oxygen orbitals 

are nonbonding in the molecule, and thus their energy is about the same as 
that of a 2p-orbital in a free atom. This is indicated in Fig. 12.21. 

We now consider the t molecular orbitals of X’03 . To generate them we 

have one p-orbital on each oxygen atom and one p-orbital on the central 
nitrogen atom, all with their lobes above and below the molecular plane. From 

these four atomic orbitals, we expect four molecular orbitals. As Fig. 12.22 

shows, it is easy to generate a tt-t* bonding-antibonding pair of molecular 
orbitals. The remaining pair of 7r-orbitals is nonbonding and equal in energy. 

Unfortunately these are difficult to represent graphically in a way which con¬ 

vincingly demonstrates their equivalence. We will have to accept without proof 

the results of the mathematical analysis which reveals these properties. 

Formation of the 7r and ir* bonding and antibonding molecular orbitals in N03 and other FIG. 12.22 

planar trigonal molecules. 

Having generated 16 molecular orbitals from the 16 atomic orbitals avail¬ 

able, we have a complete set of orbitals for XOJ- and other molecules of similar 
geometry. The energy-level pattern of these orbitals is shown in Fig. 12.21. 

The 24 valence electrons of XOJf fill four bonding orbitals and eight nonbonding 

orbitals. Since there are three X—O linkages, each can be called a lj bond. 
This description is consistent with the resonance structures which occur in the 

valence-bond picture of XO^: 

0 
1 

— 0 
11 

— 0 

N N X 

/ \ / \ / \ 
Lo oj Lo oj Lo oj 

The molecules S03, BF3, and C03 also have 24 valence electrons and have 

electronic structures which are the same as that of XOJf. 
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12.5 SOME ORGANIC MOLECULES 

In treating hydrocarbon molecules it is usually easiest to proceed as we did in 

Section 11.7 for ethylene. A system of localized a bonds is generated by forming 

hybrid orbitals on carbon which are appropriate to the molecular geometry, 
and then overlapping these hybrids to form a bonds to hydrogen atoms or carbon 

atoms. The second component of double bonds is then formed by the overlap 

of carbon p-orbitals which are perpendicular to the internuclear axis. This 

procedure is sufficient to describe “isolated” double bonds which occur in 
1-butene or 1,4-pentadiene: 

1 2 3 4 1 2 3 4 5 
CH2=CHCH2CH3 ch2=chch2ch=ch2 

1-butene 1,4-pentadiene 

Special effects arise, however, when the double bonds are conjugated, or sepa¬ 
rated by only one C—C linkage, as in 1,3-butadiene: 

1 2 3 4 
CH2=CHCH=CH2 

1,3-butadiene 

Let us treat the tt bonding system of 1,3-butadiene by the delocalized molecular- 
orbital method. 

We begin by assuming that the a orbital system of butadiene exists, and 

that we have to deal with only one p atomic orbital on each carbon atom. From 

these four atomic orbitals we can expect to generate four molecular orbitals. 
Figure 12.23 indicates how this is done. 

We see that the orbital of lowest energy has no internuclear nodes, and thus 

is bonding between all nuclei. The orbital of next higher energy has one node 

between the inner carbon atoms. Consequently it is bonding between atoms 

a and b, and between atoms c and d, but antibonding between atoms b and c. 
From the nodal pattern of the third orbital, we see that it is b-c bonding, but 

a-b, and c-d antibonding. Finally the orbital of highest energy has nodes 

between all nuclei, and is totally antibonding. Notice that the internuclear 

nodal pattern of these 7r-orbitals is very much like the nodal pattern of the 
particle-in-a-box wave functions. This analogy can be pursued quantitatively, 

and for long-chain conjugated molecules, particle-in-a-box wave functions are 

often used in place of LCAO molecular orbitals to describe the 7r electrons. 

In butadiene there are four electrons to be accommodated. Thus the two 

7r orbitals of lowest energy in Fig. 12.23 each have two electrons of paired spin 
in them. We have then two occupied orbitals which are bonding between atoms 

a and b, and atoms c and d. Four 7r bonding electrons spread over two linkages 

give in effect one 7r bond at each linkage; this is consistent with the simple 

valence-bond description of butadiene. Of the two occupied orbitals, one is 
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bonding between atoms b and c, the other antibonding; thus there is approxi¬ 

mately no 7r bonding between these centers. This, too, is consistent with the 

simplest valence-bond picture. However, quantitative calculations show that 
this cancellation of ir bonding between the inner atoms in butadiene is not 

exact, and that there is some double-bond character between them. In valence- 
bond terms, this is described by the resonance structures 

+ •• + 
ch2—ch=ch—ch2 +-► ch2=ch—ch=ch2 ^ ch2—ch=c—ch2. 

Again, the delocalized molecular-orbital method appears to be a more satis¬ 
factory method of describing these effects. 

Schematic representation of the formation of the7r molecular orbitals of 1,3-butadiene from fig. 12.23 

atomic p-orbitals. 

In Section 11.8 we noted the special stability of the benzene molecule C6H6. 

The fact that this molecule has the geometry of a regular hexagon with six 
equivalent C—C bonds was rationalized by using the resonance structures 
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iii which (hi! presence of carbon and hydrogen atoms is understood. How is this 

molecule described in terms of delocalized molecular orbitals? 
We begin by assuming the existence of the a bonding system, and six unused 

71-orbitals perpendicular to the molecular plane. From these six atomic orbitals 

we expect to find six tt molecular orbitals. As Fig. 12.24 shows, one bonding¬ 

antibonding pair is easy to find. The strongly 7r bonding component consists 

of the overlap of all p-orbitals, with no internuclcar nodes, whereas the 7r* 

antibonding orbital has nodes between all nuclei. These arc respectively the 
lowest- and highest-energy 7r-orbitals of benzene. 

FIG. 12.24 Schematic representation of the 7r molecular orbitals of benzene and their relative energy 
levels. The top view of the orbitals is given; the signs are opposite in the bottom lobes of the 
orbitals which lie below the molecular plane. 

There are four molecular orbitals yet to be found. Generating these properly 
from the atomic orbitals requires techniques which we have not developed, so 

we shall have to quote the results. There is a pair of molecular orbitals shown 
in Fig. 12.24 which have only one node. Although these orbitals do not appear 

equivalent, they have the same energy and are predominantly of bonding 

character. The members of another pair of molecular orbitals, also shown in 
Fig. 12.24, have three nodal surfaces. These orbitals are of equal energy, even 

though they do not resemble each other. They are both of predominantly 
antibonding character. 

566 MOLECULAR ORBITALS | 12.5 



The orbital energy-level pattern for benzene is given in Fig. 12.24. There 
are six electrons to occupy the lowest three ir orbitals with paired spins. 

Occupation of these three orbitals gives six ir bonding electrons which cover 
the whole molecule. 

12.6 CONCLUSION 

In this chapter we have described the electronic structures of several types of 

molecules by one of the simplest approximate methods available—delocalized 
molecular orbitals made by linearly combining atomic orbitals. These LCAO- 

MO’s give a useful qualitative picture of the electronic properties of molecules, 

but in their simplest form do not allow accurate quantum-mechanical calcula¬ 
tion of molecular properties. Nevertheless, LCAO-MO’s allow us to see more 

clearly the sometimes very strong relationships between the structure and bond 
properties of superficially different molecules like BF3 and NO^, C02 and 

NO^~, OjT and F2, etc. Consequently, LCAO-MO’s, used critically and cau¬ 
tiously, can be an important means for qualitatively understanding and 

correlating chemical behavior. 
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PROBLEMS 

12.1 Which of the following pairs of molecules would you expect to have the higher 
bond energy? 

a) F2, F2+; b) NO, NO"; c) BN, BO; 
d) NF, NO; e) Be2, Be2+. 

12.2 Construct a molecular-orbital energy-level diagram which would be appropriate 
for ionic molecules like LiF. 

12.3 Construct a molecular-orbital energy-level diagram for HF. 

12.4 The ion CO;^ can be produced in radiation-damaged crystals of substances that 
contain the —COOH group. What would you expect the geometry of CO^" to be? 

12.5 Predict the geometries of the following triatomic molecules. 

a) CCn, b) CCO, c) FCO, d) FOO, 
e) FNO, f) FCN, g) NCO. 
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12.6 Given that N3 exists as a weakly bound ion, would you expect N3 to be a bound 

molecule? What about N3? 

12.7 Predict the geometries of the following symmetric triatomic molecules: 

a) OBO, b) CNC, c) Li+ d) CO+, 
e) 0+, f) F+ g) O'. 

12.8 Discuss the relation between the bonding in the molecules BF3, F2CO, and 

FNO2. Do you think a bound planar trigonal O4 might be found some time in'the 

future? 

12.9 Discuss the x molecular orbitals in cyanogen, which has the valence-bond 

structure N=C—C=N. 

12.10 What changes in the x molecular orbitals and energy levels occur when one of 

the CH groups in benzene is replaced by an N atom to give pyridine C5H5N? Note 

that nitrogen is more electronegative than C’H, so orbitals with electron density at 

the nitrogen will be lowered. 

12.11 Use the molecular orbital-energy level diagram of problem 12.3 to consider the 

molecules OH and OH+. Would you expect their dissociation energies to 0 -f- H and 

0+-f- H, respectively, to be similar, or very different? Why? 
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CHAPTER 13 

PERIODIC PROPERTIES 

In this and subsequent chapters we shall be dealing with the descriptive chem¬ 

istry of the elements. To say that this is a vast subject is a truism, for descriptive 
chemistry in the broadest sense includes all we know about all matter. Even a 

first approach to this subject would be hopelessly confusing were it not for a 
most useful generalization: the properties of the elements are periodic functions of 

their atomic numbers. With the help of this periodic law, it is possible to organize 

and to systematize the chemistry of the elements into a manageable subject. 
Learning descriptive chemistry then becomes a process of discovery and assess¬ 

ment of facts, prediction and verification of chemical behavior, and evaluation 
of correlations and explanations. All of this leads to an understanding of why 

elements have the properties they do. By no means are there satisfactory 

explanations for all chemical behavior and there is considerable opportunity to 
generate new ideas about why matter behaves as it does. In this chapter we 

shall discuss some of the most useful systematic relations that exist in descrip¬ 
tive chemistry. This background will help us to organize the more detailed 

information in subsequent chapters and will provide us with a general view of 

chemical behavior. 

13.1 THE PERIODIC TABLE 

Since the first publications of the periodic law by Mendeleev and Meyer in 
the 1870’s, there has been a very large number of forms proposed for the periodic 

table. The version that is easiest to use and which is most closely related to the 
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electronic structures of the atoms is the so-called long form shown in Table 13.1. 

The elements fall into 18 vertical columns which define the chemical families 

or groups. The members of each group most often have valence-electron con¬ 
figurations that are the same, except for principal quantum numbers. While 

chemical similarities are most often strongest among elements in the same 
column, there is some resemblance between elements that are not in the same 

column but which do have the same number of valence electrons. For example, 

members of the scandium group have the configurations (n — ^d'ns2 and are 

in some respects similar to the elements below boron, which have the con¬ 
figurations ns2npl. Consequently, the elements under scandium in the third 
column are said to be members of group III, subgroup B, or simply of group 

IIIB, while the boron family is labeled as group IIIA. Other groups in the 
periodic table are related and labeled in a similar manner. The elements in the 

three columns designated as group VIII resemble each other in many respects 

and separate the A subgroups from the B subgroups in the periodic table. 

d V 

f 

The separation of the periodic table into blocks of elements according to the filling of fig. 13.1 

valence orbitals. 

To keep the periodic chart from being excessively long, the 14 elements which 

follow lanthanum and the 14 elements that fall after actinium are placed in 

separate rows at the bottom of the table. This procedure also emphasizes that 
the periodic table can be broken into blocks of elements on the basis of the 

electron configurations of the atoms. Figure 13.1 shows that the elements in 
which the s-, p-, cl-, and /-orbitals are being filled are grouped naturally in 

the long form of the periodic table. The eight families of the s- and p-blocks 
are often called the representative elements, those of the d-block are called transi¬ 

tion elements, while members of the /-block are known as the inner transition 

elements. 

While the structure of the periodic table is designed to emphasize the exis¬ 
tence of vertical relationships between members of the same group, a number of 

properties show regular trends along each row of the table. We have already 
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come upon one such trend in Chapter 10: the general tendency for ionization 

energy to increase along any row of the periodic table. Our discussion in this 

and subsequent chapters will reveal other similar horizontal trends in chemical 

and physical properties. In addition, important diac/onal relationships appear: 
There are often similarities between an element and its diagonal neighbor in 

the succeeding column and row of the periodic table. To make the existence of 

such relationships clear, and to emphasize the usefulness of the periodic table, 

in the remainder of this chapter we shall discuss some of the clearer trends in 

the properties of the elements and of some of their common compounds. 

13.2 PERIODIC PROPERTIES 

A very large number of chemical and physical properties of the elements vary 
periodically with atomic number. Some of these properties are related to the 

electron configurations of the atoms in quite obscure and complicated ways, 

while others are more susceptible to interpretation and explanation. 1 hese 

latter properties, such as electrical conductivity, crystal structure, ionization 

energy, electron affinity, possible oxidation states, and atomic size, are related 

to each other and to the general chemical behavior of the elements. Thus an 
appreciation of the importance of these particular properties, and of how they 
vary throughout the periodic table, will help us to correlate, remember, and 

predict the detailed chemistry of the elements. 

Electrical and Structural Properties 

The chemical elements can be classified as metals, nonmetals, and semimetals on 

the basis of their electrical properties alone. Metals are good conductors of 
electricity, and their electrical conductivity decreases slowly as temperature is 

increased. The nonmetals are electrical insulators: Their ability to conduct 
electricity is either extremely small or undetectable. The electrical conductivities 

of semimetals or semiconductors are small but measurable, and tend to increase 

as temperature increases. Electrical conductivities are usually measured in 

units of ohm-1 • cm-1, and a conductivity of 1 ohm-1 • cm-1 means that if a 
potential difference of 1 volt is applied to opposite faces of a 1-cm cube of 

material, a current of 1 amp will flow. The electrical conductivities of metals 

are, in general, greater than approximately 1 X 104 ohm-1 • cm-1, as Table 13.2 
shows. The shaded group of semimetals have small conductivities (in the range 

from 10 to 10-5 ohm-1 • cm-1) that are sensitive to impurities, and nonmetals 

have even smaller conductivities (i.e., are insulators). 
Table 13.2 shows that the metallic elements appear in the left-hand part of 

the periodic table, and are separated from the nonmetals by a diatjoyial band of 
semimetals that runs from boron to tellurium. The classification of elements 

close to this group of semimetals is not always straightforward, for several of 
the elements of groups IVA, VA, and VIA occur in different allotropic forms, 
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Table 13.2 The electrical conductivities of the 
elements in units of 104 ohms-1 - cm-1 

Li 
11.8 

Be 
18 

B C N 0 F 

Na Mg Al Si P S Cl 
23 25 40 

K Ca Ga Ge As Se Br 
15.9 23 2.4 

Rb Sr In Sn Sb Te 1 
8.6 3.3 12 10 2.8 

Cs Ba Tl Pb Bi Po At 
5.6 1.7 7.1 5.2 1.0 

Sc Ti V Cr Mn Fe Co Ni Cu Zn 
— 1.2 0.6 6.5 20 11.2 16 16 65 18 

Y Zr Nb Mo Tc Ru Rh Pd Ag Cd 
— 2.4 — 23 — 8.5 22 1 66 15 

La Hf Ta W Re Os Ir Pt Au Hg 
1.7 3.4 7.2 20 — 11 20 10 49 4.4 

each of which has different electrical properties. For example, the a-phase of 
tin, sometimes called grey tin, has the diamond type of crystal lattice found in 
silicon and germanium, and like these elements, grey tin has the electrical 

properties of a semimetal. On the other hand, white tin, the /3-phase that is 
stable above 13°C, is a metallic conductor. As another example, white phos¬ 

phorus, a molecular solid of P4 units, and red phosphorus, which has a complex 

chain structure, are both electrical insulators and thus are of nonmetallic 
character. In contrast, the allotrope black phosphorus has a crystal structure 

made up of corrugated sheets, as shown in Fig. 13.2, and in this form phos¬ 
phorus behaves like a semimetal. Similar phenomena are found for selenium. 

The crystal structure of the fig. 13.2 

black phosphorus allotrope. 
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One allot rope is a molecular solid which consists of rings with the formula Se8, 

and in this form selenium is a nonmetal. Another allotrope is made up of long 
covalently bonded chains of selenium atoms and has the electrical properties 

of a semimetal. Thus not all elements can be classified uniquely as metals, 
semimetals, or nonmetals without reference to the occurrence of allotropic forms. 

Despite the classification difficulties imposed by allotropy, a few generaliza¬ 

tions are clear. Metallic behavior is found among the transition elements, the 

members of groups I and II, and the heavier elements of groups IIIA, IVA, 
and VA. As noted in Chapter 3, the metallic elements have crystal structures 

of high coordination number, either 12 in the closest-packed lattices, or 8 in the 

body-centered cubic lattice. In contrast, the distinctly nonmetal lie elements 
are the lighter members of groups IVA, VA, VIA, and VIIA. These elements 

usually occur as small covalently bonded molecules like N2, S8, and Cl2, which 
form volatile molecular solids. The semimetals have complex crystal structures 
which may involve three-dimensional networks, infinite layer lattices, or long 

chain molecules. The coordination number in these crystals is small, in contrast 

to metallic crystals. On the other hand, semimetallic solids do not incorporate 

the small discrete molecular units found among the nonmetals. These cor¬ 
relations between electrical and structural properties are particularly evident 

among the elements which exist in several allotropic forms. 

Ionization Energy, Electron Affinity, and Electronegativity 

The very striking periodic variation of the ionization energies of the elements 

and its relation to the electron configurations has been discussed in Section 10.6. 
Here we need only recall the gross features of this variation and note their rela¬ 

tion to the general properties of the elements. As b ig. 10.23 shows, among the 
elements of any row of the periodic table the ionization energy tends to increase 

as atomic numbers increase. As we noted in Section 11.9, metallic behavior is 

associated with elements of low ionization energy, and thus the increase of 

ionization energy along a period is related to the disappearance of metallic 
character that occurs eventually in any row of the periodic table. In a given 

family or column of the table, the ionization energy tends to decrease as the 

atomic numbers increase. This behavior is clearest among the representative 
elements, and is related to the appearance of metallic properties which occurs 

as the atomic numbers increase in groups IIIA, IVA, VA, VIA, and VIIA. 

For example, boron, which has an ionization energy of 191 kcal, is a semimetal, 
but the other members of group IIIA have ionization energies of 140 kcal or 

less, and are metals. Similar vertical trends in ionization energy and metallic 

properties occur in groups IVA, VA, VIA, and VIIA. 
It is difficult to make any generalizations concerning the periodic behavior 

of electron affinities because the electron affinities of relatively few elements 

arc known with certainty. Nevertheless, the data in Table 13.3 show that the 

electron affinities of the nonmetals are usually higher than those of the metals, 
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Table 13.3 Electron affinities of gaseous atoms (kcal/mole) 

and in particular, the electron affinities of the halogen atoms are strikingly 

large. The variation of the electron affinity and ionization energy with atomic 
number makes it clear that the nonmetals have greater tendency to acquire 

and less tendency to release electrons than do the semimetals and metals. 
An element that tends to acquire rather than lose electrons in its chemical 

interactions is said to be electronegative. Various attempts have been made to 

create a quantitative scale of electronegativity. Perhaps the simplest procedure 

is that of It. S. Mulliken, who suggested that electronegativity is proportional 
to the average of the ionization energy and the electron affinity. Another scale 

of electronegativity, proposed by Pauling, is based on the difference in the bond 
energies of diatomic molecules. Pauling suggested that the difference in the 

electronegativities XA and Xu of two atoms A and B is given by 

\XA - XB| = 0.208 [Dab - (DAADBB)1/2]1/2, (13.1) 

where I)ah is the bond energy of the diatomic molecule AB expressed in kcal/ 
mole, and DAA and Dub are the corresponding quantities for the molecules 
A2 and B2. The factor 0.208 arises from the conversion of electron-volts to 

kilocalories. The form of Eq. (13.1) is empirical; it is based on the observation 

that the bonds between atoms of qualitatively different electronegativity tend 
to be stronger than bonds in homonuclear molecules. Thus the bond energy 

of any of the hydrogen halides HX is greater than the geometric mean 

(DhhDxx)1/2 of the bond energies of the halogen and hydrogen. This extra 
bond energy of the polar molecule is taken by Pauling to be a measure of the 

electronegativity difference of the atoms, as Eq. (13.1) states. 
Other electronegativity scales, based on different, less well-defined properties 

of atoms, have been proposed. Even though the bases of these scales may seem 
quite unrelated, it is often found that one scale differs from another only by a 
constant multiplying factor, and thus the scales may be in large measure equiv¬ 

alent. By use of the Pauling, Mulliken, and other definitions, it is possible to 
assign numerical values of electronegativity to almost every element. Table 13.4 

is a partial list of these electronegativity values. The value of such a table 
is twofold. It provides a clear expression of the qualitative generalization that 
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Table 13.4 
Electronegativities of the representative elements 

H 
2.1 

Li Be B C N 0 F 

0.97 1.5 2.0 2.5 3.1 3.5 4.1 

Na Mg Al Si P S Cl 

1.0 1.2 1.5 1.7 2.1 2.4 2.8 

K Ca Ga Ge As Se Br 

0.90 1.0 1.8 2.0 2.2 2.5 2.7 

Rb Sr In Sn Sb Te 1 

0.89 1.0 1.5 1.72 1.82 2.0 2.2 

Cs Ba Tl Pb Bi Po At 

0.86 0.97 1.4 1.5 1.7 1.8 1.9 

the ability of elements to attract and hold electrons increases from left to right 
along any row, and from bottom to top in any column of the periodic table. 

This observation is important in the understanding of the chemical behavior of 
the elements. The second use of the numerical electronegativity scale is that 

electronegativity differences often can be related semi quantitatively, although 

empirically, to properties of bonds such as dipole moments and bond energies. 

Oxidation States 

The important oxidation states of the elements are represented graphically in 

Fig. 13.3. There are some very clear periodic regularities, and appreciation of 
these can simplify the problem of remembering the important chemistry of the 

elements. 
The oxidation states of the representative elements bear a simple relationship 

to the electron configurations of t'he atoms. Many of the oxidation states 

correspond to the atom’s losing or gaining enough electrons to acquire, at least 

formally, a “closed shell” electron configuration of the type ns2ftp6 or nd10. 
This tendency is particularly clear in groups IA and IIA, and among the lighter 
members of group IIIA. In group III A, the valence-electron configuration of 

the atoms is ns2np1, and loss of three electrons to form the -|-3 oxidation state 

results in ions which have the (ft — l)s2(ft — 1 )pu or (n — l)d10 configurations. 
For the elements indium and thallium, however, the +1 oxidation state also 

occurs, and this corresponds to loss of only the p-electron and results in an 
ns2~configuration for In+ and Tl+. Oxidation states that correspond to loss of 

ftp-electrons and retention of fts2-electrons also occur among the heavier ele- 
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as a function of atomic number. 

o -. v 0-~ 
X fr1 > 

. ® o sc-c C3>— 

- • • — • • • — • • • • • • • • — • • • • • • — • • • 
• • • • • • — • • • • • • • • • • 

~ 1 i i i i i i i T i i i i i i i i i ? i i i i i i i i i T ? 
The transition elements 

. ^ O _ - ^ *—•. — S »3 D (/j jj ^ (h O . C O ^ c/2 erf i /-v 

— — — — XL/X xcc^o2x,SxxH—,XGabHl£pH - 

ttl I I I 

• • 
• • 

~1—h ♦ I Mill 

• • • • • 
• • • • • • • • • • 

• • • • • • • • • • • • 
•4- "I I I I I I I ♦ I I M I I 1 4 I IH I II I 

• • 

merits of groups IVA, VA, VIA, and VIIA. Thus tin and lead, which have 

ns2np2-configurations, display both +2 and +4 oxidation states; phosphorus, 

arsenic, antimony, and bismuth with the ?is2np3-configuration have both +3 
and +5 oxidation states, and so on, as Fig. 13.3 shows. 

In any of the groups IIIA, IVA, VA, VIA, and VIIA, where two or more 

positive oxidation states are found, the lower oxidation states tend to become 
more important as one goes down a column in the table. That is, the chemistries 

of carbon, silicon, and germanium involve the +4 oxidation state almost exclu¬ 
sively, while for tin and particularly lead the +2 state is more important than 

the +4 state. Likewise, while the +5 state is very important in the chemistry 
of nitrogen, phosphorus, and arsenic, it is less so for antimony, and for bismuth 

the +3 state is dominant and the -+-5 state occurs rarely. 
While positive oxidation states are of exclusive importance for the metals, 

and almost as important for the semimetals, negative oxidation states appear 
in group VA and are very common among the nonmetals. Thus nitrogen and 

phosphorus form nitrides and phosphides which contain the N—3 and P—3 ions 

respectively, but the —3 state is much less important in the chemistries of 
arsenic and antimony, and virtually nonexistent in bismuth chemistry. In 

group VIA the —2 state is important for all the elements, but it is relatively 
more important for the lighter than for the heavier members of the group. 

The same can be said for the —1 oxidation state displayed by elements in group 
VIIA. The importance of negative oxidation states among the lighter nonmetals 

is consistent with the relatively high electronegativity of these elements. 
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The transition elements display a large number of oxidation states, but there 

are still some regularities and trends to be noted. The maximum oxidation 
states found for the scandium, titanium, chromium, and manganese families 

correspond to the loss or the participation in bonding of all electrons in excess 
of an inert gas configuration. That is, members of the scandium family have 

the configuration [inert gas] (n — l)d1ws2 and display only the +3 oxidation 
state. Likewise, members of the manganese family have the configuration 

[inert gas] (n — 1 )d5ns2 and have a maximum oxidation state of -f7. These 
remarks, together with the information in Fig. 13.3, show that for transition 

elements with a d-shell no more than half-filled, the maximum oxidation state 

is equal to the number of the group. For elements of the first transition series 
which have more than five 3d-electrons, however, oxidation states higher than 

+2 or +3 are rare. Thus the chemistry of iron, which has the valence-electron 

configuration SdHs2, is largely confined to the +2 and +3 oxidation states, 

while the +6 state is rare and the possible -f8 state is unknown. The +8 state 
is of importance in the chemistry of the other members of the iron family, 

ruthenium and osmium. In the cobalt, nickel, copper, and zinc families, the 

important oxidation states are all less than what would correspond to removal 

of all s- and d-electrons. 
Another useful generalization about the transition elements is that among 

the members of any family, the higher oxidation states become relatively more 
important as the atomic number increases. For example, titanium chemistry 

involves the +2, -+3, and +4 states, but the chemistry of zirconium and hafnium 

is almost entirely that of the +4 state. Similarly, the +2, T3, and +6 states 
of chromium are all important, but the chemistries of molybdenum and tung¬ 

sten involve the -f6 state primarily. In general, the members of the 3d transition 

series all have important lower oxidation states, either +2, -f3, or both. For 

the elements of the 4d- and 5d-series, these states are often not important, if 
they exist at all. Note carefully that the increased importance of higher oxida¬ 

tion states that occurs going down a column of the transition metals is opposite 

to the trend observed among the representative elements. 

Size Relationships 

The periodic variation of the size of the atoms was first noted by Lothar Meyer 
in 1870. Meyer computed the “atomic volume” by dividing the atomic weight 

of an element by its density. When this quantity is plotted as a function of 

atomic number, the sawtooth curve shown in Fig. 13.4 results. The atomic vol¬ 
ume calculated in this manner is at best only a qualitative indication of atomic 

size, for the density of an element depends on its temperature and its crystal struc¬ 
ture. Elements that exist in a number of different allotropic crystalline forms 

would apparently have more than one atomic volume. Nevertheless, the periodic 

variation of atomic volume is striking, and atomic size is a very useful concept 

which can help us to understand the chemistry of the elements. 
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The atomic volume expressed in cc/mole plotted as a function of atomic number. fig. 13.4 

Because the electron cloud of any atom has no definite limit, the size of an 

atom cannot be defined simply and uniquely. However, one valid measure of 

atomic size is the value of the Lennard-Jones cr-parameter, which represents 
the distance of closest approach of the nuclei of two free gaseous atoms. If the 

atoms are pictured as spheres, cr is equal to their diameter, and thus a/2 repre¬ 
sents an atomic radius. The values of c/2 for the inert gases are given in 

Table 13.5. It is clear that in this single family, the atomic radius increases as 

atomic number increases. 

Table 13.5 Lennard-Jones radii 
of the noble gas atoms, cr/2 (A) 

He Ne Ar Kr Xe 
1.31 1.39 1.70 1.80 2.0 

To assess the sizes of the atoms of metallic elements, the internuclear distance 
in the metallic crystal is determined by x-ray diffraction and divided by two to 

give an atomic radius. The apparent radius of an atom determined in thif 

manner depends to a certain degree on the crystal structure of the metal. For 
example, the apparent radius of the titanium atom in the body-centered cubic 

lattice, 1.43 A, is different from the radius of 1.49 A found in the hexagonal 
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Table 13.6 Atomic radii of metallic elements (angstroms) 

Li 
1.55 

Be 
0.89 

B 
0.80 

Na 
1.90 

Mg 
1.36 

Al 
1.25 

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga 
2.35 1.74 1.44 1.32 1.22 1.17 1.17 1.16 1.16 1.15 1.17 1.25 1.25 

Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In 
2.48 1.91 — 1.45 1.34 1.29 — 1.24 1.25 1.28 1.34 1.41 1.50 

Cs Ba La Hf Ta W Re Os Ir Pt Au Hg TI 
2.67 1.98 1.69 1.44 1.34 1.30 1.28 1.26 1.26 1.29 1.34 1.44 1.55 

closest-packed lattice. The difference is not usually of serious magnitude, how¬ 
ever, and a meaningful set of atomic radii can be tabulated. Table 13.6 gives 
a few such data. It is clear that in a given family, size increases as atomic 
number increases. Among elements in a given row of the periodic table, how¬ 
ever, size decreases as the atomic number increases. Both these trends are to 
be expected on the basis of the accompanying changes in electronic structure. 
As atomic number increases in a given family, the principal quantum number of 
the valence electrons increases, and consequently these electrons lie at greater 
and greater distances from the nucleus. Along a given row of the periodic 
table, the principal quantum number of the valence electrons is constant, but 
as the nuclear charge increases, the valence electrons tend to be drawn closer 
to the nucleus, and the atoms tend to become smaller. 

Another quantitative expression of size which is more useful in understanding 
chemical properties is the ionic radius. In Section 11.2 we gave the values of 
several ionic radii and suggested how they were related to crystal geometry. 
Here we need only emphasize the regular trends in ionic size which occur in the 
sequences of the periodic table. In Fig. 13.5 the ionic radii of several ions are 
plotted as a function of atomic number. It is clear that for any isoelectronic 
sequence, that is, for any series of ions which have the same number of electrons, 
the ionic radius decreases as the atomic number increases. This is certainly to 
be expected, for as the nuclear charge increases, the electron cloud is bound 
to contract. The data also show that ionic size increases as atomic number 
increases in a given family. A particularly interesting feature of this trend is 
the noticeable discontinuity in the slope of the dashed line in Fig. 13.5 that 
occurs at the element potassium. The ionic radii of the members of a family 
do not increase as rapidly after potassium as before. One suggested explanation 
is that in the interval between potassium and rubidium the first transition 
series occurs, and as these “extra” elements enter the periodic table, the increas- 
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Atomic number 

The ionic radii of several ions plotted as a function of atomic number. The solid lines link fig. 13.5 

ions that are isoelectronic. 

ing nuclear charge tends to cause the atoms and their ions to contract. Thus 
the ions that follow any of the transition series are smaller than if only eight 

elements had separated them from the lighter members of their family. 
A very clear demonstration of how ionic size decreases along a transition 

series is provided by the lanthanide elements. In the 14 elements that follow 

lanthanum, 4/-electrons are being added to give electron configurations of the 

type 5s2op64/n6s2. All the lanthanides form +3 ions in which the two 6s- 

electrons and one of the 4/-electrons have been lost. The size of these ions 
becomes progressively smaller as the atomic number increases, as Table 13.7 
shows. This decrease is known as the lanthanide contraction, and its occur¬ 

rence is rather directly responsible for a number of features of the chemistry 

of the transition elements which follow the lanthanides in the periodic table. 

Table 13.7 Ionic radii of the lanthanide elements (angstroms) 

La+3 1.061 Tb+3 0.923 
Ce+3 1.034 Dy+3 0.908 
Pr+3 1.013 Ho+3 0.894 
Nd+3 0.995 Er+3 0.881 
Pm+3 0.979 Tm+3 0.869 
Sm+3 0.964 Yb+3 0.858 
Eu+3 0.950 Lu+3 0.848 
Gd+3 0.938 
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13.3 CHEMICAL PROPERTIES OF THE OXIDES 

Oxygen forms binary compounds with all the chemical elements except some 
of the inert gases. A comparison of the properties of the oxides reveals some of 

the characteristics of the elements and helps to systematize the chemistry of 
the more complex compounds. In the following we shall be concerned exclu¬ 

sively with the normal oxides—those in which oxygen displays an oxidation 

state of —2. The -peroxides and the superoxides, which contain the and 0^ 

ions respectively, will be discussed in Chapter 15. 
Table 13.8 contains the standard free energies of formation of a few of the 

oxides. The most striking feature of these data is that virtually all the elements 

form at least one oxide which has a negative free energy of formation. The 

exceptions include some of the halogens, inert gases, and nitrogen. Thus the 

oxides as a group are very stable compounds, and are exceeded in this respect 

only by the fluorides. 

Table 13.8 Standard free energy of formation 
of some oxides, AG° (kcal/mole) 

Li20 
-133.9 

BeO 
-136.1 

b2o3 
-283 

C02 
- 94 

n2o5 
27.9 

o2 F20 
9.7 

Na20 
- 90.4 

MgO 
-135.3 

ai2o3 
-377 

Si02 
-191 

P4O10 S02 
-71.8 

Cl20 
22.4 

K20 
- 86.4 

CaO 
-144.4 

Ga203 
-237 

Ge02 
-127 

AS4O6 

-275 
Se02 
-41.5 

Br20 

Rb20 
- 69.5 

SrO 
-138.8 

ln203 
-200 

Sn02 
-124 

Sb406 
-298.0 

Te02 
-64.6 

I2O5 

Cs20 
- 65.6 

BaO 
-126.0 

ti2o3 Pb02 
- 52 

Bi203 
-118 

Po02 
-46 

The standard enthalpies of formation of the oxides, like their free energies of 

formation, range in value from very negative to positive. Nevertheless, it is pos¬ 

sible to detect some regularities in the thermochemistry of the oxides. To do this 
we must compare the enthalpies of formation per gram-equivalent of oxygen. 
That is, for an oxide of general formula MxO^, we divide AH/ by the integer 

2y to get a number which represents the stability of the bonds to an oxygen 
atom more faithfully than does the molar enthalpy of formation itself. We see 
from Fig. 13.6 that the enthalpy of formation per gram-equivalent of oxygen 
tends to become more negative as atomic number decreases along a given period. 

This trend indicates that, in general, oxygen forms compounds of greatest 

stability with elements which are well removed from it in the periodic table. 

We shall find that this is true for some other elements; the most stable compounds 
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of the elements of groups VIA and VIIA are those with the elements of groups IA, 
IIA, IIIA, and the transition metals. 

One very useful way to classify oxides is in terms of acid-base properties. 

In general, any compound that dissolves in, or reacts with, water to produce 
an excess of hydrogen ions can be called an acid, and any compound that 

produces a deficiency of hydrogen ions is a base. Oxides like Na20 and BaO 
are clearly basic, for they dissolve in water according to the reactions 

Na20(s) + H20 = 2Na+(aq) + 20H“(aq), 

BaO(s) + H20 = Ba++(aq) + 20H"(aq). 

There are a number of oxides that are insoluble in water, but dissolve in solutions 
of acids. For example, we have 

MnO(s) + 2H+(aq) = Mn++(aq) + H20, 

NiO(s) + 2H+(aq) = Ni++(aq) + H20. 

These oxides are also considered to be basic, for they react with a known acid. 

The enthalpy of formation per equivalent of oxygen [(l/2y)AH°(MxOO] plotted as a func- fig. 13.6 

tion of position in the periodic table. 

In contrast, there are oxides that are clearly acidic. For example, both SO3 

and P4O10 react with water to produce hydrogen ions: 

S03(s) + H20 = H+(aq) + HSOr(aq), 

P4Oi0(s) + 6H20 = 4H+(aq) + 4H2POr(aq). 

13.3 | CHEMICAL PROPERTIES OF THE OXIDES 583 



Certain other oxides like Si02 are insoluble in water, but react with strong 

bases to form soluble salts: 

Si02(s) + Na20(s) = Na2Si03(s), 

Na2Si03(s) + H20 = 2Na+(aq) + SiO^Caq). 

Such oxides are also acidic, but less so than S03 or P4O10. 
There are also some oxides that have both acidic and basic properties. For 

instance, A1203 and ZnO are rather insoluble in water, but dissolve in either 

strong acids or strong bases: 

A1203(s) + 6H+(aq) = 2Al+3(aq) + 3H20, 

A1203(s) + 20H-(aq) + 3H20 = 2Al(OH)F(aq), 

ZnO(s) + 2H+(aq) = Zn++(aq) + H20, 

ZnO(s) + H20 + 20H“(aq) = Zn(OH)naq). 

Oxides that react with acids and bases are said to be amphoteric. 
Table 13.9 compares the acid-base properties of some of the oxides. It is 

clear that the elements in the lower left-hand region of the periodic table form 

basic oxides, while the acidic oxides are associated with the nonmetallic elements 

of the upper right-hand region. Dividing these two groups are the amphoteric 

oxides of Be, Al, Ga, Sn, and Pb; these lie in a diagonal band enclosed in heavy 

lines in Table 13.9. Along any row of the table, oxide acidity increases as atomic 
number increases, but in any family oxide acidity decreases as atomic number 

increases. In summary, we can say that among the representative elements, 

Table 13.9 Acid-base properties of some 
oxides of the representative elements 

Li20 BeO b2o3 co2 n2o5 F20 

Na20 MgO ai2o3 Si02 P4O10 so3 Cl207 

K20 CaO Ga203 Ge02 As205 Se03 Br20 

Rb20 SrO ln203 Sn02 Sb2C>5 Te03 I2O5 

Cs20 BaO ti2o3 Pb02 Bi205 

-► 

Increasing acidic character 

584 PERIODIC PROPERTIES 13.3 



the oxides of the metals usually are basic or amphoteric, those of the nonmetals 
are acidic, and those of the semimetals are weakly acidic. 

A number of elements both in the transition series and among the repre¬ 
sentative groups form several oxides. The general observation is that in these 

cases the acidity of the oxides increases as the oxidation number increases. 
For example, we can cite the following. 

VO basic CrO basic As203 weakly acidic 
V203 basic Cr203 amphoteric As205 acidic 
V02 amphoteric 

V205 acidic 
CrO 3 acidic 

We shall encounter other illustrations of this rule in subsequent chapters. 
Another, somewhat less straightforward, method of classifying the binary 

oxides is by bond type. The solid oxides of the alkali metals have the anti¬ 
fluorite lattice in which each metal atom is surrounded by four oxygen atoms, 

and each oxygen atom by eight metal atoms. There is no suggestion of discrete 

M20 molecules, and thus these compounds can be considered as ionic oxides. 

Likewise, the alkaline-earth oxides and many of the transition-metal oxides of the 

type MO exist in the typically ionic rock-salt lattice structure. The mechanical, 
electrical, and thermal properties of these compounds are those associated 
with ionic lattices. Thus the oxides of groups IA, IIA, and of the transition 
metals in their lower oxidation states are ionic compounds. 

Many of the oxides of the nonmetals exist as discrete molecules under all 

circumstances, and this indicates that the bonds in these compounds are pre¬ 
dominantly covalent. The covalent oxides, like NO, F20, C102, and S02, are 
formed principally by elements which, being close to oxygen in the periodic 

table, have electronegativities rather close to that of oxygen. 

I I I 
0 () o 

I I I 
A segment of the infinite double chain of the fig. 13.7 

Sb406 crystal. Each antimony atom lies at the 
apex of a pyramid whose base is formed by 
three oxygen atoms. 

The oxides of the heavier nonmetals and semimetals tend to be solids of 
moderately complex crystal structure. Thus, while C02 exists as discrete mole¬ 

cules, Si02 is an infinite three-dimensional network consisting of alternate 

silicon and oxygen atoms covalently bonded, and both Ge02 and Sn02 have 
complex three-dimensional structures in which oxygen is bonded covalently. 
Among the oxides of group VA, the transition from “molecular” to covalent 

lattice compounds occurs at antimony. Thus, besides the molecular oxides of 

nitrogen, the compounds P406, P4Oi0, and As406 exist as discrete molecules 
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both in the gas and condensed phases, but Sb406 exists both as discrete mole¬ 

cules or as a solid of infinite covalent chains of the type shown in Fig. 13.7. 

In group VIA, the oxides of sulfur are discrete small molecules, but Se02 exists 

in the solid as infinite covalent chains, and Te02 also shows no discrete small 

molecules in the solid phase. 
To summarize the bonding properties of the oxides, we can say that the 

distinctly metallic elements form ionic oxides, while the oxides of the very 

electronegative nonmetals are, in general, small discrete covalently bonded 

molecules both in the gas and condensed phases. The oxides of the heavier 
nonmetals and the semimetals very often exist in the intermediate condition of 

an infinite lattice with largely covalent linkages. There is then, a fairly close 

correlation between the acid-base properties of oxides, and their ionic-covalent 

character. The ionic oxides tend to be basic or amphoteric, the oxides of the 
infinite covalent lattice structures have weakly acidic, weakly basic, or ampho¬ 

teric properties, and the molecular oxides tend to be acidic. 

13.4 THE PROPERTIES OF HYDRIDES 

The formulas of some of the binary hydrogen compounds of the elements are 

given in Table 13.10, together with their standard enthalpies of formation. 

The enthalpies of formation show that hydrogen forms energetically stable com¬ 

pounds with the very electropositive elements of groups IA and IIA, and with 

the very electronegative elements of groups VIA and VIIA. The hydrides of 
the heavier elements of groups IIIA, IVA, and VA tend to be unstable, and in 

some instances are so difficult to prepare that little is known about their prop¬ 

erties. Several of the elements, most notably B, C, Si, and Ge each form more 
than one hydride, and only the simplest of these appear in Table 13.10. 

On the basis of chemical and physical properties it is possible to classify the 
hydrides as of the ionic, covalent, or interstitial type. The compounds of hydrogen 

Table 13.10 Standard enthalpies of formation 
for some hydrides, AH*} (kcal/mole) 

LiH 
-21.6 

BeH2 b2h6 
7.5 

ch4 
-17.9 

nh3 
-11.0 

H20 
-57.8 

HF 
-64.2 

NaH 
-13.7 

MgH2 aih3 SiH4 
-14.8 

ph3 
2.21 

H2S 
-4.8 

HCI 
-22.1 

KH 
-13.6 

CaH2 
-45.1 

Ga2H6 GeH4 AsH3 
41.0 

H2Se 
20.5 

HBr 
-8.7 

RbH 
-12 

SrH2 
-42.3 

lnH3 SnH4 SbH4 
34 

H2Te 
18.5 

HI 
6.2 

CsH 
-20 

BaH2 
-40.9 

TIH3 PbH4 BiH3 
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with the alkali and alkaline-earth metals can be prepared by direct action of 

the elements at elevated temperatures, and are white crystalline solids. When 

any of these hydrides is dissolved in molten salts such as LiCl and KC1 and 
electrolyzed, hydrogen gas is evolved at the anode. This indicates that the 

ion H~ is present in the mixture. Quite elaborate spectroscopic experiments 
have shown that the gaseous lithium hydride molecule is very polar, with the 

hydrogen atom bearing the negative charge. Available experimental data 

indicate then, that the hydrides of groups IA and IIA contain the hydride 
ion H—. For this reason, these ionic compounds are often called the saline, or 
saltlike hydrides. 

It is interesting to compare the energetics of formation of the hydride ion 

with the corresponding values for the fluoride ion. We have 

£H2(g) = H(g) 

H(g) + e~= H~(g) 

*H2(g) + e- = H-(g) 

£F2(g) = F(g) 
F(g) + e = F (g) 

2F2(g) + e- = F—(g) 

AH = 52 kcal 

AH = —17 kcal 

AH = +35 kcal 

AH = 18.5 kcal 

AH — —80.5 kcal 

AH = —62.0 kcal 

Thus the formation of the gaseous hydride ion is an endothermic process, 

whereas formation of the fluoride ion, or any of the other gaseous halide ions, 

is an exothermic process. Because the formation of the hydride ion is so ener¬ 
getically unfavorable, it is not surprising that ionic or saltlike hydrides are 

formed only by the very electropositive elements of groups IA and IIA. The 
ionization energies of the other elements are high enough to prevent the transfer 

of their electrons to the hydrogen atoms. 
The relative instability of the hydride ion suggests that saline hydrides should 

be good reducing agents. In fact, reactions such as 

NaH + C02 = HCOONa 

4NaH + Na2S04 = Na2S + 4NaOH 

take place at elevated temperatures and demonstrate the reducing power of 
the hydride ion. In addition, the hydride ion reacts rapidly and completely to 

reduce water or any other proton donor to hydrogen, as in 

CaH2 + 2H20 = Ca(OH)2 + 2H2. 

Thus we can regard hydride ion as a powerful reductant and very strong base. 

The representative elements of groups IVA, VA, VIA, VIIA, and boron of 
group IIIA form volatile molecular hydrides in which the bonds to hydrogen 

are largely of covalent character. Among these covalent hydrides there are a 
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number of clear trends in thermal and chemical properties. Figure 13.8 shows 

that the H—X bond energies of the binary hydrides increase along any row 
of the periodic table. Futhermore, in any given column, the H—X bond 

energies decrease as the atomic numbers increase. These trends in bond energies 

account for the instability of the hydrides of the heavier elements of groups 
IVA and VA. The compounds PbH4 and BiH3 are so unstable that only trace 
amounts have ever been detected. 

fig. 13.8 The average energies of bonds between 
hydrogen and the atoms of nonmetallic 
elements. 

The ionic hydrides are strong bases, and along any given row of the periodic 

table, the covalent hydrides become increasingly acidic as the atomic numbers 

increase. Thus methane, CH4, has virtually negligible acidic properties, but 
NH3 donates a proton to very strong bases to form NHiT, H20 loses a proton 

even more readily, and HF is a moderately strong acid. This trend in acidity 
appears again in the succeeding rows of the periodic table. In addition, the 

acidities of the hydrides of groups VIA and VIIA increase as one proceeds down 

these columns. 
The boiling temperatures and the enthalpies of vaporization of some covalent 

hydrides are plotted as a function of position in the periodic table in Figs. 13.9 

and 13.10. In the sequence H2S, H2Se, H2Te there is an increase in both 
boiling temperature and A//vap. This trend is to be expected, for in general, 

attractive intcrmolecular forces increase in strength as the number of electrons 
in the molecules increases. It is clear, however, that the enthalpy of vaporization 

of water and its boiling temperature are both much higher than what we might 

expect from the trend established by II2S, H2Se, and II2Te. The same phe¬ 
nomenon occurs among the hydrides of groups VA and VIIA: The cohesive 

forces between the molecules of the hydride of the lightest member of each 
family are markedly larger than would be expected from the ordinary variation 

of intermolecular forces with number of electrons. These data, and considerably 
more information drawn from molecular spectroscopy, have led to the conclusion 

that if hydrogen is bonded to a very electronegative atom, it is capable of form¬ 
ing another weak bond with another electronegative atom which has a pair of 

nonbonded electrons. This interaction, called the hydrogen bond, is weaker than 

most chemical bonds because the dissociation energy of a hydrogen bond is only 
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about 7 kcal/mole. On the other hand, the hydrogen bond is much stronger 
than the ordinary van der Waals “bonds” between molecules. 

It is difficult to overemphasize the importance of the hydrogen bond. Hydro¬ 
gen bonding is responsible for the high boiling point of water, and for that 
reason alone it exerts an enormous influence on physiological and geological 
processes. Moreover, hydrogen bonding helps determine the configurations of 
greatest stability for virtually every large biologically important molecule. 

Enthalpies of vaporization of some 
molecular hydrides and the noble 
gases. 

Boiling points of some molecular 
hydrides and the noble gases. 

Thus even though it is an interaction that occurs only when hydrogen is bonded 
to a very restricted group of atoms, hydrogen bonding is responsible for the 
nature of life as we know it. 

FIG. 13.9 

FIG. 13.10 
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Despite the importance of hydrogen bonding and the great amount of work 
devoted to understanding it, no completely satisfactory theoretical explanation 

of the hydrogen bond has been found. Like other bonds, hydrogen bonds form 

because by their doing so, there occurs an energetically favorable redistribution 

of electron density among the atoms. It is the exact nature of this redistribution 

that is not clear at this time. 
While the hydrides of the nonmetals are well-characterized molecular com¬ 

pounds, less is known about the transition-metal hydrides. Many of these 
compounds have nonstoichiometric composition. Metallic titanium and vana¬ 

dium absorb hydrogen with evolution of heat, but the arrangement of the 

metallic atoms in the lattice remains substantially constant with only a slight 
increase in the distance between nearest neighbors. Thus the hydrogen seems 

to occupy interstitial positions in the metallic lattice, and these “compounds” 

are sometimes called interstitial hydrides. It is not clear in many instances 
whether the interstitial hydrides should be regarded as true compounds or 

merely as solutions of hydrogen in the metal. Despite the general lack of knowl¬ 

edge about the nature of the transition metal-hydrogen systems, some of them 
are of considerable importance in the laboratory. Nickel, platinum, and palla¬ 

dium absorb varying quantities of hydrogen gas and in this condition act as 

catalysts for reactions such as 

H2 + c2h4 c2h6, 

where hydrogen is added to other molecules. 

The hydrides of Be, Mg, Al, and the heavier members of group IIIA are 

nonvolatile solids which are poorly characterized, but which appear to have 

properties intermediate between the ionic hydrides and the covalent molecular 
hydrides. 

13.5 CONCLUSION 

In this chapter we have discussed a few of the general properties of the chemical 

elements and their simple compounds. In studying inorganic chemistry, it is 

helpful to recognize how the variations in such properties of an element as 
electron configuration, ionization energy, atomic size, oxidation states, and the 

nature of oxides and hydrides are correlated, and how these variations reflect 

the general nature of the elements. Therefore, let us summarize the properties 
which we have associated with the metallic, semimetallic, and nonmetallic 
elements. 

Metallic elements are found in the lower and left-hand regions of the periodic 

table. In general, they have low ionization energies and fairly large atomic 
radii which tend to decrease from left to right along a row of the periodic table. 

In metallic crystal lattices, the coordination number is high—usually 8 or 12. 

In their compounds, metals display positive oxidation states virtually exclu¬ 

sively. The representative metals most often have only one or sometimes two 
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oxidation states. When there are two known oxidation states, the lower tends 

to be the more important particularly for the heavy representative metals. 

The transition metals, in general, display several oxidation states. While the 
lower states such as +2 and -f-3 are important in the chemistry of the elements 

of the 3d transition series, these states tend to be less important than higher 
states in the 4d and 5d transition elements. 

The oxides of the metals in their lower oxidation states are basic or ampho¬ 

teric in behavior and are adequately described as having ionic lattice structures. 
The oxides of metals in the higher oxidation states such as -f4 and above are 

either amphoteric or acidic in nature and sometimes exist as covalent molecular 

compounds rather than as infinite ionic lattices. The binary hydrides of the 
metals are with few exceptions nonvolatile compounds that are basic reducing 
agents. 

The semimetals lie on a diagonal band that runs through the periodic table 

from boron to tellurium. The ionization energies of these elements are slightly 
higher than those of the metals. The crystal structures of the semimetals are in 

many cases complex and involve infinite chains, layer structures, and infinite 
three-dimensional networks of atoms. The coordination numbers of the atoms 

in these lattices are smaller than those displayed by metallic elements. Many of 

the semimetals display both positive and negative oxidation states, but the 
former are usually more important. The oxides of these elements are most 

often acidic and in some cases amphoteric. The hydrides of the semimetals are 

generally volatile compounds consisting of small covalently bonded molecules. 
The nonmetallic elements lie in the upper right-hand area of the periodic 

table. The atoms of these elements have high ionization energies and large 

electron affinities. The elements exist most frequently as relatively small mole¬ 
cules in all phases. In their compounds, the nonmetals, except fluorine, display 

both positive and negative oxidation states, but the latter tend to be more 

stable in most circumstances. The oxides of the nonmetals are frequently 
volatile compounds that consist of small discrete molecules. Almost without 
exception, these oxides display acidic properties. Because the nonmetals have 

electronegativities comparable to that of oxygen, the nonmetallic oxides are 

best thought of as covalently bonded molecules. The hydrides of the nonmetals 

also are volatile compounds that consist of small covalently bonded molecules. 
Some of these have amphoteric properties and are able to accept as well as 

donate protons. The acidity of the hydrides does tend to increase, however, as 
one passes from left to right in any row of the periodic table and from top to 

bottom in any column of the nonmetallic elements. 

While the generalizations we have mentioned are useful, they must be ac¬ 
cepted and used cautiously. It is possible to find exceptions to, or perhaps 

subtle deviations from, almost every one of these general principles. Con¬ 
sequently they cannot be taken to be a completely reliable basis for abolute 
predictions of chemical behavior. However, they do form a general reference 

to which the detailed properties of the individual elements can be compared, 

and the exceptions that are noted in this process can easily be remembered. 
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PROBLEMS 

13.1 Without consulting a periodic table, deduce the atomic number and electronic 

structure for the following atoms: (a) the third alkali metal, (b) the second transition 
metal, (c) the third halogen, (d) the third noble gas. 

13.2 What trend in atomic size is to be expected in a given family like the alkali 

metals? Support your answer by using the principles governing the electronic struc¬ 
tures of atoms. 

13.3 Explain why the electron affinities of the atoms increase from left to right along 

a row in the periodic table. Why is the electron affinity of the nitrogen atom equal 

to zero, while carbon and oxygen have substantial electron affinities? 

13.4 Zirconium and hafnium have virtually the same atomic and ionic radii. Why 
isn’t hafnium a larger atom than zirconium? 

13.5 In each of the following pairs, which would be the larger ion? Ti++, Fe++; 

Mn++, Zn++; 0“ F“; S, Se=; T1+, T1+3. 

13.6 In each of the following pairs of hydrides, decide which is the more stable 

thermodynamically with respect to its elements: HC1, HI; PH3, SbH3; NH3, H2O. 

13.7 In virtually all transition-metal families, and in many of the groups of repre¬ 

sentative elements, the elements display two or more positive oxidation states. How 

does the relative stability of the higher and lower oxidation states vary with increasing 
atomic number in 

a) the transition-metal families? b) a family of representative elements? 

13.8 In the following, choose one of each pair of alternatives. The oxides of the 

nonmetallic elements are typically: (a) acidic or basic, composed of (b) small molecules 

or infinite network solids, bonded (c) covalently or ionically. 
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13.9 The formation of a typical metal oxide MO from its elements is exothermic: 

M(s) + |02(g) = MO(s), AH} < O. 

Show that this reaction can be analyzed in terms of a series of steps in which the 
metal is vaporized, the oxygen dissociated, the gaseous atoms converted to ions, and 
the ions converted to a solid. Discuss how the AH'} of the oxide is affected by (a) the 
strength of the bonding in the metallic crystal, (b) the ionization energy of the metal 
atom, and (c) the size of the metallic ion. 
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CHAPTER 14 

THE REPRESENTATIVE 
ELEMENTS: GROUPS I-IV 

Having discussed many of the principles of chemistry, we are in a position to 

examine the detailed chemistry of the elements. Our treatment cannot be 
encyclopedic, yet we shall present enough information to make clear the relation¬ 

ship between the properties of the elements and their position in the periodic 
table. To this end, we shall emphasize the presence or absence of resemblances 

between members of a given periodic group and the existence of trends in prop¬ 

erties that occur among elements of neighboring groups. In this chapter we 
shall find that there are very marked vertical resemblances among the metallic 

elements of groups IA and IIA; as we proceed across the periodic table from 

left to right the metallic properties are modified and then disappear, and the 

resemblance between elements of the same group becomes less obvious in groups 

IIIA and IVA. 

14.1 THE ALKALI METALS 

These metals (Li, Na, K, Rb, Cs, Fr) are never found in the elemental state in 

nature, for they react rapidly and completely with virtually all nonmetals. 
While sodium and potassium are rather abundant in nature, the others are 

much less common. In particular, francium occurs naturally in only trace 

amounts, and all its isotopes are radioactive. 
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Because the alkali metals are strong reducing agents, electrolysis is the only 
convenient way of recovering them in quantity from their compounds. On a 

smaller scale, laboratory preparation of the metals usually involves a reaction 
such as 

Ca(s) + 2CsCl(s) = CaCl2(s) + 2Cs(g). 

The alkali metals are volatile, and can be distilled out of the reaction mixtures 
and obtained as pure products. 

The freshly prepared surfaces of the alkali elements show the bright silvery 
luster characteristic of metals, and the substances are good conductors of elec¬ 

tricity and heat. As a group they are the softest metals and possess some of 
the lowest melting temperatures. Table 14.1 shows that the melting and boil¬ 

ing points of the metals decrease regularly as the atomic number increases. 
Parallel to this trend, there is a decrease in hardness as atomic number increases; 
lithium can be cut with a knife with difficulty, but the succeeding metals can 

be cut with increasing ease. Due to their softness and reactivity the metals are 

never used in structural applications. Because of its high specific heat and 
thermal conductivity, sodium is used as a coolant in the valves of internal 
combustion engines and in nuclear reactors. All the metals find some use as 

reductants in laboratory and industrial processes. 
Comparison of the first and second ionization energies of the alkali-metal 

atoms shows why the chemistry of all these elements involves the -f 1 oxidation 

state exclusively. The outermost s-electron can be removed with an ease that 

increases with atomic number, but the second ionization energy is so large that 
the +2 oxidation state is unstable and is never observed. 

The small first ionization energies of the alkali atoms are reflected in the 

bond dissociation energies of the gaseous alkali diatomic molecules, which, as 
Table 14.1 shows, range from 25 kcal for Li2 to 10.4 kcal for Cs2. The energy 

lowering associated with covalent-bond formation comes from the extra attrac- 

Table 14.1 Properties of the group IA elements 

Li Na K Rb Cs 

Atomic number 3 11 19 37 55 
Configuration 2s1 3s1 4s1 5s1 6s1 

124 118 100 96 90 
Ionization energy, kcalf, 

W 2 1744 1091 734 634 579 
Atomic radius, A 1.33 1.57 2.03 2.16 2.35 
Melting point, °K 454 371 336 312 302 
Boiling point, °K 1640 1163 1140 970 958 
A^sub? kcal 38.4 25.9 21.5 19.5 18.7 
Ionic radius, M+, A 0.68 0.98 1.33 1.48 1.67 
A/"/hyd» kcal 121 95 76 69 62 
S°(M+, M), volts -3.02 -2.71 -2.92 -2.99 -2.99 
D(M2), kcal 25 17 12 11 10.4 
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tion an electron feels when it moves in the electric field of more than one nucleus. 

The first ionization energies show that the alkali-metal atoms have little attrac¬ 
tion for their own valence electrons and thus have even less attraction for extra 

electrons. Therefore, when two alkali atoms form a covalent bond there is only 

a small decrease in energy. This argument can also be used to rationalize the 
small sublimation energies and softness of the metals themselves. Even when 

the valence electrons move in the fields of several nuclei, as they do in the 

metals, their energy lowering is relatively slight and the metallic bonding weak. 
The atomic radii in Table 14.1 are obtained by dividing the observed inter- 

nuclear separation in the metals by two, and thus the interpretation that these 

numbers represent the “sizes” of the alkali atoms must be used cautiously. We 

can see, however, that the radii of the alkali atoms vary as we might expect: 
The radii increase as the atomic numbers increase. A parallel trend occurs 

among the ionic crystal radii, and we shall see that the increase in ionic size 
with atomic number among elements of a given group is a general occurrence 

that has important consequences. The first of these involves the hydration 

energies of the ions. Strictly, the hydration energy of an ion is the enthalpy 
change of the process 

M+”(aq) - M+"(g) + H20(1). 

The enthalpy of hydration cannot be measured directly and thus is only an 

estimated quantity. In general, the smaller an ion is, and the larger its charge, 

the stronger is the electric field it exerts on its surrounding water molecules, 
and the larger is its hydration energy. The alkali-metal ions as a group are 

the largest positive ions and have the minimum ionic charge of +1. Thus the 

hydration energies of the alkali ions are usually smaller than those of other ions. 
Table 14.1 shows that as the atomic number of the alkali ions increases, their 

hydration energies decrease. This trend is consistent with the increase in size 
of the alkali ions which accompanies the increase in atomic number. 

The alkali metals are reducing agents, and one measure of their strength as 

reductants is their standard reduction potentials. Table 14.1 shows that these 
have relatively large negative values, as we might expect from the fact that all 

the alkali metals reduce water spontaneously to hydrogen by the reaction 

M + H20 = M+(aq) + OH-(aq) + m2. 

It is informative to try to analyze the action of the alkali metals as reductants 
in some detail. To do this we shall examine the AH of the half-reaction 

M(s) = M+(aq) + e“ 

by recognizing that there is another path from reactants to products, as shown 
in Fig. 14.1. We see that the AH0 of the oxidation half-reaction in which the 

electron is left in the gaseous state is equal to the sum of the enthalpies of 
sublimation and ionization, and the negative of the enthalpy of hydration. If it 
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is the AH° of this half-reaction that does determine the performance of the 
metal as a reducing agent, then AH0 should be smallest for the best reducing 

agent. There are two points, however, that should be noted carefully. The 

first is that it is the Gibbs free energy change AG°, not AH0, which is directly 
related to the performance of a metal as a reductant. Nevertheless, the value 

of AG° for the half-reaction is largely determined by the value of AH0 in the 

cases with which we are dealing, and for the purposes of comparison of the 
metals it is legitimate to ascribe variations in reducing power to variations in 

AH0. The second point is that we are computing the AH0 of a hypothetical 

half-reaction, not of an overall reaction, and thus only the relative values of 

AH0 for the different reactions, not the absolute values, have any significance. 

M(g)' 

AH sub 

-M+(g)+e~(g) 

- AHhytl 
Alternative paths for the alkali-metal fig. 14.1 

half-cell reaction. 

M(s) M+(aq)+e- 

With these points in mind, we can examine the data in Table 14.2. The 
enthalpy change for the lithium half-reaction is the smallest, and according to 

the half-reaction potentials, lithium is the best reductant. The values of AH0 

are also consistent with the fact that sodium is the poorest reductant of the 
alkali metals. Since we have ignored entropy effects, however, the significance 

of the small variations in AH0 for the potassium, rubidium, and cesium half- 
reactions is limited. In order to understand the small differences in the electrode 

potentials of these metals, we would have to consider the entropy changes as 
well as the enthalpy changes associated with their electrode reactions. Never¬ 

theless, we can deduce from Table 14.2 that the reason that lithium is such a 
good reducing agent is that a relatively large amount of energy is evolved when 

the gaseous lithium ion is hydrated. 

Table 14.2 Enthalpy changes for electrode half-reactions (kcal) 

Li Na K Rb Cs 

A^sub 38.4 25.9 21.5 19.5 18.7 

/1 124 118 100 96 90 

— AHhyd -121 -95 -76 -69 -62 
AH[M(s)= M+(aq) + e~] 41 49 46 46 47 
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There is an important general lesson to be learned from this analysis. Any 
property such as the standard reduction potential of an element may be deter¬ 

mined by several more fundamental properties which, while fairly simple in 
themselves, work together in a complex way. Thus, while sublimation energy, 

ionization energy, and hydration energy may each vary in a simple manner in 

a given sequence of elements, their net effect can be an irregular set of standard 
reduction potentials. It is always tempting in studying descriptive chemistry 

to attribute an observed trend in chemical behavior to the smooth variation of 

a single fundamental property of atoms, but this should be done cautiously, for 
it is more than likely that any observed chemical property is related to several 

more fundamental factors. 

The Alkali-Metal Oxides 

Of the alkali metals, only lithium reacts directly with oxygen to give the simple 
monoxide Li20. The direct reaction between sodium and oxygen gives Na202, 

sodium peroxide. The other alkali metals react with oxygen to form superoxides 

of the general formula M02, which contain the superoxide ion OiT. The simple 

monoxides of all the alkali metals can be prepared, however, by reduction of 
their nitrates. As a typical reaction we have 

KN03(s) + 5K(s) = 3K20(s) + £N2(g). 

The alkali-metal oxides are ionic compounds which have the antifluorite lattice 
discussed in Section 3.4. All the oxides are strong bases and dissolve readily in 
water by reactions of the type 

K20(s) + H20(1) = 2K+(aq) + 20H“(aq). 

The crystalline alkali-metal hydroxides like NaOH also are ionic compounds 

which have the sodium-chloride crystal structure, are quite soluble in water, 
and of course are strong bases. 

The Alkali Halides 

These compounds are extremely stable crystalline substances of high melting 
and boiling temperature. As an indication of how stable these substances are, 

we can cite the value of the Gibbs free energy of formation of sodium chloride, 

which is —91.8 kcal/mole. Accordingly, the equilibrium constant for the 
reaction 

Na(s) + iCl2(g) = NaCl(s) 

at 25°C is given by 

K — 1 _ .-AGO/ier _ ln(91,800/1360) 

(Pc.,)1'2 0 

= 1.6 X 1067. 
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An equilibrium constant of this magnitude means that the pressure of chlorine 

in equilibrium with sodium and sodium chloride at 25°C is approximately 
10-134 atm. The other alkali halides are of comparable stability. 

As we discussed in Section 11.2, the alkali halides are the outstanding ex¬ 
amples of ionically bonded compounds, and it is interesting to examine their 

properties from this point of view. In Section 11.2 we noted that the ionic lat¬ 
tice energy, the energy required to separate a mole of solid ionic compound into 

its gaseous ions, is a quantitative measure of ionic bond strength. Figure 14.2 

summarizes the lattice-energy data previously presented in Table 11.11. For 
a given alkali ion, the lattice energies of the crystals decrease as the atomic 

numbers of the halides increase. Also, for a particular halogen, the lattice 
energies decrease as the atomic numbers of the alkali atoms increase. Both 

these trends are consequences of the increase in ionic radius that occurs as 
atomic number increases. 

The crystal lattice energies of the alkali fig. 14.2 

halides. 

Spectroscopic studies of the alkali halide vapors have provided information 

about the structures of the gaseous alkali halide molecules MX. Table 14.3 

gives the dipole moments and bond distances of some of the gaseous MX mole¬ 
cules. It is interesting to note that the M—X bond distance in the gaseous 
alkali halides is less than the internuclear separation in the crystalline solids. 

This observation shows that the ionic crystal radii have limited significance— 
they can be used to predict the spacings in ionic crystals, but they do not truly 

represent the “sizes” of ions in other bonding situations. 
The second point of interest is the comparison between the observed dipole 

moments of the gaseous alkali halide molecules and the dipole moment cal¬ 
culated by assuming that there is a net charge of ±e (4.8 X 10-10 esu) located 
at each nucleus. This assumption would be appropriate for a truly ionic bond 

between spherical ions. The dipole moment of such a molecule would be equal 
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Table 14.3 Dipole moments of some gaseous alkali halides 

Bond distance ro 
(A) 

e X r o 
(debyes) 

Mobs 

(debyes) 

LiBr 2.17 10.4 6.19 
Lil 2.39 11.5 6.25 
NaCI 2.36 11.3 8.5 
KF 2.17 10.4 8.6 
KCI 2.67 12.8 10.0 
KBr 2.82 13.5 10.6 
Kl 3.05 14.6 11.1 

to e X r0 X 1018, where e is the value of the fundamental charge in electro¬ 

static units, and r0 is the experimental value of the internuclear separation in 

centimeters. The data in Table 14.3 show that the observed dipole moments 
are all noticeably smaller than the values calculated assuming a net fundamental 

charge located at each nucleus. Thus the gaseous alkali halides do not consist 
of perfectly spherical ions. Instead, the negative ion tends to be distorted or 

polarized by the positive ion as is indicated in Fig. 14.3. Some of the negative 
charge is drawn from the halide ion toward the alkali ion, and this distortion 

results in a decrease of the dipole moment of the molecule. This polarization is 
most extreme when a small positive ion acts on a large negative ion, and we can 

see from Table 14.3 that the discrepancy between the observed dipole moment 
and that calculated for spherical ions is most serious in such compounds as 

LiBr and Lil. The polarization effect represents the start of conversion from 
ionic to covalent bonding. The fact that it is present even in the alkali halides 

means that we should expect to find it important in other “ionic” compounds. 

FIG. 14.3 The distortion or polarization of the iodide ion by the 
lithium ion in the lithium-iodide diatomic molecule. 

Li+ I- 

With the exception of lithium fluoride, the alkali halides are all quite soluble 

in water. Table 14.4 lists the solubilities of some alkali halides, together with 
AHm\, the enthalpy change that accompanies the dissolution reaction 

MX(s) + H20 = M+(aq) + X~(aq). 

Also listed are —A//°ry8t and — A//°yd, respectively, the enthalpy changes that 
accompany the vaporization of the halide to gaseous ions, and the hydration of 

these ions. The sum of —AH°ryst and —AH®yd must equal AH°ol. We see from 
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Table 14.4 Some enthalpies of hydration and crystallization (kcal) 

^^cryst — AHhyd AHsoi 
solubility 

(moles/liter) 

LiF 246.7 -240.1 6.6 0.11 
NaCI 186.6 -185.3 0.9 6.1 
Nal 165.7 -167.5 -1.8 11.0 
KCI 169.3 -165.2 4.1 4.6 
RbCI 162.3 -159.3 3.0 7.5 

the data in the table that the enthalpy change that accompanies the solution 
process is really a small difference between two large quantities. This is true 
generally for other salts. Consequently, although the lattice enthalpies and 
hydration enthalpies may vary smoothly for a particular sequence of com¬ 

pounds, the enthalpy of solution may fluctuate in an unpredictable fashion. 
Since this quantity, along with the entropy change that accompanies dissolution, 

determines the salt solubility, we can expect that the relative solubilities of a 
series of salts might be difficult to predict without careful consideration of 
thermodynamic data. Since this is true, it is often most efficient just to re¬ 
member general trends in solubilities, rather than try to relate them to more 

fundamental quantities like lattice enthalpies and hydration enthalpies. 

The circulatory and intracellular fluids of living matter are aqueous solutions 

which contain, among many other things, significant amounts of Na+ and K+. 

Living cells are separated from one another and from the circulatory system by 

their wall membranes. These membranes are combinations of protein and lipid 

macromolecules, neither of which is a good solvent for ionic substances. How¬ 
ever, Na+ and K+, as well as other charged species, pass through cell walls 

quite rapidly. One of the most challenging problems in physiological chemistry 

is to determine how Na+ and K+ are transported through the cell walls which, 

on the basis of their structure, would be expected to be rather impermeable to 

ions. 
Recently, it has been discovered that the salts of alkali metals can be made 

quite soluble in organic solvents if they are treated with organic chemicals called 
cyclic polyethers. An example of how cyclic polyethers can interact with alkali 

metal salts is shown in Fig. 14.4. At each apex in the drawing there is a carbon 

atom to which is attached either one or two hydrogen atoms so that there is a 
total of four bonds to each carbon atom. The geometric structure of the organic 

molecule is such that the six oxygen atoms (the ether functional groups) form 

a cavity into which the potassium ion can fit. The result is a solvation or 

complexing of the cation by the polyether molecule. The negative ion remains 
in the vicinity of the complexed cation. The aggregate is soluble in organic 

solvents, since most of the polyether molecule is made up of its hydrocarbon 

skeleton, which is compatible with other organic molecules, and which shields 
the ion pair from interaction with the solvent. By varying the molecular 
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structure of the polyether, different sized oxygen cavities can be constructed. 

The most stable ion-ether complexes are formed when there is a match between 

the size of the cavity and the cation. As a result, it is possible to use cyclic 

polyethers to dissolve certain alkali metal ions preferentially. Complexing of 

ions by cyclic polyethers may be responsible for the ease with wdiich these 

species pass through cell wall membranes. 

FIG. 14.4 The interaction of a cyclic polyether with potassium permanganate. 

14.2 THE ALKALINE-EARTH METALS 

These elements of group IIA (Be, Mg, Ca, Sr, Ba, Ra) are never found in 
the metallic form in nature, because, like the alkali metals, they are active 

reductants and react readily with a variety of nonmetals. Magnesium is the 
second most abundant metallic element in the sea and also occurs in a variety 

of silicate minerals. Calcium is found abundantly as CaC03 in marble, lime¬ 
stone, and chalk. The most common source of beryllium is the mineral beryl, 
Be2Al2(Si03)6, while barium and strontium are found most frequently as the 

sulfates BaS04 and SrS04. All isotopes of radium are radioactive; the element 

itself is formed by a radioactive decay chain that starts with U238, and con¬ 

sequently all uranium minerals contain very small amounts of radium. 
All the alkaline-earth metals can be prepared by electrolysis of their fused 

halides. Most of the magnesium prepared commercially is obtained this way, 
although some use is made of the direct reduction of magnesium oxide by carbon: 

MgO + C = Mg + CO. 

In general, the most convenient w?ay to prepare small amounts of the other 
alkaline-earth metals is reduction of their oxides by more readily available 

reducing metals, as in the reaction 

3BaO + 2A1 = 3Ba + A1203. 
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The group IIA metals are all considerably harder than the alkali metals, but 

the trend of increasing softness with increasing atomic number occurs in group 

IIA as it did in group IA. Despite a tendency toward brittleness, the alkaline- 
earth metals can be hammered and rolled without fracture. As a structural 
material, however, only magnesium has important applications. Alloyed with 

aluminum, zinc, and manganese, it forms lightweight and moderately strong 
materials that are used principally in aircraft construction. Calcium and barium 

react readily with oxygen and nitrogen at elevated temperatures, and con¬ 

sequently are used as “getters” to remove the last traces of air from vacuum 
tubes. 

Table 14.5 Properties of the group IIA elements 

Be Mg Ca Sr Ba 

Atomic number 4 12 20 38 56 
Configuration 2s2 3s2 4s2 5s2 6s2 
. . 1/ 1 214 175 140 132 120 
Ionization energy, kcal^ 

429 345 274 253 230 
Atomic radius, A 0.89 1.36 1.74 1.91 1.98 
Melting point, °K 1556 929 1123 1043 983 
Boiling point, °K 2750 1400 1750 1640 1950 
A^subi kcal 77.9 35.6 42.2 39.1 42.5 
Ionic radius, M++, A 0.30 0.65 0.94 1.10 1.29 
AHhyd, kcal 570 460 395 355 305 
8°(M++, M), volts -1.70 -2.34 -2.87 -2.89 -2.90 

The comparative hardness of the alkaline-earth metals suggests that the 
metallic bonding in group IIA elements is stronger than in the group IA ele¬ 

ments; this is confirmed by some of the data in Table 14.5. The melting and 
boiling temperatures and the enthalpies of vaporization of the group IIA metals 

are much higher than those of the alkali metals. Although the values of the 
enthalpies of vaporization fluctuate somewhat, the same gross trend is found 

in group IIA as in group IA: beryllium, the lightest member of the alkaline- 
earth family, has a larger enthalpy of vaporization than does barium. 

Table 14.5 also shows that both the atomic radii and the ionic radii of the 
group IIA elements increase as atomic number increases. The atomic radii 
and particularly the ionic radii are smaller than the corresponding quantities 

for the immediate neighbor elements in group IA. The contraction in ionic size 
in going from group IA to group IIA has an obvious explanation. The ions 

Li+ and Be++, Na+ and Mg++, K+ and Ca++, etc., are isoelectronic; each 
pair has the electronic structure of the preceding inert gas. The alkaline-earth 

ion, however, has a higher nuclear charge than the corresponding alkali-metal 
ion, and this factor causes the decreased size of the alkaline-earth ion. The 

nuclear-charge effect must also be responsible for the comparative atomic sizes 

of the group IA and group IIA elements. 
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The enthalpies of hydration for the group IIA ions have two notable features. 

First, the hydration enthalpy becomes smaller as the size of the ion increases. 

More striking, however, are the magnitudes of the hydration enthalpies. I'ar 

more heat is evolved upon hydration of the ions of group IIA than with the 
corresponding alkali-metal ions. This difference can be attributed to the in¬ 

creased charge on the alkaline-earth ions: Even though Na+ and Ca++ have 
nearly the same radii, the enthalpy of hydration of Ca++ is nearly four times 
that of Na+. This suggests that in general the hydration enthalpy is propor¬ 

tional to the square of the charge on the ion, and this relation is obeyed in fact 

to a fair approximation. 
It is the increase in hydration enthalpy with ionic charge that is responsible 

for the existence of the group IIA ions exclusively in the +2 oxidation state in 

aqueous solutions. The first ionization energies of these elements are not 

particularly large, but the second ionization energies are substantial. 1 his 
observation alone might lead us to expect the -f-1 oxidation state to be impor¬ 

tant in the chemistry of group IIA. The following energetic relationships show 

that gaseous Ca’1 is surely stable with respect to gaseous Ca and Ca+_1. 

Ca(g) = Ca+(g) + e“ All = 140 kcal 

e” + Ca++(g) = Ca+(g) AH = -274 kcal 

Cafe) + Ca++(g) = 2Ca+(g) MI = -134 kcal 

The situation is quite different, however, when we consider the energetic rela¬ 

tions between the aqueous ions and the solid metal. If we estimate the enthalpy 

of hydration of the hypothetical aqueous Ca * to be equal to that of K+, we 

can write 
2Ca+(g) = 2Ca+(aq) 

Cafe) = Cafe) 
Ca++(aq) = Ca++(g) 

Cafe) + Ca++(g) = 2Ca+(g) 

Cafe) + Ca++(aq) = 2Ca+(aq) 

All = —152 kcal 

All 42 kcal 

AII = 395 kcal 
All = -134 kcal 

All = +151 kcal 

Now it is clear that aqueous Ca+ is energetically unstable with respect to 
Ca++(aq) and calcium metal, and the analogous conclusion can be reached for 

any of the other alkaline-earth systems. Examination of the enthalpy changes 
involved shows clearly that it is the enthalpy of hydration of the dipositive ion 

that is responsible for its stability in aqueous solution. The rationalization of 
the occurrence of the +2 state in the ionic crystals of the alkaline-earth com¬ 

pounds is similar to the above argument, and has been given in Section 11.2. 

In effect, the gain in the crystal-lattice energy obtained by forming a dipositive 
ion more than compensates for the extra energy required to remove the second 

electron from an alkaline-earth atom. 
The standard reduction potentials of the alkaline-earth elements given in 

Table 14.5 show that beryllium and magnesium are poorer reductants than the 
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Table 14.6 Enthalpy changes for electrode half-reactions 

Be Mg Ca Sr Ba 

AHsub 77.9 35.6 42.2 39.1 42.5 
h + / 2 643 520 414 385 350 

AHhyd -570 -460 -395 -355 -305 
AH[M(s)= M++(aq) + e~] 151 96 61 69 87 

heavier elements. The data which in part explain these differences are given in 
Table 14.6, where the enthalpies associated with the reaction sequence 

M(s) = M(g) = M++(g) + 2e— = M++(aq) + 2e_ 

are given for all the alkaline-earth elements. For the electrode reaction written 
as an oxidation, the enthalpy change is most positive for beryllium and mag¬ 
nesium. This is consistent with the observation that these metals are the poorest 
reducing agents in group IIA. The enthalpy data show that the principal reason 
for the inferiority of beryllium and magnesium as reductants is their relatively 
large ionization energies, although the large sublimation energy of beryllium 
also makes an important contribution to this poor performance as a reductant. 
The observation that the electrode potentials of calcium, strontium, and barium 
are nearly the same, but the enthalpy changes associated with the reactions 
fluctuate, shows that the analysis of electrode potentials on the basis of enthalpy 
changes alone has limitations imposed by neglect of entropy changes and pos¬ 
sible inaccuracies in the values of enthalpies of hydration. 

The Oxides and Hydroxides 

The oxides of magnesium and the heavier group IIA elements can be prepared 
by direct combination of the elements, or by thermal decomposition of the 
carbonates: 

M + \02 = MO, 

MC03 = MO + C02, 

where M = Mg, Ca, Sr, Ba. As can be seen from Table 14.7, the oxides are 
extremely stable; their negative enthalpies and free energies of formation are 
consequences of the very large ionic crystal-lattice energy obtained by packing 
doubly charged ions in a rock-salt or sodium-chloride type of lattice. 

Table 14.7 Thermodynamic properties of alkaline-earth oxides (298°K) 

BeO MgO CaO SrO BaO 

AH1}, kcal/mole -143.1 -143.8 -151.9 -141.1 -133.4 

AGf}, kcal/mole -136.1 -136.1 -144.4 -133.8 -126.3 
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Table 14.8 Solubility products 
of the group 11A hydroxides 

K'sp 

Be(0H)2 1.6 X 10" -20 

Mg(0H)2 8.9 X 10" -12 

Ca(0H)2 1.3 X 10- -6 

Sr(0H)2 3.2 X 10- -4 

Ba(0H)2 5 X 10- -3 

The heavier oxides react with water to form hydroxides of the general formula 
M(OH)2. These hydroxides are strong bases, for they react with acids and also 

dissolve in water as M++ and OH- ions. Their solubility in water is somewhat 

limited, but increases with the increasing atomic number of the cation, as is 

shown by the solubility products in Table 14.8. 

FIG. 14.5 The polarization of water molecules by a beryllium ion. 

The properties of beryllium oxide distinguish it from the other alkaline-earth 

oxides. Beryllium oxide is harder and higher melting than the oxides of the 
heavier metals. More distinctive, however, is its acid-base behavior. Beryllium 

oxide is amphoteric; it reacts slowly with only very concentrated strong acids 
to give solutions of hydrated ions [Be(H20)4] ++, and it also reacts with strong 

bases and enters solution as an anion whose formula is probably Be(OH)T- 
The amphoteric behavior of beryllium oxide can be thought of as a conse¬ 

quence of the small size and relatively large charge of the beryllium ion. The 

electric field around such a small ion is particularly intense, and consequently 
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Table 14.9 Properties of some group 11A chlorides 

Tmp(°C) TbP(°C) Equivalent 
conductivity* (ohm-1) 

BeCI2 405 490 0.086 
MgCI2 715 1400 29 
CaCI2 780 1600 52 

*At the melting point. 

the beryllium ion polarizes surrounding molecules by drawing electrons from 

them. Thus the situation in [Be(H20)4]++ might be as represented in Fig. 14.5. 
The effect of the beryllium ion is to withdraw electronic charge from the sur¬ 

rounding water molecules and thereby facilitate removal of their protons and 
the formation of Be(OH)^. Thus [Be(H20)4]++ is an acid while BetpH)^ is 

a base. We shall find other instances in which a small, highly charged ion exists 
as a hydrated positive ion in acidic solutions, and as a hydroxy-anion in basic 
solutions. 

The Halides 

All the group IIA metals combine directly with the halogens to form the metal 

halides of the general formula MX2. The chlorides in particular are interesting, 
for their properties display trends which can be interpreted as indicating a 
change from covalent to ionic bonding as the atomic number of the metal 

increases. Table 14.9 shows that beryllium chloride has lower melting and boiling 
points, and much lower electrical conductivity in the fused state than do the 

other alkaline-earth chlorides. Moreover, beryllium chloride is soluble in some 
organic solvents, which suggests that the charge distribution in BeCl2 tends to 
be rather uniform, like the distribution in the covalently bonded organic mole¬ 

cules. The appearance of covalent character in the beryllium halides should not 
be too surprising in view of our earlier remarks about how a small, highly 

charged ion polarizes neighboring negative ions. The properties of beryllium 
chloride indicate qualitatively that this polarization effect is so extreme that it is 

more accurate to think of the beryllium halides as covalently bonded molecules. 
In the gas phase, BeCl2 is a linear symmetric molecule, which is consistent 

with a description of the bonding in terms of sp-hybrid orbitals around the 

beryllium atom. In the solid phase, beryllium chloride displays the bridged 
structure shown in Fig. 14.6. Each beryllium atom is surrounded by four 

chlorine atoms, with a Cl-Be-Cl angle of 98°. This type of bridge structure, 

where a halogen atom is associated with two metal atoms, also occurs in the 
aluminum and gallium halides, and in other systems where a small, highly 

charged cation of low coordination number can associate with ligands which 

have an unshared pair of electrons. 
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FIG. 14.6 

Other Salts 

The structure of BeCI2 in the crystal. 

The chlorides, bromides, and iodides of the heavier alkaline-earth metals are 

ionic solids which have appreciable solubility in water. The fluorides, however, 

are relatively insoluble, and as Table 14.10 shows, the trends in the solubilities 

of the fluorides are similar to the trends in solubilities of the hydroxides. 

Table 14.10 Solubility products of some alkaline-earth salts 

F“ so= co3= CrO= 

Mg++ 
Ca++ 
Sr++ 
Ba++ 

8 x icr8 
1.7 X 10~10 

8 x icr10 
2.4 x io~5 

2.4 x icr5 
8 x icr7 
l x icr10 

icr5 
4.7 x icr9 

7 x icr10 
1.6 x io-° 

7.i x icr4 
3.6 x icr5 
8.5 x icr11 

The carbonates, sulfates, and chromates of the alkaline-earth metals show 

similar solubility trends, as the data in Table 14.10 demonstrate. The solu¬ 

bilities of all these salts decrease as the atomic number of the metal ion increases, 

and this behavior is opposite to that observed for the fluorides and hydroxides. 
Although we have remarked about the uncertainty of relating solubility trends 

to fundamental properties such as lattice and hydration enthalpies, we can 

make a meaningful analysis of the solubilities of the alkaline-earth carbonates, 

sulfates, and chromates in these terms. As we proceed in sequence from BeSC>4 

to BaS04, the enthalpy of hydration of the positive ion becomes smaller because 

of the increase in ionic size. This tends to make the salts of the heavier metal 

ions less soluble than those of the lighter ions. The lattice energies of the sul¬ 
fates, and of the carbonates and chromates as well, do not change greatly in 

sequence from beryllium to barium, for the lattice energies are determined 
principally by the reciprocal of the sum of the ionic radii, 1 /(/•+ + r_). 1 his 

quantity changes rather slowly in the sequence from beryllium to barium, 
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Table 14.11 Thermodynamic data for MC03(s) = MO(s) + C02(g) 

A H° AG° T(Pco2 = 

(kcal) (kcal) 1 atm) 

MgC03 = MgO + COo 28 16 540 °C 
CaC03 — CaO -f* CO2 42 31 900 °C 
SrC03 = SrO + C02 57 45 1290°C 
BaC03 = BaO + CO2 64 52 1360°C 

because r_, the radius of the negative ion, is much greater than that of any of 
the positive ions, and thus r+ + r_ is insensitive to variations in r+. There¬ 

fore the trend in the solubilities of the group IIA metal salts of large anions like 

S04 , COT, and CrOT is dictated predominantly by the trend in the enthalpies 
of hydration. 

The thermal stabilities of the group IIA metal carbonates provide another 
demonstration of how ionic size and lattice energies influence chemical behavior. 

At elevated temperatures all the carbonates decompose to the oxides according 
to the reaction 

MC03(s) = MO(s) + C02(g). 

The temperature at which the equilibrium pressure of C02 is equal to 1 atm 
increases as the atomic number of the metal ion increases, as the data in Table 

14.11 show. Thus there is a rather smooth increase in the stabilities of the 

carbonates as the atomic number of the metal ion increases. The values of 
AG'° and AH° for the decomposition reactions, also given in Table 14.11, are 

all positive, but tend to become larger as one proceeds toward the heavier 

metals. The trend in AG° is due virtually entirely to the fact that the values 
of AH° become larger as atomic number increases. Thus, in attempting to 

explain the trend in carbonate stabilities we can ignore entropy effects and 
concentrate on enthalpies. 

The trend of increasing AH° with increasing atomic number of the cation 
must be a result of the variation in the lattice energies of MC03 and MO as 

the cation size increases. We have remarked that the lattice energy of a salt of 

a large anion is not particularly sensitive to the size of the cation, for the ionic 

separation r+ + r_ is determined principally by r_, the radius of the negative 
ion. Therefore the carbonate lattice becomes only slightly less stable as the 

atomic number and size of the cation increase. On the other hand, the lattice 
energy of an oxide is sensitive to the size of the cation, because the radii of the 

oxide ion and the cations are quite comparable. Thus the oxides of the smaller 

cations should be much more stable than those of the larger cations, and there¬ 
fore the decompositions of the carbonates of the smaller cations should be less 

endothermic than those of the larger cation, as is observed. It is the decreasing 

size of the cation that stabilizes the lighter alkaline-earth oxides and favors the 

decomposition of their carbonates. 
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There is an important industrial process which involves the thermal de¬ 

composition of calcium carbonate. The carbonates and bicarbonates of the 

alkali metals, especially Na2C03 and NaHC03, are important industrial 

chemicals which are used in the manufacture of glass, paper, water softeners, 

detergents, and soap. While there is an ample supply of sodium chloride deposited 

in readily available marine evaporites, there are no large deposits of Na2C03. 
Most of the Na2C03 and NaHC03 used by the chemical industry is manufac¬ 

tured from NaCl and CaC03 by the Solvay process. 
In the Solvay process, a concentrated aqueous solution of sodium chloride 

is first saturated with ammonia, and then carbon dioxide is bubbled through it. 

The results can be represented by the reactions 

NH3(aq) + C02(aq) + H20 = NH^(aq) + HCOr(aq), 

NH^(aq) + HCO^(aq) + Na+(aq) + Cl_(aq) 
= NaHC03(s) + NH^(aq) + Cr(aq). 

The solution is chilled to about 15°C in order to decrease the solubility of sodium 

bicarbonate, which separates as a fairly pure solid. If sodium carbonate is 

desired, it can be obtained by heating the bicarbonate salt. 

The raw materials used in these reactions are sodium chloride, ammonia, 

and carbon dioxide. A convenient source of C02 is the pyrolysis of limestone, 

CaC03, of which ample supplies are available: 

CaC03(s) = CaO(s) + C02(g). 

The lime (CaO) which is obtained from this reaction can be “slaked” to give 

calcium hydroxide: 

CaO(s) + H20(1) = Ca(OH)2(s). 

In turn, this calcium hydroxide is used to recover gaseous ammonia from the 

ammonium chloride solution produced in the first steps of the process: 

2NH^(aq) + 2Cl“(aq) + Ca(OH)2(s) 
= 2NH3(g) + Ca++(aq) + 2Cl“(aq) + 2H20. 

Thus the overall result of the Solvay process is the conversion of NaCl and 

CaC03 to NaHC03 and CaCl2. Calcium chloride is used as a drying agent, 

a de-icing agent, and a soil conditioner. The Solvay process illustrates a number 

of desirable features of an industrial chemical conversion: readily available 

raw materials (NaCl and CaC03) are used, the reactions are rapid, the more 

expensive intermediate material (NH3) is recycled, and uses for the by-product 

(CaCl2) exist. 

610 THE REPRESENTATIVE ELEMENTS: GROUPS l-IV | 14.2 



14.3 THE ELEMENTS OF GROUP IIIA 

The striking feature of the chemistry of the alkali and alkaline-earth metals 
is the close resemblance among members of the same family. There are some 

similar points of resemblance among the elements of group IIIA (B, Al, Ga, In, 
Tl), but in addition, these elements display a range of properties and some 

notable contrasts. In passing from boron to thallium we encounter a change 

from semimetallic to metallic properties, from acidic to amphoteric to basic 
oxides, and from halides in which the bonding is distinctly covalent to those in 

which it is more nearly ionic. Such contrasts in the chemical properties of the 
elements of a single family occur again particularly in groups IV and V, and to 
some degree in group VI, as we shall see. 

The principal natural source of boron is the deposits of borax, Na2B407 • 
10H2O, and recovery of the pure element from this compound is difficult. One 

method that is used is the conversion of borax to the oxide B203, which is then 

reduced with magnesium. This process does not give a particularly pure product, 
since the reduction of the oxide is never quite complete. The reduction of boron 

trichloride with hydrogen gives a product of better quality, but this process is 
less well suited for production of the element in quantity. 

Aluminum is the most abundant metal in the earth’s crust, and is recovered 
pure and in quantity from its oxide by electrolytic reduction. In contrast, 

gallium, indium, and thallium are quite rare, and are obtained only as by¬ 

products in the recovery of other more important metals like aluminum, zinc, 
cadmium, and lead. 

Table 14.12 gives some of the physical properties of the group III elements. 
The trends in hardness, boiling temperature, and A/fsub parallel those found in 

groups I and II. It is clear from the boiling points and the values of AHsuh that 
all the group III elements are bound more strongly in the condensed state than 

Table 14.12 Properties of the group IIIA elements 

B Al Ga In Tl 

Atomic number 5 13 31 49 81 
Configuration 2s22p! 3s23p1 4s24p! 5s25p1 6s26px 

f h 191 138 138 133 141 
Ionization energy, kcal, 

V2 
580 434 473 435 471 

1/3 874 656 708 646 687 
Atomic radius, A 0.80 1.25 1.24 1.50 1.55 
Melting point, °K 2300 932 312 429 577 
Boiling point, °K 4000 2700 2500 2300 1740 
AHsubi kcal 135 77.5 65.3 58 43 
Ionic radius, M+3, A — 0.45 0.60 0.81 0.95 
AHhyd, kcal — 1121 1124 994 984 
6°(M+3, M), volts — -1.67 -0.52 -0.34 0.72 
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the metals of groups I and II. With the exception of boron, the group III ele¬ 

ments do not have exceptionally high melting points; on the contrary, gallium 

melts at 29°C. Because of the enormous temperature interval between the 
melting and boiling points of gallium, it is sometimes used as a thermometer 

liquid. 

Boron 
Boron is the first of the elements we have encountered that is not a metal.' Its 

electrical conductivity is small and increases as temperature rises, which is 
opposite to the behavior observed for metals. Although boron is formally in the 

+3 oxidation state in its oxide and halides, there is no chemistry associated with 

a free B+3 species. On the contrary, boron is bonded covalently to nonmetals 

and is an electron acceptor in borides like MgB2 and A1B2. Inspection of the 

ionization energies in Table 14.12 shows why the free B+3 species is not chem¬ 
ically important. The energy required to remove three electrons from the boron 

atom is very large, and the ion so formed would be extremely small and would 
exert large polarizing forces on neighboring atoms. This would result in transfer 

of electron density to the boron from its neighbors, and thus the energetically 

favored situation would be electron sharing, or covalent bonding to boron. 

Table 14.13 gives some of the properties of the boron halides. As liquids 
they do not conduct electricity, and their boiling points are all very low com¬ 

pared with those of the halides of the group I and II elements. In the gas, 

liquid, and solid phases all the boron halides exist as discrete molecular species 
BX3. All these facts are in contrast with the behavior expected from ionically 

bonded substances and constitute the principal justification for picturing the 
boron-halogen bond as covalent. Further confirmation of this picture lies in 
the observation that the boiling points of the boron halides increase as the 

atomic number of the halogen increases. This is the behavior expected of a 

series of compounds in which the forces of attraction between molecules are of 
the van der Waals type, for these forces increase as the number of electrons in 

a molecule increases. In contrast, the strength of ionic attractions decreases as 

the ions become larger. 
All the boron halides act as electron acceptors, as for example, in the reactions 

bf3 + nh3 - f3bnh3, 

BF3 + F“ = BFr. 

Table 14.13 Properties of the boron trihalides 

Melting point 
(°C) 

Boiling point 
(°C) 

AH/(kcal) 

bf3 -127 -101 -270 
bci3 -107 12 - 95.7 
BBr3 - 46 91 - 44.6 
bi3 43 210 — 
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In these reactions, BF3 accepts a pair of electrons donated by NH3 or F—. 

Thus BF3 and the other boron halides are Lewis acids, and BF3 in particular 
is often used as an acid catalyst in the reactions of organic compounds. 

The oxides of semimetals are, in general, acidic, and the oxide of boron is no 
exception. Boron trioxide, B203, when hydrated, forms boric acid, B(OH)3. 

Despite its formula, boric acid is a monobasic acid and is quite weak. The acid 
reaction of B(OH)3 is not simply a loss of a proton, but rather 

B(OH)3 + H20 - B(OH)7 + H+ 

In this reaction boron again displays its tendency to accept electrons, for boric 

acid is evidently a Lewis acid and accepts electrons from OH-. 

H 
0 

HO-B O B-OH 

O 
H 

HO 

\ 
B-O 

OH 

/ \ / 
O B 

\ /\ 
B-O 0- 

\ 
O 
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B 

The structure of the B405(OH)4 ion. fig. 14.7 

The structure of the B506(0H)7 anion. FIG. 14.8 

The salts of boric acid have complex structures and, at least in aqueous 
solution, never contain the simple anion BOjT3. When a solution of boric acid 

which is more concentrated than approximately 0.02 M is made basic, the 
reaction 

2B(OH)3 + B(OH)T = B303(0H)r + 3H20 

occurs to form the triborate ion, B303(0H)T- This ion, as well as the tetraborate 

ion B405(0H)T, which occurs in borax, have structures which involve boron- 
oxygen rings, as Fig. 14.7 shows. In both these anions there are boron atoms 
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which display trigonal coordination, and in B405(0H)4", two of the boron 

atoms are tetrahedrally coordinated by oxygen. Even more complicated 

structures occur. In the salt KB508 • 4H20, the anion has the double-ring 

structure shown in Fig. 14.8, while in CaB204, the anion is an infinite chain 

of BO^ units which is pictured in Fig. 14.9. This great variety of stable boron 

anion structures makes it possible for boric oxide B2C>3 to incorporate other 

metal oxides with consequent formation of boric oxide-metal borate glasses. 

This is the basis for the action of B2C>3 and the use of borates as cleansing fluxes 

in soldering and brazing. 

0 

/ 
/ \ 
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\ 
fig. 14.9 The structure of the BOj chain anion. 0 
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Boron forms a series of volatile compounds with hydrogen called the boranes. 

Diborane, B2H6, is the simplest of these hydrides, and can be prepared by the 

reaction of lithium hydride with boron trifluoride, 

GLiH -|- 8BI* 3 = GLiBL 4 B2Hg. 

When diborane is heated to temperatures between 100 and 250°C, it is con¬ 

verted to a number of other boranes: 

B2H6 > B4H10,B5H9,B5H11,B6H10, BgH15, BioH14, Bi0H16. 

The formulas of the boranes are of two types, B„Hn+4 and BnHn+6. Com¬ 

pounds of the first type seem to be the most stable. 
Most of the boranes are spontaneously inflammable in air and are rapidly 

hydrolyzed by water to boric acid. The exceptions to this rule are B9H15 and 

BioH14, which are stable in air and hydrolyze only very slowly. There has 

been some interest in the boranes as fuels, for the energy evolved by their 

reactions with oxygen is considerable: 

B2H6 + 302 = B203 + 3H20, AH = -482 kcal. 

The molecular structure and bonding in the borane series is quite unique. 

Figure 14.10 shows the structure of diborane. The boron atoms and four of the 
six hydrogen atoms lie in the same plane with the remaining two hydrogens 
occupying “bridge” positions between the boron atoms. The B—H—B system 
is a three-center electron-pair bond. To see that two electrons do indeed bind 

three atoms together, we construct in Fig. 14.11 the electron-dot structure of 
diborane, starting with separated BH2 fragments and the bridge hydrogen 

atoms. The two electrons in each bridge bond visit both boron atoms and the 
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hydrogen nucleus. This can be seen more clearly in Fig. 14.12, where the molec¬ 

ular orbital which corresponds to the bridge bond, and its construction from the 
hydrid orbitals of boron and the ls-orbital of hydrogen are shown. The struc¬ 

tures of the other boranes also involve the hydrogen bridge bond. In addition, 

we shall find that there are compounds of other elements in which bridge bonds 
formed by halogen atoms are important. 

H 

Formation of three-center bonds in diborane. FIG. 14.12 
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FIG. 14.13 The structure and line representation of the bonding in tetraborane, B4H10. 

The structure of tetraborane, B4Hi0, can be understood in terms of con¬ 
ventional two-center electron pair bonds and the three-center, two-electron or 

B—H—B bridge bond. In Fig. 14.13 we show both the structure of B4H10 

and a line drawing representation of its bonding. We see that there are six 

conventional B—H electron pair bonds, and one B—B electron pair bond. In 

addition, there are four B—H—B bridge bonds, and together these account for 

the twenty-two valence electrons contributed by four boron and ten hydrogen 

atoms. 
In order to understand the bonding in B5H9 and other of the boron hydrides, 

we must consider another type of three-center bond. This involves two electrons 

bonding three boron atoms arranged in an equilateral triangle. Formation of 

this three-center, two-electron bond is represented in Fig. 14.14. Each boron 

atom contributed one hybrid orbital to form a molecular orbital which has no 

nodes between the boron nuclei. Thus this bonding orbital is very much like 

the lowest molecular orbital in H3". In line representations of the bonding in 

boron hydrides, this three-center, two-electron boron bond is indicated by the 

construction shown in Fig. 14.14. 
The structure of pentaborane-9, B5H9, is given in Fig. 14.15. The boron 

atoms form a square-based pyramid. There are five conventional two-electron 
B—H bonds, and four B—H—B bridge bonds which together account for 

eighteen of the twenty-four valence electrons in the molecule. The remaining 

six electrons bond the boron atom at the apex to the four boron atoms at the 

base of the pyramid. Since all four sides of the pyramid are equivalent, the 

molecule must be pictured as a resonance hybrid of bond structures of the type 
shown in Fig. 14.15. That is, the electronic distribution is a superposition of 
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Formation of the three-center, two-electron bond, and its line representation. FIG. 14.14 

four equivalent structures in which there are two conventional B—B electron 

pair bonds and one three-center bond between the apex and base boron atoms. 
Other species in which hydrogen and boron are bonded include the boro- 

hydride ion, BH^, and more complicated ions such as B3H^ and BioH^. 
Lithium borohydride can be made by the reaction of lithium hydride with 

diborane: 
2LiH + B2H6 = 2LiBH4. 

In general, the alkali-metal borohydrides are ionic compounds consisting of 
M+ and BH^. On the other hand, aluminum borohydride, A1(BH4)3, is a 

rather volatile compound and is apparently best described as BH2 units cova¬ 

lently bonded to aluminum by A1—H—B bridge bonds. 
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Aluminum 

In contrast to boron, elemental aluminum is definitely metallic. Nevertheless, 

in some of its compounds aluminum, to a slight degree, displays properties that 
are often associated with the semimetals: It forms a markedly amphoteric 

oxide, and halides that are rather volatile. 

In the recovery of aluminum from its ore bauxite, the amphoteric properties 
of A1203 are used to advantage. The ore must be freed of iron impurities before 

it is electrolyticalty reduced to aluminum. To do this, crude A1203 is treated 

with hot alkali solution, and the aluminum oxide dissolves as Al(OH)F- Because 
Fe203 is not amphoteric, the iron impurities remain undissolved and can be 

removed by filtration. The hot solution of Al(OH)F is then cooled and agitated, 
and A1203 • 3H20 precipitates. The purified A1203 • 3H20 is heated to produce 

A1203, which is then dissolved in a fused mixture of cryolite, Na3AlF6, NaF, 

and CaF2 and then electrolyzed to produce metallic aluminum. 

The electrode potential of aluminum, 

Al+3(aq) + 3e~ = Al(s), £° = —1.66, 

shows that the metal is a strong reducing agent. In ordinary circumstances, 

however, the surface of aluminum is covered with a dense, tough, transparent 

coating of oxide which protects the metal from further chemical attack. The 
oxide coating can be destroyed by amalgamation, and in this condition alumi¬ 

num displays its true reducing properties and dissolves readily in water with 
the evolution of hydrogen. 

The enthalpy of formation of A1203 is negative, and its magnitude indicates 

the great stability of this compound: 

2A1 + f02 = A1203, AH = -399 kcal. 

Aluminum oxide is so stable that metallic aluminum will reduce any metallic 

oxide to the metal in the thermite process: 

2A1 + Cr203 = A1203 + 2Cr, AH = —126 kcal, 

2A1 -f- Fe203 = A1203 + 2Fe, AH — —203 kcal. 

The most important form of anhydrous aluminum oxide, A1203, is a-alumina. 
In this solid, the oxide ions form a hexagonally close-packed array, and aluminum 

ions occupy two thirds of the octahedral interstitial sites, in such a way that each 

oxygen ion is surrounded by four aluminum ions. In its pure crystalline state, 

a-alumina (the mineral corundum) is highly transparent, mechanically strong, 

thermally stable, an excellent electrical insulator, and very resistant to attack 

by acids or bases. When crystalline alumina contains traces of certain transition 

metal ions, it can become very attractively colored. The gemstone ruby is 

a-alumina, which contains small amounts of Cr+3, while blue sapphire is a- 

alumina contaminated by Fe++, Fe+3 and Ti+3. 
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Table 14.14 Properties of the aluminum trihalides 

Melting point 
(°C) 

Boiling point 
(°C) 

AH°f( kcal) 

aif3 — 1291 (sub) -311.0 
AlCIa 192 180 (sub) -166.2 
AIB1-3 97 255 -125.8 
Alla 180 381 - 75.2 

Aqueous solutions of aluminum salts are acidic because of the hydrolysis of 

Al+3. The intense electric field of the relatively small, highly charged ion 
apparently draws electrons away from the neighboring water molecules and 

enables them to become proton donors. The ionization constant for the reaction 

[A1(H20)6]+3 = [A1(H20)50H]+2 + H+ K = 1.1 X 10~5, 

shows that aqueous Al+3 is nearly as strong an acid as acetic acid. This pro¬ 

nounced hydrolysis is to be expected from any species that forms an amphoteric 

oxide. 
Aluminum fluoride is a high-melting compound of low volatility, but the 

other halides of aluminum melt at relatively low temperatures, as Table 14.14 

shows. In the vapor phase the chloride, bromide, and iodide of aluminum exist 

as A12X6 molecules that have the halide bridge structure shown in Fig. 14.16. 

FIG. 14.16 

This bridge structure is apparently a fairly general characteristic of electron- 
deficient systems, where the formation of bonds by the usual electron-sharing 

process leads to a nearly completed valence-electron shell. 

Gallium, Indium, and Thallium 

The chemistry of gallium is very similar to that of aluminum. The electrode 

potential 

Ga+3(aq) + 3e“ = Ga(s), 8° = -0.52 volts, 
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indicates that gallium is a good reducing agent, but not as powerful as alumi¬ 

num. Like aluminum, gallium metal is protected by an oxide coating, but will 

dissolve slowly with evolution of hydrogen both in acids and bases to give 
Ga+3 and Ga(OH)^~, respectively. The Ga+3 ion is extensively hydrolyzed in 

aqueous solution, as shown by the equilibrium constant for the reaction 

[Ga(H20)6]+3 = [Ga(H20)50H]++ + H+, K = 2.5 X 10"3. 

Indium is a rare metal which because of its softness and scarcity has no 
important structural uses. The metal does take a high polish and is sometimes 

used in the construction of special mirrors. The electrode potential 

In+3(aq) + 3e~ = In(s), S° = —0.34 volts, 

indicates that indium is a poorer reducing agent than aluminum and gallium. 

Although solutions of In+3 are extensively hydrolyzed, the oxide ln203 is 
primarily basic and not amphoteric like A1203 and Ga203. 

Indium also differs from aluminum and gallium in that it forms compounds 

in the +1 oxidation state. The halides InCl, InBr, and Ini are known, as is ln20. 
Thallium is also a rare metal and, like indium, is very soft. Unlike the other 

group III metals, thallium is not protected by an oxide coating and conse¬ 

quently is oxidized readily by air. Another point of difference is that the +3 
state of thallium has considerable oxidizing power, as is shown by the electrode 

potential 

Tl+3(aq) + 2e— — Tl+(aq), S° = 1.25 volts. 

While compounds of thallium in the +3 oxidation state such as T1203, the 
trihalides except for the iodide, and T12(S04)3 are well known, much of the 

chemistry of thallium involves the -hi oxidation state. Except that T1C1 is 

insoluble in water, the behavior of thallous salts is, in general, similar to that 
of the alkali-metal salts. 

14.4 THE ELEMENTS OF GROUP IVA 

The close resemblance between elements of the same family, so obvious in 

groups I and II, and somewhat less evident in group III, is even less apparent 
in group IVA. Carbon is indisputably a nonmetal, and while the chemistry of 

silicon is in some respects characteristic of a nonmetal, the electrical and other 
physical properties of the element are those of a semimetal. Germanium is 

from all points of view a semimetal. Although one allotropic form of tin has 
the electrical properties of a semimetal, tin and particularly lead display the 

chemical and physical characteristics of metals. The data in Table 14.15 

illustrate the considerable differences in properties like atomic size and melting 
point that occur in group IV. 

The elements of group IV have in common the oxidation states of +2 and 

+4, but while the +4 state is of overwhelming importance for carbon and 
silicon, the +2 state becomes increasingly important for germanium and tin 
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Table 14.15 Properties of the group IVA elements 

C Si Ge Sn Pb 

Atomic number 6 14 32 50 82 
Configuration 2s22p2 3s23p2 4s24p2 5s25p2 6s26p2 
Ionization energy, kcal 260 188 182 169 171 
Atomic radius, A 0.77 1.17 1.22 1.41 1.54 
Melting point, °K >4000 1685 1210 505 601 
Boiling point, °K 3900 3000 3100 2960 2024 
AHsub» kcsl 171 108 90 72 47 
Ionic radius M++, A — — — 1.10 1.32 
S°(M++, M), volts — — — -0.136 -0.126 

and is the most important oxidation state of lead. Thus instead of a strong- 

resemblance between elements, one finds in group IV fairly smooth trends from 
one type of behavior to another. 

Carbon occurs naturally in the allotropic forms diamond and graphite and 
much more abundantly in contaminated forms like coal. Silicon is the second 

most abundant element after oxygen, and is found in an enormous variety of 
silicate minerals. In contrast to carbon and silicon, germanium, tin, and lead 

are rather rare elements. Tin and lead are familiar, however, because they are 

easily recovered from their ores and are technologically important as pure 

metals and in alloys. 
Ultrapure silicon and germanium are used in the electronics industry for the 

manufacture of transistors. The methods used to obtain each of these elements 
in the pure form are essentially the same. For example, silicon is obtained as 

the dioxide, which is then reduced with carbon, 

Si02 + 2C = Si + 2CO. 

This rather crude silicon is converted to the tetrachloride by direct reaction 

with chlorine, 

Si + 2C12 = SiCl4. 

Silicon tetrachloride is volatile and can easily be purified by distillation. Purified 

silicon is then recovered by reducing the chlorine with hydrogen, 

SiCl4 + 2H2 = Si + 4HC1. 

The silicon is purified further by the zone melting process. In this operation 

a short length of a rod of silicon is melted, and this melted zone is moved slowly 

along the rod. Impurities tend to collect in the melted zone as the element 
recrystallizes, and are transported to the end of the rod as the melted zone 

moves. After repetition of this process the “impure” end of the rod is sawed off, 
and the remaining silicon (or germanium) may have an impurity level lower 

than 10~11 mole fraction. 
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The common ore of lead is galena, PbS. To recover the lead, the sulfide is 

roasted in air and converted to PbO, which is then reduced with carbon. Tin 

occurs as the oxide Sn02, which can be reduced directly with carbon. Any 

further purification of lead or tin is usually carried out by dissolving the metal 

and then depositing it electrolytically. 

Carbon 

Of the two allotropic forms of carbon, graphite is slightly more stable at 25°C 

and 1 atm. The enthalpy change for the reaction 

C (diamond) = C (graphite) 

is only —453.2 cal/mole. 
The structures of diamond and graphite are shown in Fig. 14.17. In diamond, 

each carbon atom is covalently bonded to four others which are located at the 
apices of a regular tetrahedron, and thus we can regard the carbon atom as 

displaying sp3-hybridization. The C—C bond length (1.54 A) and bond energy 

(85 kcal) in diamond are virtually the same as they are in compounds like 
ethane, H3C—CH3. In graphite the atoms form planar layers within which 

they have a regular hexagonal arrangement. The distance between planes is 

3.40 A, which suggests that the planes are not covalently bonded to each other, 
but only held by forces of the van der Waals type. The separation of neighboring 

atoms in the planes is 1.415 A, which is small enough to suggest that the carbon 

atoms are bound to each other by multiple bonds. No single set of bond struc¬ 

tures can be drawn that satisfies the octet rule and also indicates that all bonds 
are equivalent. In Fig. 14.18 are three resonance structures which can be taken 

together to represent the bond structure in the planes of graphite. We might 

say that the bond in graphite is neither a single nor a double bond, but a lj 

bond. 

FIG. 14.17 Arrangement of atoms in (a) diamond and (b) graphite. 
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While diamond is a transparent insulator, graphite is a dark opaque solid 
with a slight metallic luster and an electrical conductivity that is fairly large 

in the directions parallel to the planes of atoms, but small in the direction 
perpendicular to the planes. Apparently the multicenter bonding within the 
planes is like the “free-electron sea” type of bonding found in metals, and this 
accounts for the luster and conductivity of graphite. 

Three resonance structures for a graphite fragment. FIG. 14.18 

The outstanding chemical characteristic of carbon is that it forms a virtually 

unlimited number of compounds in which carbon atoms are bonded to each 

other. These compounds, of which the hydrocarbons CnH2n+2 are an example, 
apparently owe their stability to the uniquely strong bonds that carbon forms 
with itself. Consider the following bond energies. 

C—C 82 kcal C—H 98 kcal Si—H 75 kcal 

Si—Si 53 kcal C—F 110 kcal Si—F 135 kcal 
Ge—Ge 45 kcal C—Cl 80 kcal Si—Cl 91 kcal 

Sn—Sn 37 kcal 

Thus the energy of the C—C bond is roughly of the same magnitude as the 
energies of the bonds that carbon forms to other elements. The reverse is more 

nearly true for silicon and particularly for germanium and tin, whose atoms 
form only very weak bonds to each other. The chemistry of carbon bonded to 

itself and to hydrogen, oxygen, nitrogen, and a few other elements is the subject 
of organic chemistry, which is treated in Chapter 17. In the present section 

we will deal only with those compounds of carbon that are usually considered 
to be “inorganic,” principally because they do not contain hydrogen. 

Carbon forms three oxides that are well characterized: carbon monoxide, 

carbon dioxide, and carbon suboxide, C302. Carbon monoxide has the largest 
bond energy of any diatomic molecule, 256 kcal. It is isoelectronic with nitrogen, 

and just as for nitrogen, the simple electron-dot structure that satisfies the 

octet rule also indicates that carbon monoxide is triply bonded. 

: C ::: 0 : 
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The triple bond can be pictured as two 7r-bonds formed by px and pv atomic 
orbitals and a cr-bond formed from sp hybrid orbitals, as was discussed in 
Section 11.7. 

The nonbonded electrons on the carbon atom in carbon monoxide can in 

certain circumstances be donated to electron acceptors. Thus carbon monoxide 

reacts with the electron-deficient molecule B2HG to form borine carbonyl, 
BH3GO, 

2CO + B2H6 = 2BH3CO. 

We can regard borine carbonyl as a molecule in which the electron deficiency of 
a BH3 fragment has been removed by the pair of electrons donated by carbon 

monoxide, as shown by the following structure. 

H 

H : B : C ::: 0 : 

H 

Carbon monoxide also forms an important series of carbonyl compounds with 
the transition metals. The most common example of these is nickel carbonyl, 
Ni(CO)4, which can be formed by the direct reaction 

Ni + 4CO = Ni(CO)4. 

Other compounds of this type will be discussed in Chapter 16. 

Despite the stability of carbon monoxide, it reacts exothermically with 
oxygen to form carbon dioxide: 

CO 4- |02 = C02, AH = -67.6 lccal. 

Carbon dioxide is unique among the dioxides of the group IVA elements: It is 

a volatile molecular compound, whereas Si02, Ge02, Sn02, and Pb02 are all 
nonvolatile solids with relatively complicated crystal structures. 

Carbon dioxide is only moderately soluble in water, but is the anhydride of 
carbonic acid, 

C02 + H20 = H2C03(aq). 

The total solubility of C02 in water is approximately 0.034 M, but of this 

amount, 99.63% is present in the form of C02 molecules, and only 0.37% is 

actually H0CO3. The first ionization constant of “carbonic acid” is usually 
written as 

[H+][HCOj1 
[H2C03] 

4.3 X 10-7, 

where [H2C03] stands for the total concentration of all neutral carbonic material, 
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H2C03 and C02. Because most of this is C02, the equilibrium constant might 
better be written as 

[H+HHCOj-] 
[C02] 

= 4.3 X 10-7. 

Carbon unites with a number of metals to form carbides, some of which have 

properties of practical value. The carbides can be classified as saltlike, inter¬ 
stitial, and covalent. Two examples of saltlike carbides are Be2C and AI4C3. 
These compounds both yield methane when hydrolyzed. For example, 

A14C3 + 12H20 = 3CH4 + 4A1(0H)3. 

The structure of Be2C is the same antifluorite lattice found in Na20, with 
the beryllium and carbon atoms replacing the sodium and oxygen atoms, 
respectively. 

The acetylides, which contain the C^ unit, constitute another class of salt¬ 

like carbides. Calcium carbide, CaC2, is of this type, and has a rock-salt crystal 

structure in which the Ca++ and C^ replace Na+ and Cl—. Upon hydrolysis 
it yields acetylene, C2H2: 

CaC2 + 2H20 - Ca(OH)2 + C2H2. 

Direct combination of carbon with some of the transition metals like titanium 

and tungsten yields interstitial carbides. These compounds are electrical con¬ 
ductors and have a metallic luster, and it is for this reason that they are pictured 

as metallic lattices which contain carbon atoms in the interstitial sites. The 
interstitial carbides are, in general, extremely hard and high-melting substances. 

For example, both TiC and W2C are nearly as hard as diamond and melt at 
temperatures higher than 3000°K. 

The compounds of carbon with elements of similar electronegativity are 
called covalent carbides. The most important of these is silicon carbide or 

carborundum, SiC. This substance is nearly as hard as diamond and has the 

same infinite three-dimensional lattice structure. 

Silicon 

Elemental silicon has a silvery metallic luster, but its electrical conductivity is 

substantially smaller than that of the metals. Its crystal lattice is the same as 
that of diamond. While silicon is rather inert at room temperature, it reacts at 
higher temperatures with all the halogens to form tetrahalides, with oxygen to 

form Si02, and with nitrogen to form Si3N4. When treated with strong base, 

it dissolves with evolution of hydrogen, 

Si(s) + 20H“ + H20 = SiOr + 2H2. 
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Silicon dioxide or silica exists as a three-dimensional network solid of enor¬ 

mous stability. In one crystal form of Si02, the silicon atoms are arranged 

exactly as are the carbon atoms in diamond, except that oxygen atoms are 

midway between them. The crystal structure of quartz, the most familiar form 

of Si02, is a slight modification of this arrangement. 
Silica melts at 1983°K, and when molten silica is cooled it most often sets to 

a glassy material, rather than to a crystalline solid. This fused quartz has a 

number of valuable properties. Because of the great strength of the silicon- 
oxygen bond (108 kcal), it is thermally stable and chemically inert to all sub¬ 

stances except HF, F2, and hot alkali. In addition it is an excellent electrical 

insulator even at high temperatures, has a very small coefficient of thermal 

expansion, is highly transparent to ultraviolet light, and when drawn into 

fibers, has excellent elastic properties. 

fig. 14.19 Structural similarities between hydrocarbons and silanes. 

Several silicon hydrides, or silanes, are known. All have the general formula 
SinH2n+2, and thus are analogous to the saturated hydrocarbons CnH2n+2. 

Figure 14.19 shows the structural similarities between the simplest silanes and 

hydrocarbons. 
In the hydrocarbon series, the number of carbon atoms in a chain can ap¬ 

parently have any value, but among the silanes, the most complicated known 

compound is Si6H14. Apparently the relatively weak Si—Si bond makes mole¬ 
cules with many silicon atoms linked together quite unstable. The silicon 

hydrides differ from the hydrocarbons in another important respect. Two 

carbon atoms may be linked by a double bond, as they are in ethylene, H2C= 

CH2. Thus there is a series of compounds with the general formula CnH2n. 

There are no analogous silicon hydrides, and apparently double and triple 
bonds between silicon atoms are so unstable that they are not known. 

The silanes are colorless relatively volatile substances. They are all very 
reactive; for example, they ignite spontaneously in air, 

Si3H8 + 502 = 3Si02 + 4H20. 

Silanes also react explosively with halogens, but in the presence of A12C1c, they 
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react in a controlled manner with HC1 to give chlorosilanes: 

HCl(g) + SiH4(g) SiH3Cl(g) + H2(g). 

It is possible to synthesize such molecules as (CH3)3SiCl, (CH3)2SiCl2, and 
CH3SiCl3. These and similar substituted chlorosilanes are technologically im¬ 

portant, for upon hydrolysis they yield polymeric molecules of high molecular 
weight called silicones. Hydrolysis of (CH3)2SiCl2 gives a chain of silicon and 
oxygen atoms. 

CH3 ch3 

—Si—0—Si—0— 

ch3 ch3 

Hydrolysis of CH3SiCl3 gives a cross-linked chain, or a two-dimensional net¬ 
work, as shown below. 

CH3 ch3 

0—Si—0—Si—0— 

o o 

0—Si—O—Si—0— 

ch3 ch3 

The amount of cross linking and the identity of the hydrocarbon substituent 

control the properties of the polymer. All the silicones tend to be water repellent, 
heat resistant, electrically insulating, and chemically inert, and these properties 

make them useful as lubricants, insulators, and protective coatings. 
When the oxides or carbonates of the alkali metals are fused with silica, 

Si02, various alkali silicates are formed. The simplest silicate is Na4Si04, in 
which the SiOT4 anion consists of a silicon atom surrounded by four oxygen 

atoms located at the corners of a regular tetrahedron. However, there are many 

other alkali silicates, such as Na2Si205, Na6Si207, and Na2Si03. Despite 

the diverse empirical formulas of these compounds, we shall find that their 
structures can be understood in terms of a repetition of the fundamental Si04 
tetrahedral unit. 

Silicates occur widely in Nature. Together, silicon and oxygen make up 

74 percent of the mass of the Earth’s crust, and they occur mostly as the silicates 

of the abundant metals Al, Fe, Ca, Mg, Na, and K. It is the variety of molecular 

structures of the silicate anions which produces the enormous range of mechanical 

properties displayed by such minerals as asbestos, the micas, talc, kaolin, the 

feldspars, serpentine, the garnets, and the olivines. Consequently, silicate 

structures are of interest not only as examples of polymeric anions, but as the 
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means by which the macroscopic properties of the ubiquitous Earth materials 

can be understood. 

Figure 14.20 shows how the structures of the various silicate anions are built 

up from the fundamental Si04 tetrahedral unit. When two tetrahedra share 
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one oxygen atom, the ion Si207° results. When two oxygen atoms in each 

tetrahedron are shared with neighbors, either ring structures such as Si30iT6, or 

infinite chains of tetrahedra with the empirical formula SiOi"2 can he generated. 

A double-chain structure can be formed when alternate tetrahedra of two 

single chains share oxygen atoms, and an anion of the empirical formula Si40 Yi 
results. This double chain can be extended in a similar manner to generate an 

infinite sheet of tetrahedra, each sharing three oxygen atoms with its neighbors. 

The empirical formula of this anion is Si20if2. As we shall see, three-dimensional 
network anions are possible if some of the silicon atoms are replaced by Al. 

In the silicate minerals, positive ions occupy positions in the anion structure 

in such a manner that charge balance is achieved, and the anions are held 
together by Coulomb attraction to the cations. 

In Nature, the class of minerals known as the olivines has discrete SiO^4 

tetrahedral units, with no oxygen atoms shared. The chemical formula of the 
olivines can be written as [Mg, Fe]2Si04. That is, Mg++ and Fe++ occur in 

different relative amounts, but the total number of cations is sufficient to 
balance the charge on the anions. Another way of describing the olivines is to 

imagine a hexagonal close-packed array of oxygen ions, with silicon ions occupy¬ 
ing one-eighth of the tetrahedral interstitial sites, and Mg++ and Fe++ occupy¬ 

ing one-half of the octahedral interstitial sites. Because Mg++ and Fe++ have 

similar ionic radii (0.66 A and 0.74 A, respectively), substitution of one ion by 

the other does not markedly change the structure or properties of the mineral. 

Other minerals which contain discrete SiOF4 tetrahedra include willemite, 

Zn2Si04, and zircon, ZrSi04. Garnets also contain SiOF4 tetrahedra, and have 
the general formula M3"+ M2"3(Si04)3, where M++ can be Ca++, Mg++, or 

Fe++, and M+3 is Al+3, Cr+3, or Fe+3. Olivines and garnets are very hard and 

dense minerals of great thermal stability: 

Cyclic silicate anions of the type S^O^T6 are found in the minerals wollas- 
tonite, Ca3Si309, and benitoite, BaTiSi3Og, among others. Even larger cyclic 

anions occur. For example, SieOTg12, a ring of six tetrahedra, is found in the 
mineral beryl, Al2Be3SifiOig. When it is contaminated by small amounts of 

Cr+3 or V+3, beryl is the gemstone emerald. 

Minerals which are built around the infinite single-chain silicate anion are 

called pyroxenes. The best known examples are diopside, CaMg(Si03)2, and 
spodumene, LiAl(Si03)2, a major source of lithium. Double-chained silicate 

anions occur in the class of minerals called the amphiboles. The complete 
structures of these minerals can be quite complicated, since in addition to the 

double-chain anion, both metal and hydroxide ions are present, as in termolite, 

Ca2Mg5(OH)2(Si4Oi i)2. Some of the amphiboles display fibrous mechanical 
properties which result from the great strength of the double anion chains. 

Some of the minerals commonly known as asbestos are amphiboles. 

Combination of the silicate sheet anion Si20jf2 with various cations and 

hydroxide ions produces an enormous number of important and abundant 
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minerals. Examples are talc, Mg3(0H)2(Si205)2, and the micas, such as biotite, 
K(Mg, Fe)3(OH)2AlSi3Oi0. The close correlation between anion structure and 
macroscopic mechanical properties is particularly evident in the micas, which 
cleave very easily in directions parallel to the anion sheets. 

If each Si04 tetrahedron shared all four oxygen atoms with its neighbors, 
we would have a substance with the empirical formula Si02 and the three- 
dimensional framework structure of quartz. To achieve a three-dimensional 
anion structure, some of the Si+4 ions in the tetrahedra must be replaced by 
Al+3, and in order to maintain overall charge balance in the crystal, other 
cations must enter the interstices in the oxide lattice. Thus there are minerals 
of the general formula M(A1, Si)408 in which a certain fraction of the silicon 
atoms have been replaced by aluminum. When the ratio Si:A1 is 3:1, M is an 
alkali metal ion, and when the ratio is 2:2, M is a doubly charged ion such as 
Ca++ or Ba++. These three-dimensional alumino-silicate structures occur in 
the feldspars, which are the most common minerals of the Earth’s crust. As 
might be expected from the molecular structures, feldspars are very hard and 
thermally stable minerals. 

Germanium 

This element has chemical properties that are similar to those of silicon. Solid 
germanium has the diamond lattice structure and displays the electrical con¬ 
ductivity of a semimetal. Like silicon, germanium reacts directly with halogens 
to form volatile tetrahalides, with oxygen to form Ge02, and with alkalies to 
form germanates, 

Ge + 20H- + H20 = GeOjT + 2H2. 

Like Si02, Ge02 is a weakly acidic oxide. 
Germanium, like silicon, forms a series of volatile hydrides which have the 

general formula Ge„H2n+2. Compounds in which n = 6, 7, and 8 have been 
identified but not fully characterized. The germanium hydrides or germanes are 
oxidized to Ge02 and H20 by oxygen, but are not as flammable as the silanes. 

One difference between the chemistry of germanium and silicon is that 
germanium exists in the +2 oxidation state in several of its compounds. The 
halides GeCl2, GeBr2, and Gel2 and the sulfide GeS are known, but are rather 
unstable and are strong reducing agents. The synthesis of these compounds 
illustrates a general method often used to prepare rather unstable intermediate 
oxidation states. The tetrahalides or GeS2 are first obtained by direct reaction 
of the elements and then treated with germanium: 

Ge + GeCl4 = 2GeCl2, Ge + GeS2 = 2GeS. 
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Tin and Lead 

These elements differ from the other members of group IV in a number of 
respects. In the first place, lead and tin are metals, and have important +2 

oxidation states. While the other group IV oxides are acidic, the monoxides 

SnO and PbO are amphoteric, as is Sn02. Lead dioxide, Pb02, is a powerful 
oxidant, and its acid-base properties are not well characterized. In contrast to 

the extensive series of hydrides formed by carbon, silicon, and germanium, tin 
and lead form only SnH4 and PbH4, respectively. While the tetrahalides of 

carbon, silicon, and germanium are stable, those of tin are less so, and PbF4 
and PbCl4 are quite unstable and dissociate upon warming, 

PbX4 = PbX2 + X2. 

Aqueous solutions of tin in the +2 state are formed when the metal dissolves 
in acid. Corresponding to the fact that SnO is an amphoteric oxide, solutions 

of Sn++ are extensively hydrolyzed: 

Sn++ + H20 = SnOH+ + H+, K = 10~2. 

Thus stannous ion is a moderately strong acid—as strong as HSO^- Stannous 
ion also tends to form complexes with anions. For example, in the presence of 
chloride ion, SnCl+, SnCl2, SnCl^, and SnCl^ can all be formed. 

The dioxide Sn02 dissolves in base to form stannate ions, Sn(OH)^, and in 
halogen acids to form complex ions such as SnCl^. There is no evidence that 

Sn+4, or any other monatomic ion of +4 charge, ever exists uncomplexed in 
aqueous solution. 

The most common oxidation state of lead is +2. In aqueous solution, the 

plumbous ion, Pb++, is hydrolyzed, but not nearly so much as the stannous 
ion, as the equilibrium constant for the following reaction shows: 

Pb++ + H20 = PbOH+ -f H+, K = 10~8. 

When alkali is added to solutions of Pb++, Pb(OH)2 first precipitates and then 

redissolves in excess base as Pb(OH)4- 

Like stannous ion, Pb++ forms complexes with the halide ions. The equilib¬ 

rium constants for 

PbCl+ = Pb++ + Cl“, K = 0.077, 

PbBr+ = Pb++ + Br_, K = 0.07, 

Pbl+ = Pb++ + I“, K = 0.03, 

show that these complexes are of only moderate stability. The lead halides 
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PbX2 themselves are moderately insoluble, but dissolve in excess halide ions 

to form such complex ions as PbCIT and Pbljf. 
The sulfate, carbonate, chromate, and sulfide of lead are all quite insoluble 

in water, as the following equilibrium constants show: 

PbS04 = Pb++ -f SOp, 

PbC03 = Pb++ + COT, 

PbCr04 = Pb++ + CrOjf, 

PbS = Pb++ + S=, 

K = 1.3 X 10-8, 

K = 1.5 X 10-13, 

K = 2 X 1CT16, 

K= 7 X IQ-29. 

There is very little chemistry associated with the +4 state of lead. The 

potential for the reaction 

Pb02 + 4H+ + 2e“ = Pb++ + 2H20, 8° = 1.4G volts, 

shows that lead dioxide is a very powerful oxidizing agent. It can be produced 

electrolytically, as it is in the charging of a lead storage battery, or by reaction 

of lead (II) with hypochlorite ion in basic solution: 

Pb(OH)T + CIO- = Cl" + Pb02 + OH” + H20. 

14.5 CONCLUSION 

This discussion of the first four groups of representative elements has revealed 

some regularities that make the descriptive chemistry of these elements quite 
coherent. In group IA particularly, there is a strong resemblance between the 

elements. This marked resemblance persists in group IIA, but superimposed 

on it are some important trends. Beryllium is a less active reducing agent and 

forms a much more acidic oxide than do the other alkaline-earth elements. More¬ 
over, its halides have properties that are easier to rationalize in terms of covalent 

than ionic bonding. Some of these properties appear to a lesser extent in mag¬ 

nesium, but are suppressed in the heavier alkaline-earth elements. In the 

group IIIA family, the elements display a considerable range of properties, but 
still retain some resemblance to each other. Boron is a semimetal and has the 

acidic oxide and molecular covalent halides associated with semimetals. The 

properties connected with metallic behavior become more obvious as the atomic 
weight of the elements increases. In group IVA, the trend of increasing metallic 

behavior with increasing atomic weight is repeated. 
When elements of the same period are compared, it is clear that there is a 

general trend from metallic to nonmetallic behavior as one passes from left to 
right. In the first period, the dividing line between metals and nonmetals occurs 

at the element boron in group IIIA. In the second and third periods, the dividing 
line occurs in group IVA, while in the fourth period it is delayed to group VA. 
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Thus there is a diagonal region in the periodic table that separates the metals 
and nonmetals. 

Besides the vertical relationships and horizontal trends in the periodic table, 
there is a resemblance between elements that are diagonal neighbors. This 

diagonal relationship is most noticeable in the following portion of the table. 

Some examples of this relationship are the semimetallic character, acidic oxides, 
volatile hydrides and halides of both boron and silicon, the amphoteric oxides 

and volatile halides of both beryllium and aluminum, and the ease with which 

both lithium and magnesium form nitrides. In some respects this diagonal 
relationship is more obvious than the vertical resemblances in a given group. 
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PROBLEMS 

14.1 By considering the solubilities of the alkaline-earth hydroxides, decide how the 

pH of a solution should affect the strength of magnesium and barium metals as 

reducing agents. 

14.2 Using the data given in Table 14.12, analyze the energetics of the half-cell 

reaction M(s) = M+3(aq) -j- 3e— for aluminum and gallium. Suggest a reason why 

aluminum is a better reductant than gallium. 

14.3 It is generally accepted that positive ions are more extensively hydrolyzed, or 

act as stronger acids, the higher their charge and the smaller their radii. Cite several 

examples from this chapter that support this generalization. 
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14.4 The triiodide ion, I~, is known in aqueous solution, but while the solid com¬ 

pound Csl3 is stable with respect to Csl and I2, Lil3 is not stable with respect to Lil 

and I2. To account for this difference in stabilities, reasoning similar to that used to 

explain the relative stabilities of the alkaline-earth carbonates can be used. Construct 

an argument that rationalizes the relative stabilities of CSI3 and Lil3. 

14.5 The rock-salt crystal structure can be regarded as a cubic closest-packed anion 

lattice with cations in all octahedral holes. Lithium iodide has the rock-salt structure, 

and the distance between iodine nuclei that form an edge of a face-centered cube is 

6.050 A. By assuming that the lattice dimensions are determined by anion-anion 

“contact,” calculate the radius of the iodide ion. 

14.6 How would you expect the following properties of francium to compare with 

those of the other alkali metals: (a) ionization energy; (b) atomic radius; (c) ionic 

radius? Does the occurrence of the lanthanide series have any relevance to your 

answers? 

14.7 From the standard half-cell potentials 

T1++ e“ = Tl, 8° = -0.336 volt, 

Tl+3+ 2e~ = T1+, 8° = 1.25 volts, 

calculate the equilibrium constant for the reaction 

3T1+ = 2T1+ T1+3. 

Would you expect thallous ion to disproportionate in aqueous solution? 

14.8 Why is Sn++ more extensively hydrolyzed than Pb++? 

14.9 With respect to decomposition by the reaction MSC>4(s) = MO(s) + S03(g), 

which of the group IIA sulfates would you expect to be least stable? Which would 

you expect to be most stable? 

14.10 Discuss, in terms of an ionic-bond model, the possible reasons why aluminum 

is found exclusively as A1+3 in solution and in its stable compounds, whereas thallium 

displays both+l and+3 oxidation states. The ionic radius of Tl+ is 1.47 A. 
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CHAPTER 15 

THE 
NONMETALLIC ELEMENTS 

Groups VA, VIA, VIIA, and the inert gases include most of the nonmetallic 

elements. The chemical behavior of each of these elements is in general more 
complicated than the chemistry of the representative metals, and in some cases 

a nonmetallic element may show only slight resemblance to the other members 
of its chemical family. Nevertheless, it is possible to detect a number of regu¬ 

larities, particularly among the structural features of the compounds of the 
nonmetals, that aid us in remembering and understanding the chemistry of 

these elements. 

15.1 THE ELEMENTS OF GROUP VA 

A considerable range and variety of chemical and physical properties are 
encountered upon examination of the group VA elements. Some of these 

properties are given in Table 15.1. Nitrogen and phosphorus are nonmetals, 
arsenic and antimony are semimetals, and bismuth is a metal with a rather 

small electrical conductivity. While the characteristic oxidation states of these 

elements might be taken as —3, +3, and +5, there are individual peculiarities. 
Nitrogen appears in every integral oxidation state from —3 to +5, and as one 
proceeds down the family of elements, one finds that the +5 state and par¬ 

ticularly the —3 state become increasingly unstable and rare. A similar trend 

was encountered in groups III and IV. 
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Table 15.1 Properties of the group VA elements 

N P As Sb Bi 

Atomic number 7 15 33 51 83 
Configuration 2s22p3 3s23p3 4s24p3 5s25p3 6s26p3 
Ionization energy, kcal 335 254 226 199 168 
Atomic radius, A 0.74 1.10 1.21 1.41 1.52 
Melting point, °K 63 317 sublimes 903 545 
Boiling point, °K 77 553 886 1850 1900 
AH/(atom), kcal 113.7 79.8 69 62 49.5 

x 

Analogous compounds of the group Y elements display a range of properties. 

For example, ammonia, NH3, is basic and thermodynamically stable, while 

PH 3 is much less basic and is thermodynamically unstable with respect to its 
elements. In the compounds AsH3, SbH3, and BiH3, basic properties disappear 

entirely, and BiH3 in particular is so unstable that only trace quantities have 

been identified. As a second example, consider that the +3 oxides of nitrogen 

and phosphorus are acidic, but the acidic properties of the corresponding oxides 

of arsenic and antimony are less pronounced, and the -f-3 oxide of bismuth, 

Bi203, is basic. Other trends and variations in group V will become clear from 
the discussion of the properties of the individual elements. 

Nitrogen 

Elemental nitrogen exists as a diatomic molecule whose bond dissociation 

energy, 225 kcal, is second in magnitude only to that of carbon monoxide. As 

was discussed in Section 11.7, nitrogen and carbon monoxide are isoelectronic 
and both possess a triple bond. Although carbon monoxide is a moderately 

reactive molecule, nitrogen is quite inert, particularly at temperatures near 

300°K. In some cases, this inert nature is due to thermodynamic considerations. 

For example, all the nitrogen oxides have positive standard free energies of 
formation, and thus are intrinsically unstable with respect to nitrogen and 

oxygen. In other instances, however, the inert character of nitrogen is a result 

of kinetic factors, for its reactions with many reagents are quite slow. The 

formation of ammonia from hydrogen and nitrogen is such an example, and it 
is worth considering this reaction in some detail. 

The standard free energy of formation of ammonia is —3.98 kcal/mole at 
25°C, and thus the equilibrium constant of the reaction 

*N2(g) + §H2(g) = NH3(g) 

is given at 298°Iv by 

K = e-AG°lRT = 8.3 X 102, 

where the concentration units are atmospheres. This equilibrium constant is 
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quite favorable to the synthesis, and ammonia should be formed in good yield 

at room temperature if equilibrium could be reached. The reaction is immeasur¬ 
ably slow, however, and no ammonia is formed when nitrogen and hydrogen 
are mixed at 25°C. 

At elevated temperatures and in the presence of iron catalysts, the rate of 

reaction between nitrogen and hydrogen is large enough to make the ammonia 

synthesis practical. There is still a difficulty, for the standard enthalpy change 
for the reaction is —11.04 kcal at 298°K and is —13.3 kcal at 450°C, the tem¬ 

perature at which the reaction rate is conveniently large. Since the reaction is 

exothermic, the equilibrium constant at the elevated temperature is smaller 

than at 298°Iv, and it is important to know whether this seriously affects the 
maximum yield of ammonia. The value of the equilibrium constant at 723°K 
might be calculated from the expression 

but a certain amount of care is necessary. Equation (15.1) is based on the 

assumption that AH° is independent of temperature, and this is not true for 
the ammonia synthesis. We can calculate a fair approximation to the equilib¬ 

rium constant at 723°K, however, if we use for AH0 the average of the values 
at 298°K and 723°K, or —12.2 kcal/mole. Then we have 

2.3 log 
K 723 

8.3 X 102 

12,200 / 1 

1.98 \723 

log K723 — —2.35, 

A723 — 4.5 X 10 3. 

1 

Because of the approximate treatment of the temperature variation of AH0, 
this answer is not particularly accurate, and the experimentally measured value 

of K723 is 6.5 X 10~3. Nevertheless, the approximate value would be good 
enough to tell us that the equilibrium yield of ammonia at 723°K is much 

smaller than at 298°K. This unfavorable equilibrium constant is counteracted 

somewhat by carrying out the reaction at a high total pressure. While this 

does not change the equilibrium constant, it does result in a higher percentage 
conversion of nitrogen and hydrogen to ammonia and makes this direct synthesis 

an important industrial process. 
Ammonia is a colorless gas with an exceedingly pungent odor. It condenses 

to a liquid which has a normal boiling temperature of —33°C. As discussed in 
Section 13.4, both the boiling point and enthalpy of vaporization (5.64 kcal/ 

mole) are abnormally high for a substance of this molecular weight, because 
of hydrogen bonding. 

Liquid ammonia is in some ways similar to liquid water. Salts dissolve in 

ammonia to form conducting solutions, but solubilities are usually smaller in 
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ammonia than in water. Exceptions to this generalization are the salts which 

contain cations which form stable ammonia complexes. Thus the silver halides, 

which are very sparingly soluble in water, are quite soluble in ammonia, because 

of the formation of the very stable Ag(NH3)^~ complex ion. Liquid ammonia 

undergoes autoionization, as does water, but to a much smaller degree: 

2NH3(1) = NH^ + NHjf, K240 =* 10-30, 

2H20(1) = H30+ + OH-, K298 = 10-14. 

We see that in the liquid ammonia solvent system, NH| is the acid analogous 

to H30+, and NH^ is the base analogous to OH-. The analogy extends to 

amphoteric behavior as well. Thus, just as zinc hydroxide dissolves in either 

strong aqueous acid or strong base, 

Zn(OH)2(s) + 2H+(aq) = Zn++(aq) + 2H20, 

Zn(OH)2(s) + 20H—(aq) - Zn(OH)4(aq), 

zinc amide, Zn(NH2)2, reacts with excess NH^ or NH^“ to dissolve in liquid 

ammonia: 

Zn(NH2)2(s) + 2NH4"(am) = Zn++(am) + 4NH3, 

Zn(NH2)2(s) + 2NH^(am) = Zn(NH2)4(am). 

Perhaps the most remarkable characteristic of liquid ammonia is its ability 

to dissolve the alkali metals to form deep blue solutions of high electrical con¬ 

ductivity. The solubilities of the alkali metals range from 10 to 20 molal, 

depending on the temperature and the metal. In dilute (~0.01 M) solutions, 

the principal dissolved species are believed to be the alkali metal ions and 

independent electrons which are loosely trapped in solvent cages by electrostatic 

interaction with the dipole moment of NH3. The blue color of these solutions 

is attributed to transitions of the quasi-free electrons between energy levels 

defined by their interaction with the solvent cage. As might be expected, these 

solutions of alkali metals in liquid ammonia are excellent reducing agents, and 

are frequently used for this purpose in preparative organic and inorganic 

chemistry. 
The ammonia synthesis is the first step in the commercial “fixation” of 

nitrogen. Combustion of ammonia under catalytic conditions produces nitric 

oxide, NO, which is eventually converted to nitric acid, HN03. The combus¬ 

tion of ammonia may take either of two courses 

4NH3(g) + 302(g) = 2N2(g) + 6H20(g), K208 = 10228, 

4NH3(g) + 502(g) = 4NO(g) + 6H20(g), X298 = 10168. 

Although the equilibrium constant of the first reaction is much larger than that 

of the second, the latter is selectively catalyzed by platinum metal, and NO is 
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produced in quantity on the platinum surface at a temperature of about 1000°K. 

To complete the synthesis of nitric acid and the “fixation” of nitrogen, nitric 
oxide is treated with oxygen and water: 

2NO + 02 = N02, 

3N02 + H20 = 2HN03 + NO. 

Another reaction by which elemental nitrogen can be converted to a com¬ 
bined form is the nitric oxide synthesis: 

£N2 + i02 = NO, All0 = 21.GO keal. 

Although AG298 for this reaction is 20.72 kcal and the equilibrium constant at 

298°K is only 1.6 X 10 15, the fact that AH0 is positive means that at elevated 

temperatures the equilibrium constant will be more favorable for the synthesis. 
The experimental values of the equilibrium constant are, in fact, 2 X 10“2 at 
2000°K, and 6 X 10—2 at 2500°K. One method of synthesizing nitric oxide is 

to pass nitrogen and oxygen through an electric arc discharge, which creates a 
high, if ill-defined, temperature. 

In internal combustion engines operating on fuel-air mixtures, the combustion 

temperature is high enough so that small but significant amounts of nitric 

oxide are formed. When nitric oxide enters the atmosphere as engine exhaust, 

it is converted to nitrogen dioxide, N02, by reaction with oxygen. Photo¬ 

dissociation of N02 to NO and O initiates smog forming reactions when hydro¬ 

carbons are present in the atmosphere. Attempts to increase the performance 

of engines and lower the emission of unburned hydrocarbons by increasing 

compression ratios and combustion temperature lead to increased formation of 

NO. Therefore one presently favored method of decreasing both hydrocarbon 

and nitric oxide emission from engines is to decrease the cylinder combustion 

temperature to diminish NO formation, and eliminate unburned hydrocarbons 
from the exhaust by catalyzed combustion at low temperatures. 

Elemental nitrogen docs undergo direct reaction with some of the metallic 
elements. The reaction of nitrogen with lithium to give lithium nitride, L^N, 

proceeds slowly at room temperature, and rapidly at 250°C. The reaction of 

nitrogen with the alkaline-earth metals to form nitrides like Mg3N2 is rapid 
at temperatures above .r)00°C, and at an even higher temperature, nitrogen 

reacts with boron, aluminum, silicon, and many of the transition metals. Thus, 

while nitrogen is, in general, inert at temperatures near 25°C, it does react 
directly with a number of elements at somewhat elevated temperatures. 

The Nitrides 

Nitrogen forms an extensive series of nitrides which are usually classified as 

being ionic, covalent, or interstitial in nature. Lithium, the alkaline-earth 
elements, zinc, and cadmium form nitrides that apparently contain the N-3 
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ion, for upon hydrolysis they yield ammonia: 

Li3N + 3H20 = 3Li+ + 30H" + NH3, 

Ca3N2 + 6H20 = 3Ca++ + 60H~ + 2NH3. 

Compounds of nitrogen with the elements of groups III, IV, and V are 

generally considered to be covalently bonded nitrides. These include BN, 
Si3N4, P3N5, and others. The compound BN is isoelectronic with carbon and 

exists in two forms that are analogous in structure to graphite and diamond. 

In the “graphite” form of BN there are planes which consist of alternate boron 
and nitrogen atoms 1.45 A apart in hexagonal rings. The distance between 

two neighboring planes of atoms is 3.34 A, which is large enough to suggest that 

there is only van der Waals bonding between the sheets of atoms. The other 
form of BN has the diamond structure, with alternate boron and nitrogen 

atoms in place of the carbon atoms. This form of BN is extremely hard— 

apparently harder than diamond itself. 
Reaction between nitrogen and the finely divided transition metals produces 

interstitial nitrides such as W2N, TiN, and Mo2N. These compounds contain 
nitrogen atoms in the interstices of the metallic lattice. Like the interstitial 

carbides, interstitial nitrides are very hard, have high melting points, are elec¬ 

trical conductors, generally deviate from ideal stoichiometry, and are chemically 

inert. 

The Oxides of Nitrogen 

The known oxides of nitrogen and some of their properties are listed in Table 

15.2. Every oxidation state of nitrogen from +1 to +5 is represented among 
the well-characterized oxides. In addition, there are two different oxides that 

have the empirical formula N03. Both of these are very reactive substances 

that have only been identified by spectroscopy as transient species. 
Nitrous oxide, N20, can be synthesized by the thermal decomposition of 

ammonium nitrate, 
NH4N03 = N20 + 2H20. 

It is a colorless gas and is the least reactive and noxious of the nitrogen oxides. 

Nitrous oxide is relatively inert at room temperature, but at 500°C it decom¬ 
poses to oxygen, nitrogen, and nitric oxide and will support the combustion of 

hydrogen and hydrocarbons. Nitrous oxide is isoelectronic with C02 and has 

the linear structure expected on this basis: 

^ 1.12 A ^ 1.19 A 0. 

Although nitrous oxide has a small dipole moment, 0.17 D, its physical prop¬ 

erties are similar to those of the nonpolar carbon dioxide. Nitrous oxide boils 

at —88°C, while carbon dioxide sublimes at — 78°C. 
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Table 15.2 Properties of the oxides of nitrogen 

N20 NO N203 N02 N2O4 N2O5 

Melting point, °C -98.8 -163.6 -102 — -9.3 30 
Boiling point, °C -88.5 -151.8 3.5 — 21.3 47 
AH/, kcal 19.5 21.6 20 8.09 2.3 3.1 
AG/, kcal 24.8 20.7 — 12.4 23.5 27.9 

Nitric oxide, NO, is a colorless gas with a rather low condensation tem¬ 
perature of — 152°C. The electronic structure of NO is interesting because the 

molecule has an odd number of electrons. Aside from the four ls-electrons of 
nitrogen and oxygen, there are eleven valence electrons, one more than in 

N2 and CO. The first ten of these electrons are accommodated in molecular 

orbitals that are qualitatively the same as those of N2 and CO. A total of four 
electrons go in nonbonding orbitals: two on the nitrogen atom and two on the 

oxygen atom. Six electrons enter bonding orbitals: two in the <r-orbital, and 
two each in the 7rx- and ^-orbitals. The next orbitals in order of increasing 
energy are 7r* and 7r*: antibonding 7r-orbitals. The last electron in NO enters 

one of the 7r*-orbitals, so nitric oxide has three pairs of bonding electrons and 

one antibonding electron. This situation is sometimes described as a 2\ bond. 
This designation seems appropriate when we compare the bond lengths and 

bond energies of NO and NO+. 

: N :;: O : [ : N ::: 0 : ]+ 

1.15 A 1.06 A 

150 kcal 244 kcal 

Thus NO+, which does not have an electron in the tv* antibonding orbital, has 

a shorter stronger bond than does NO. 
As the foregoing considerations might indicate, nitric oxide loses an electron 

rather easily and forms NO+. For example, when a mixture of NO and N02 is 

dissolved in concentrated sulfuric acid, the reaction is 

NO + N02 + 3H2S04 = 2NO+ + 3HS07 + H30+. 

Compounds that contain NO+ in ionic lattices with such species as HSO^f, 

C107, and BF^ can be isolated. 
Gaseous nitric oxide reacts directly with oxygen to form the brown gas 

nitrogen dioxide, N02: 

2NO + 02 = 2N02. 

The rate of this reaction is proportional to the concentration of NO squared, 

and to the first power of the oxygen concentration. The mechanisms 

NO + NO = (NO)2 (fast equilibrium) 

(NO)2 + 02 —* 2N02 (slow) 
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and 
NO + 02 = OONO (fast equilibrium) 

OONO + NO -> 2N02 (slow) 

are both consistent with the rate law. It is not now known which of these 

mechanisms is the more important. 
Dinitrogen trioxide, N203, exists as a blue solid at low temperatures, but in 

the liquid and vapor state it is largely dissociated to NO and N02. 

N203(g) = NO(g) + N02(g). 

In effect, the chemistry of N203 under ordinary conditions is the chemistry of 

an equimolar mixture of NO and N02. Reaction of these mixtures with aqueous 

alkali yields solutions of the nitrite ion, N02 , 

NO(g) + N02(g) + 20H~(aq) = 2N02 (aq) + H20. 

The other chemical properties of N203 can be predicted from a knowledge of 

the chemistries of NO and N02. 
Nitrogen dioxide and dinitrogen tetroxide, N02 and N204 respectively, 

exist as gases in equilibrium with each other: 

N204 = 2N02, AH° = 13.9 kcal. 
colorless red-brown 

The reaction as written is endothermic, and consequently dissociation to N02 

increases as temperature increases. When the mixture is condensed to a solid, 

the lattice is made up entirely of N204 units. 
The structures of N02 and N204 are given in Fig. 15.1. The dimer N204 

has a planar structure, and the nitrogen-nitrogen bond is remarkably long and 
weak [D(N—N) = 13.9 kcal] compared to single bonds between nitrogen 

atoms in other molecules. The bond angle in N02, 134°, is intermediate be¬ 

tween the angles found in the related ions NO^ (180°) and N02 (116°). This 

is a specific example of the general observation that among triatomic molecules 

and ions, those with seventeen through twenty valence electrons (N02, N02 , 

03, S02) are nonlinear, as has been discussed in Chapter 12. 

o o 

0 0 

FIG. 15.1 Structures of nitrogen dioxide and dinitrogen tetroxide. 
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When NO2 dissolves in cold water, a mixture of nitrous and nitric acids is 
formed: 

2N02 -b H2O = HNO2 -b H+ -f- N03 . 

Thus this reaction is a disproportionation of nitrogen in the +4 oxidation state 
to the +5 and +3 states. Nitrous acid itself is unstable with respect to dis¬ 

proportionation in hot aqueous solutions, so when N02 dissolves in hot water, 
the net reaction can be written as 

3N02 + H20 = 2H+ + 2NOif + NO. 

This reaction is used in the synthesis of nitric acid. Because N02 forms nitric 
acid upon contact with water and it also reacts directly with a number of metals, 
it is a very corrosive gas. 

Dinitrogen pentoxide, N205, is made by the action of P4Oi0 on nitric acid 
vapor: 

4HN03(g) + P4O10(s) = 4HP03(s) + 2N205(g). 

Thus N205 is the anhydride of nitric acid. Although the structure of N205 is 

not known in detail, the general arrangement of the atoms is given by 

0 0 

N—0—N 

At room temperature N205 decomposes at a moderate rate according to the 

net reaction 

N205(g) = 2N02(g) + i02(g), A G° = —3.1 kcal. 

The mechanism of this decomposition involves the transient oxide of nitrogen, 

N03. In the first step of the decomposition N205 is in equilibrium with N02 

and N03: 

1. N205 = N02 + N03 (rapid equilibrium). 

Some collisions between N02 and N03 lead to formation of an oxygen molecule: 

2. NO2 -b N03 —> NO -T O2 -b NO2 (slow). 

A more detailed representation of this step is 

O 0 0 

N + N —> N N —> N + 0—0 + N 

/ \ / \ / ■•. \ / \ 
0 0 0 0 0 0---0 00 o 
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FIG. 15.2 

Thus the product N02 molecule contains a different nitrogen atom from the 

reactant N02 molecule. Finally, NO reacts very rapidly with N03: 

3. NO + N03 -> 2N02. 

Thus in the decomposition of pure N2Os, both N03 and NO are reactive inter¬ 

mediates, and are present only in very low concentration. 

Structure of the nitrate ion. 

Although dinitrogen pentoxide exists as N2Os molecules in the gas phase, 

x-ray studies show that the solid consists of the ions NO2" and N03 , and so it 
might be called nitronium nitrate. As was mentioned above, the nitronium 

ion, NO^, is isoelectronic with C02 and N20, and has the linear structure 
[0—N—0]+, with a nitrogen-oxygen bond distance of 1.15 A. The nitrate ion 

is isoelectronic with C03 and BF3, and has the expected planar tiigonal struc¬ 

ture given in Fig. 15.2. As noted in Section 11.8, a single electron-dot or line 

structure for the nitrate ion cannot satisfy the octet rule and indicate that the 
three nitrogen—oxygen bonds are equivalent. Consequently, one representation 

of the nitrate ion is as a resonance hybrid of the structures given in Section 11.8. 

FIG. 15.3 Structure of the nitric-acid molecule. 

Oxyacids of Nitrogen 

The most important of these is nitric acid, HN03. The gaseous molecule has 

the structure given in Fig. 15.3, which shows that the symmetry of the nitrate 
ion is partially destroyed when a proton is attached to it. In concentrated solu¬ 

tions, nitric acid is an extremely powerful oxidizing agent and reacts with metals 

like copper and silver with the production of NO: 

8H+ + 2N0jf + 3Cu = 3Cu++ + 2N0 + 4H20. 
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Reaction of the active metals with concentrated nitric acid produces am¬ 
monium ion: 

10H+ + NOiT + 4Zn = 4Zn++ + NH^ + 3H20. 

In solutions more dilute than 2 M, the oxidizing power of the nitrate group is 
greatly diminished, and only the protons of the dissociated acid react with the 

active metals to evolve hydrogen. This behavior should not be too surprising, 
for the half-reaction 

NOr + 4H+ + 3e“ = NO + 2H20, 8° = 0.96 volt, 

shows that the power of NO^~ as an oxidant should be very sensitive to the 

concentration of the acid, since four protons appear on the left-hand side of 
the equation. 

We noted above that reaction of equimolar mixtures of NO and N02 with 

aqueous alkali gives solutions of nitrites. Solutions of nitrous acid can be made 
by acidification of solutions of nitrites. Nitrous acid is a weak acid, as the 
dissociation constant for 

HN02(aq) = H+(aq) -f- NO^faq), K = 4.5 X 10-4, 

shows. The pure liquid acid is unknown, and in the gas phase it is noticeably 

dissociated: 

2HN02(g) = NO(g) + N02(g) + H20(g), K = 0.57 atm. 

As noted earlier, even aqueous solutions of nitrous acid are unstable and decom¬ 

pose when heated according to 

3HN02(aq) = H+(aq) + NOF(aq) + H20(1) + 2NO(g). 

Nitrogen appears in at least eight oxidation states in its water-soluble species, 

and there is a very large number of half-reactions that involve these oxidation 

states. In addition to the nitrate-nitric oxide half-reaction given earlier, some 

of the important half-reactions are the following: 

NOr + 3H+ + 2e“ = HN02 + H20, 

HN02 + H+ + e~ = NO + H20, 

2NO3 T 10H+ -T 8e = N20 "T 5H20, 

N20 -)- 2H+ -(- 2e = N 2 -j- H20, 

£N2 + 4H+ + 3e~ = NH^, 

8° = 0.94 volt, 

8° = 1.00 volt, 

8° = 1.11 volts, 

S° = 1.77 volts, 

8° = 0.27 volt. 

A convenient summary of this series of half-reactions is provided by the follow- 
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ing reduction-potential diagram. 

_096_ 

N 0^—^—H N 0 2———N 0———N 20———N 2———N H ^ 

l.n 

In this diagram only the nitrogen-containing species are indicated. A line 
represents the properly balanced half-reaction, written as a reduction, that 

interconverts the two species, and the voltage associated with the half-reaction 

is written over the line. Thus from this diagram it is possible to tell at a glance 

that nitrate ion is reduced to nitric oxide with a standard potential of +0.96 
volt, that nitrogen gas going to ammonium ion is a spontaneous process with 

a standard voltage of +0.27 volt, and so on. 
Reduction-potential diagrams make it easy to pick out species that are 

thermodynamically unstable with respect to disproportionation. For example, 

consider the following partial diagram. 

N07———HN02———NO. 

It appears that HNO2 is reduced to NO with a potential of +1.00 volt, but is 

oxidized to NO^~ with a potential of —0.94 volt. Therefore HNO2 should be 
converted to NO^ and NO with an associated voltage of 1.00 — 0.94 = 

0.0G volt. Writing out the relevant half-reactions in more detailed form con¬ 

firms the following conclusion. 

2 X (HN02 + H++ e" = NO + H20) 8° = 1.00 

-1 X (NOr + 3H+ + 2e~ = HNQ2 + H2Q) -(8° = 0.94) 

3HN02 = NOr + H+ + 2NO + H20 AS0 = 0.06 

In general, a species having an intermediate oxidation number will be unstable 
with respect to disproportionation if it appears in the reduction-potential dia¬ 

gram with a voltage to its right that is larger than the voltage to its left. 
The reduction-potential diagrams above apply to reactions that occur in 

acidic solutions. It is instructive to examine the corresponding diagram for 

basic solutions: 

_015_ 

N 0 ^———N 0 —_rM!_N* 0———N 20———N 2-^^—NH 3 

0.10 

The most remarkable feature of the composition of the standard potentials in 

acidic and basic solutions is that they show that nitrate and nitrite ions are 
much weaker oxidants in basic solution than they are in acidic solution. This 
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is not too surprising, for as was noted above, the half-reactions for reduction of 
nitrate involve several hydrogen ions as reactants, as in 

NOi" + 4H+ + 3e“ = NO + 2H20. 

A change from 1 M II ' to 1 M OH~ reduces the hydrogen-ion concentration 
enormously, and the oxidizing power of the nitrate ion decreases accordingly. 

The same generalization applies to other oxyanions: in acidic solution MnOJ" 
and Cr2Of are stronger oxidizing agents than they are in basic solution. An 

alternative way of stating this generalization is that it is easier to oxidize an 

element to an oxyanion of high oxidation number in basic solution than in 
acidic solution. 

Another noteworthy feature of the reduction-potential diagram for basic 
solution is that it shows that nitrite ion is stable under these conditions: 

NO3~—° ~— Nor ~0,46 NO. 

Writing out the disproportionation reaction in detail we find that 

3NOr + H20 = N03- + 20H“ + 2NO, A8° = -0.47 volt, 

which shows that nitrites can exist without spontaneous decomposition in basic 
aqueous solution. 

Nitrogen Halides and Oxyhalides 

Nitrogen forms only four binary halides that have been obtained as pure com¬ 
pounds: NF3, N2F2, N2F4, and NC13. Both NF3 and N2F2 are obtained when 

NH4F is dissolved in pure HF and electrolyzed. Dinitrogen tetrafluoride is 
one of the products recovered from an electrical discharge through NF3 and 

mercury vapor, and is also obtained when NF3 reacts with copper to produce 
CuF2. 

The pyramidal structure of nitrogen trifluoride. FIG. 15.4 

The nitrogen fluorides display some interesting structural and chemical 
properties. Nitrogen trifluoride is a stable, rather inert gas. It has a geometric 

structure very similar to that of ammonia, as is shown in Fig. 15.4. Despite 

the fact that NF3 has a pair of nonbonded electrons, it is not a Lewis base, for 
there are no known compounds in which it donates electrons to other reagents. 
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Apparently this lack of basic properties is related to the electronegative nature 

of the fluorine atoms, which tend to draw electron density away from the 

nitrogen atom and make it a poor electron donor. 
There are two known isomers of N2F2. One of them definitely has the trans 

planar FNNF structure, and the other isomer has the cis configuration: 

F F F 

\ \ / 

3
 II 3
 

N=N 

\ 
F 

trans cis 

The geometry of this molecule suggests that we can think of the nitrogen atoms 

as being sp2-hybridized, and linked by a a-t double bond. 
Dinitrogen tetrafluoride is a gas that is partially dissociated into NF2 

fragments: 
F2NNF2 = 2NF2, AH 19 kcal. 

This situation is similar to that found for N204-N02, and in fact the N—N 

bond in N2F4 is nearly as weak as that in N204. 
There are two series of nitrogen oxyhalides. The nitrosyl halides have the 

general formula XNO. Of these, the fluoride, chloride, and bromide are well 
known, and the iodide has been recognized as a transient species in reaction 

mixtures. The general formula of the nitryl halides is XN02, and only the 

fluoride and chloride are known. 
None of the nitrogen oxyhalides is particularly stable, and these compounds 

are of interest principally because of their structural properties. The nitryl 

halides are isoelectronic in their valence shell with the nitrate ion, and like 

NO^, are planar triangular molecules. In accordance with our experience with 
triatomic molecules which have more than 16 valence electrons, the nitrosyl 

halides are nonlinear and have the structural parameters given in Table 15.3. 
In each of these molecules the halogen is bonded to the nitrogen atom. In view 

of this fact, it is rather surprising that in the analogous compound NSF, the 

fluorine atom is attached to the sulfur atom. 

Table 15.3 Properties of the nitrosyl halides 

FNO CINO BrNO 

Melting point, °C -133 —65 -56 
Boiling point, °C 60 - 6 0 
AH1}, kcal — 12.57 19.56 
AG/, kcal — 15.86 19.7 
X—N distance, A 1.52 1.95 2.14 
N—0 distance, A 1.13 1.14 1.15 
X—N—0 angle, deg 110 116 114 
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Phosphorus 

This element is the twelfth most abundant in nature, and is found most 

frequently in the form of phosphates like Ca3(P04)2 • H20. Treatment of 
this phosphate with silica and coke at high temperature produces elemental 
phosphorus: 

2Ca3(P04)2 4- 6Si02 = 6CaSi03 + P4Oio(g), 

P40io(g) + IOC = P4(g) + 10CO. 

The solid obtained by condensing the vapor is white phosphorus. This allotrope 

of phosphorus contains discrete P4 molecules whose structure is shown in 
Fig. 15.5. 

Structure of the P4 molecule. fig. 15.5 

Although white phosphorus is the allotropic form easiest to prepare, and is 

taken to be the standard thermodynamic state of the element, it is not the most 

stable allotrope. Upon heating or irradiation, white phosphorus is converted to 
red phosphorus, a polymeric substance whose structure is not known in detail. 

Till) 

The layer structure of black phos- fig. 15.6 

phorus. For an alternative view, 
see Fig. 13.2. 

A third allotrope, black phosphorus, is produced by subjecting the element to 

high pressures or by careful recrystallization of white phosphorus. Black 

phosphorus is the most stable form of the element and has the structure shown 

in Fig. 15.6. The three allotropes of phosphorus differ in their chemical re¬ 
activity, with white phosphorus the most reactive and black the most inert. 

15.1 | THE ELEMENTS OF GROUP VA 649 



Phosphorus forms phosphides by direct combination with some of the metals 

of groups I and II. Calcium phosphide also can be prepared by heating phos¬ 

phorus with CaO: 

6CaO -|- 2P4 = 2Ca3P2 T~ P40g. 

When treated with water or dilute acids, Ca3P2 yields phosphine, PH3: 

Ca3P2 -f- 6H20 = 2PH3 3Ca(OH)2. 

This reaction is analogous to the hydrolysis of the saltlike nitrides, which yield 
ammonia. The compounds of phosphorus with the transition metals are grey 

solids with some metallic luster and conductivity, and in this respect resemble 

the transition-metal nitrides. 
The compounds of phosphorous with the metals of group III of the periodic 

table (BP, A1P, GaP, InP) are interesting in that they are isoelectronic with 

silicon and germanium, and have the same type of crystal structure. Each atom 

is surrounded by four others which are located at the corners of a regular tetra¬ 

hedron. All these compounds melt above 1000°C, and like silicon and germanium, 

are semiconductors. 
Phosphorus combines with a variety of nonmetallic elements to yield covalent 

molecular compounds of diverse properties and structure. Of these, the oxides 

and halides are most important, and we will confine our discussion to them. 

FIG. 15.7 

• P 

o 

The structures of (a) P406 and (b) P4O10. 

White phosphorus reacts with atmospheric oxygen spontaneously. If the 
oxygen supply is somewhat limited, the principal reaction product is P406, 

phosphorous oxide. If phosphorus burns in excess oxygen, the product is P4O10. 
The structures of the molecules of these two oxides are related to the P4 struc¬ 

ture, as Fig. 15.7 shows. For historical reasons P4O10 is often written as P2Os 

and referred to as phosphorus pentoxide. It has a large affinity for water and 
is often used as a drying or dehydrating agent. 
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(a) 

The structures of (a) P043 FIG. 15.8 

and (b) P2OT4. 

There are several oxyacids and oxyanions of phosphorus. When a small 

amount of water is added to P4O10, metaphosphoric acid, (HP03)„ is formed. 

This is a polymeric material in which there are anions of various chain and 

cyclic structures. In the trimetaphosphate ion, (P03)jT3, three P04 tetrahedra 

are linked in a cyclic structure, with each P04 group sharing one oxygen atom 

with each of its two neighboring P04 units. In tetrametaphosphate, (P03)i“4, 
there are four such tetrahedra linked in a ring. Further addition of water leads 

to pyrophosphoric acid, H4P2O7, and to orthophosphoric acid, H3PO4. The 

structures of the anions of these acids are given in Fig. 15.8. 

Table 15.4 Thermodynamic properties 
of phosphoric acid 

AH/(kcal/mole) S°(eu) 

H3P04(aq) -308.2 42.1 

H2PO“(aq) -311.3 21.3 

HPO=(aq) -310.4 -8.6 

PO4 3(aq) -306.9 - 52 

H+(aq) 0 0 

Orthophosphoric acid, or phosphoric acid as it is more commonly called, is a 

tribasic acid of moderate strength. A thermodynamic analysis of its successive 

ionization steps is instructive, for it helps reveal the factors that determine the 
strengths of acids in general. Table 15.4 contains the relevant data. For the 

first ionization we find that 

H3PO4 = H+ + H2POr, K= 6 X 10~3, 

A H° = -3.1 kcal, A<S° = -20.8. 
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The enthalpy and entropy changes upon dissociation might seem surprising, for 

if the dissociation were a simple 0—H bond-breaking process, we would expect 

AH° and AS0 to be positive numbers. In aqueous solution, however, ionization 

of H3PO4 is a proton-transfer process that might better be written as 

H3P04(aq) + H2O = H2PO4 (aq) -f* 

Thus the reaction is a relocation of the proton, and the value of —3.1 kcal 
for AH0 tells us that the system is in a state of lower energy when the proton 

has become associated with a water molecule and a pair of hydrated ions 

has formed. 
We can also explain why the entropy change of the ionization reaction is 

negative. The ionization “creates” charges which tend to bind or localize water 

molecules. This localization of water molecules introduces order among the 

solvent molecules, and thereby lowers the entropy of the system. 

The second ionization of phosphoric acid, 

H2PO4- = HPOT + H+ K = 7 X 10-7, 

is slightly endothermic, for AH0 = 0.9 kcal, but AS0 is again negative, and equal 

to —29.9 eu. Similarly, for the third ionization, AH0 is still more positive, and 

AS0 is negative. The trend in the values of AH0 for the ionization steps is not 
surprising, for we would expect that the energy required to remove a proton 

would increase as the negative charge on the parent acid increases. The value 

of AH0 for the first ionization does show, however, that we must not think that 
the dissociation of an acid is necessarily an endothermic process. Furthermore, 

the values of AS0 for all the ionization steps show that entropy changes can 

exert profound influences on acid strengths. 

The simplest oxyacid of phosphorus (III) is H3PO3, orthophosphorows acid. 

It can be prepared by hydrolysis of PCI3, 

PC13 + 3H20 = H3PO3 + 3H+ + 3C1~ 

Despite its empirical formula, phosphorous acid is a dibasic acid, for the third 

hydrogen does not react with bases. The ionization reactions are 

H3PO3 = H+ + H2POr, Kl = 1.6 X 10“2, 

H2POr = H+ + HPOr, K2 = 7 X 1(T7. 

Similar behavior is found for hypophosphorous acid, H3P02, which is only a 
monobasic acid: 

H3PO2 = H+ + H2POr, K = 10-2. 

The explanation of this behavior lies in the structures of HPO“ and H2P07> 
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shown below. 
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The hydrogen atoms attached directly to phosphorus are not acidic, whereas 

those bonded to oxygen are. As we remarked in Chapter 13, the oxyacids of a 
given element tend to become stronger as the oxidation state of the element 

increases. This trend is not observed in the H3P02, H3P03, H3P04 series, and 
the peculiar structure of the hypophosphite and phosphite anions is the reason 
for this unique behavior. 

Because phosphorus displays a number of oxidation states, and because its 

oxyanions have a tendency to polymerize, the solution chemistry of this element 
is moderately complex. We can get a general idea of the properties of the various 

oxidation states of phosphorus, however, by consulting the following reduction- 

potential diagrams: 

_-0.50_ 

H3P04---a28-H3P03 ~050- H3P02—P4 ~°°6 PH3 (acidic solution), 

PO" ~112 HPOr ~1-57 H2P(V ~205-P4-~9—PHg (basic solution). 

We can see that the oxyanions of phosphorus are very poor oxidizing agents, 
particularly in basic solutions. On the contrary, all but the highest oxidation 

state of phosphorus have strong reducing properties. In addition, elemental 
phosphorus is unstable with respect to disproportionation, for from the potential 

diagram for basic solutions we can deduce the following: 

P4 + 12H20 + 12e~ = 4PH3 + 120H-, S° = -0.89, 

4H2POr + 4e“ = P4 + 80H~, 8° = -2.05. 

Combination of these half-reactions gives 

P4 + 30H~ + 3H20 = PH3 + 3H2PO^, A8° = 1.16. 

Phosphorus Halides and Oxyhalides 

The halogens react with white phosphorus to form two types of halides, PX3 

and PX5. Iodine is an exception, since its compounds with phosphorus are PI3 
and P2I4. Table 15.5 lists the phosphorus halides and some of their properties. 
The trihalides all have pyramidal geometry similar to ammonia and PH3, and 
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Table 15.5 The phosphorus halides 

pf3 PCI3 PBr3 Pl3 pf5 PCI5 PBr.5 P2I4 

Boiling point, °C -95 76 173 61 -85 163(sub) decomp decomp 
AH?, kcal 
AG/, kcal 

— -81.0 -47.5 -10.9 — -110.7 -66.0 -19.8 
— -68.6 — - 8.9 

X—P—X angle, deg 104 100 101 102 

despite the differences in size of the halogen atoms, the X—P—X bond angle in 
all the trihalides is near 102°, as Table 15.5 shows. 

Of the trihalides, PF3 is the most stable and inert chemically. While PF3 

reacts with water only very slowly, PC13 is rapidly hydrolyzed to H3P03: 

PC13 + 3H20 = H3PO3 + 3H+ + 3C1". 

Other important reactions of PC13 are 

PC13 + Cl2 - PC15, 

PC13 + *02 = POCI3, 

PCI3 + 3NH3 = P(NH2)3 + 3HC1. 

Some analogous reactions may be written for the other PX3 compounds. 
I11 the vapor phase, the pcntahalides PF5, PC15, and PBr5 are discrete 

molecules that have the trigonal bipyramid structure discussed in Section 11.5. 

In the solid phase, however, PC15 exists as an ionic solid consisting of PCl^ 

and PCl(f, which have the structures shown in Fig. 15.9. Solid PBr5 is made 

up of PBr^ and Br— ions. Apparently PBr^~ does not form because of the 
difficulty of packing six large bromine atoms close to a central phosphorus atom. 

The most important oxyhalides of phosphorus are of the type POX3, where 

X may be F, Cl, or Br. As noted above, phosphoryl chloride, POCI3, can be 
made by the reaction of oxygen and PC13. Phosphoryl fluoride, POF3, is made 
by fluorinating POCl3: 

POClg + AsF3 = AsC13 + POF3. 
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The phosphoryl halides are electron donors and form complex addition com¬ 
pounds with metallic halides such as A12C16, ZrCl4) HfCl4, and TiCl4. The 
geometry of the phosphoryl halides is of interest, for these compounds are 
isoelectronic in their valence shells with the phosphate ion, PO^-3. As expected 
on this basis, the phosphoryl halides have a slightly distorted tetrahedral 
structure, with X—P—X bond angles of approximately 103°. 

Arsenic, Antimony, and Bismuth 

These elements are not at all abundant and occur in nature principally as 
oxides and sulfides. They can be recovered by reduction of their oxides with 
carbon. Rapid condensation of arsenic and antimony vapors gives the yellow 
nonmetallic allotropes that consist of As4 and Sb4 tetrahedral molecules, analo¬ 
gous to P4. The more stable semimetallic allotropes of arsenic and antimony 
exhibit metallic luster, are moderately good conductors of heat and electricity, 
and have crystal structures similar to that of black phosphorus. 

The elements combine with oxygen and the halogens directly: 

4As + 302 = As406, 

4Sb -f- 302 = Sb406, 

2Bi -f- §02 = Bi203, 

M + 3X2 = 2MX3. 

The -f3 oxides of arsenic and antimony are discrete molecules which have 
structures based on the As4 and Sb4 tetrahedra, but in Bi203, no such discrete 
molecules exist. The oxides As406 and Sb406 are amphoteric, but Bi203 is 
basic and rather insoluble in water. 

The principal oxidation states and some of the chemistry of arsenic are 
represented in the following reduction-potential diagrams: 

H3As04-°"9 -HAs02———As ~°'6° AsH3 (acidic solution), 

AsOU ~067 AsO^~- ~0,68 As—'-'---AsH3 (basic solution). 

Once again we see that it is easier to oxidize the element to its higher oxidation 
states in basic solution than in acidic solution. Unlike phosphoric acid, arsenic 
acid, H3As04, is a moderately strong oxidizing agent in acidic solution. In 
basic solution, however, arsenic (V) loses its oxidizing power, and arsenic (III) 
becomes a good reducing agent. Basic solutions of arsenite, AsO^-, are often 
used to standardize the concentration of oxidizing solutions in quantitative 
analysis. 

The potential diagram for antimony in acidic solution is 

Sb205 °"58 SbO+ 021 Sb ~°'51 SbH3. 
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The oxide of antimony (V) is virtually insoluble in acidic solutions, but is a 

moderately strong oxidizing agent. In acid solution, antimony (III) exists as 
SbO+ or Sb(OH)^, which can be regarded as hydrolyzed forms of Sb+3. 

Bismuth appears in aqueous solution only in the +3 oxidation state. The 

oxide Bi203 dissolves in acids to give solutions of BiO+ or Bi(OH)^, which are 

hydrolyzed forms of Bi+3. The +5 oxidation state of bismuth is obtained only 

by treating Bi203 with very powerful oxidizing agents like Cl2 and Na202 in 

the presence of NaOH. The brown solid that results from this treatment is 
insoluble in water and is a very powerful oxidizing agent. It is not clear whether 

this solid is a true sodium bismuthate NaBi03, or a mixture of Na20 and Bi205. 

15.2 THE ELEMENTS OF GROUP VIA 

Among the representative elements, it is clear that the lightest member of any 

periodic group has chemical properties that differ rather noticeably from those 

of the heavier members of the group. This behavior is particularly clear in 

group VIA. Oxygen, the most abundant and important member of the group, 

exists ordinarily as a diatomic gas, and in its chemistry displays negative 
oxidation states almost exclusively. Sulfur, selenium, tellurium, and polonium 

exist as solids with structures that are rather complex and form compounds in 

which they appear in a range of positive as well as negative oxidation states. 
Thus in most of its chemical and physical properties, oxygen is quite different 
from the other members of group VI, as Table 15.6 shows. 

Table 15.6 Properties of the group VIA elements 

0 S Se Te Po 

Atomic number 8 16 34 52 84 
Configuration 2s22p4 3s23p4 4s24p4 5s25p4 6s26p4 
Ionization energy, kcal 314 239 225 208 194 
Atomic radius, A 0.74 1.04 1.17 1.37 1.64 
Melting point, °K 54 392 490 723 527 
Boiling point, °K 90 718 960 1260 1235 
AH/(atom), kcal 59.1 66 49.4 46 34.5 
Ionic radius, M=, A 1.45 1.90 2.02 2.22 — 

Even among the remaining group VI elements, there is a substantial grada¬ 
tion of properties. Sulfur is a nonmetal, both on the basis of its electrical prop¬ 

erties, and the nature of its compounds. Selenium and tellurium are grey solids 

with some metallic luster, and because they have small electrical conductivities 
that increase as temperature increases, they are classified as semimetals. Polo¬ 

nium, a rare radioactive element, has the electrical conductivity of a metal. 
Thus in group VIA the vertical transition from nonmetallic to metallic behavior 
occurs just as it did in groups IV and V. 
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Oxygen 

This element, the most abundant in nature, forms compounds with all elements 

except some of the inert gases. The nature of the oxides in which oxygen has 
an oxidation state of —2 has been discussed in Section 13.3 and throughout our 

treatment of descriptive chemistry. Here we need only examine the properties 

of the element itself and those compounds in which oxygen is found in the 
“abnormal” oxidation states of —1 and —-J, respectively. 

The stable allotrope of oxygen is 02, a diatomic molecule of substantial 
dissociation energy (118 kcal/mole). According to magnetic measurements, 

each 02 molecule has two electrons with unpaired spins. There is no simple 

electron-dot structure consistent with the octet rule that can account for both 
the high dissociation energy and the unpaired electron spins. A simple applica¬ 

tion of the molecular orbitals discussed in Section 12.1 provides a rationalization 

of the properties of oxygen and its diatomic molecule ions and 0“. The 
02 molecule has, apart from the four ls-electrons, a total of twelve valence 

electrons. Ten of these can be accommodated in molecular orbitals similar to 

those used in the nitrogen molecule: a pair of nonbonding orbitals, one on each 
atom, a a bonding orbital, and two 7r bonding orbitals. The remaining two 

electrons must enter the 7r* and 7r* antibonding orbitals which are the next 
available in order of increasing energy. The energy of the oxygen molecule is 

lowest if the two electrons enter separate orbitals with their spins parallel, for 

this configuration keeps the electrons as far apart as possible and minimizes 
repulsion between them. Because there are three pairs of bonding electrons, 

and two antibonding electrons, the net number of bonding electrons in 02 is 
four, and the molecule might be pictured as having a net double bond. Thus 

the molecular-orbital picture is consistent with the high dissociation energy 

and unpaired electron spins in the 02 molecule. 

Table 15.7 Bond lengths and energies 

Bond length (A) Bond energy (kcal) 

02 in BaC>2 1.49 — 

0,7 in KO2 1.28 — 

02 1.21 118 

o2+ 1.12 150 

Direct combination of the heavier alkali metals with oxygen yields super¬ 

oxides of the formula M02. These compounds contain the superoxide ion, O^", 
which has one more electron than 02. This “extra” electron can be accom¬ 
modated in one of the it* antibonding orbitals, and thus the bond in OJ” should 

be weaker than that in 02. We would expect a still weaker bond in the peroxide 
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ion, O^, which has a total of four antibonding electrons, two each in the 7r*- 

and 7r*-orbitals. The bond energies of these ions are not known, but their bond 

lengths have been measured, and are given in Table 15.7. It is a fairly general 
and reliable principle that short bonds are strong bonds, and we see that among 

the diatomic oxygen species in Table 15.7, the bond length increases, and 

presumably the bond energy decreases, as the number of antibonding electrons 

increases. Thus molecular-orbital theory is consistent with the facts that are 

known about molecular oxygen and its diatomic ions. 
The second allotrope of oxygen is ozone, O3. Ozone is prepared by passing 

molecular oxygen through an electric discharge, condensing the product at 77°K, 

and purifying the ozone by fractional distillation and liquefaction. Ozone is 

dangerous, for in certain concentration ranges it is violently explosive. 

fig. I5.ro The structure of ozone, 03. 

The structure of the ozone molecule is given in Fig. 15.10. The bond distance 

is almost exactly the same as that in the superoxide ion, OJ7, and this suggests 

that the bonds in ozone are intermediate between single and double bonds or 

approximately 1J bonds. The resonance structures of the ozone molecule are 

consistent with this point of view. 

O 0 

•0 

Ozone is an enormously powerful oxidizing agent in aqueous solution: 

03 4 2H+ + 2e~ = 02 + H20, 8° = 2.07 volts. 

In the gas phase it reacts rapidly and completely with a number of reagents: 

NO 4 O3 = N02 4 02, 

2C102 4 2O3 = CI2O6 4 202- 

Treatment of a peroxide like Ba02 with dilute acids yields solutions of 
hydrogen peroxide, H202. The commercial preparation of 30% aqueous hy¬ 

drogen peroxide solution is obtained by repeated fractional distillation. Further 
fractionations yield even more concentrated solutions, but these are susceptible 

to decomposition, and must be stored and handled carefully. 

Pure H202 is a viscous liquid that boils at 150°C and freezes at —0.89°C. 
Thus it resembles water in its physical properties, and like water it is hydrogen- 
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bonded. It has virtually no uses as a solvent, because it is not only a powerful 
oxidizing agent, it is also unstable with respect to the decomposition 

2H202 = 2H20 + 02. 

Because it contains oxygen in the intermediate oxidation state of —1, hydrogen 

peroxide can act either as an oxidant or a reductant. The reduction-potential 
diagram 

o2———h2o2———h2o 

shows, however, that in acidic solutions, H202 is a much better oxidant than 
reductant. 

Atmospheric oxygen is consumed in the oxidative metabolism of carbohy¬ 

drates in animal organisms and is thereby converted to water and carbon dioxide. 

The photosynthetic process of plants, in which light energy from the sun is 
used to convert carbon dioxide and water to carbohydrate material and oxygen, 

restores oxygen to the atmosphere. However, in the atmosphere itself, oxygen 

undergoes a number of very important photochemical reactions. At altitudes 

of 100-150 km (1 km = 0.621 mile), oxygen is photodissociated by the very 
energetic short wavelength radiation (X < 2000 A) from the sun: 

02 -f- hv —* 20. 

Although the pressure of oxygen is less than 10-6 atm at these altitudes, oxygen 

absorbs the short wavelength radiation so strongly that little of it penetrates 

below 100 km. Thus atmospheric oxygen shields the surface of the Earth from 

what could be very damaging radiation. 

If oxygen atoms are to recombine to 02, a third molecule M must be present 

to remove the energy released by chemical bond formation: 

o + o + m->o2 + m. 

This reaction is exceedingly slow at the 100 km altitude because the concentra¬ 
tion of third molecules, 02 or N2, is so low. Consequently, the oxygen atoms 

formed by photodissociation diffuse to lower altitudes. At approximately 50 km, 

the density of molecular oxygen is great enough so that the reaction 

o + o2 + m->o3 + m 

goes with appreciable speed, and starts to consume oxygen atoms. The con¬ 
centration of ozone produced by this reaction reaches a maximum value of 

roughly 1012 molecules per cc at an altitude of 20 to 30 km. At lower altitudes, 

the ozone concentration falls, since the oxygen atoms necessary for its forma¬ 

tion have been largely consumed at higher altitudes. At altitudes above 50 km 

the ozone concentration is low because the concentrations of 02 and third body 

molecules M are low. 
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The ozone layer at 20 to 30 km performs a very important function. Molec¬ 

ular oxygen is transparent to light in the 2000- to 3500-A wavelength range. 

The photons in this spectral region are fairly energetic, and could cause very 

substantial damage to plants and delicate animal tissue should they reach the 

surface of the Earth. Fortunately, ozone absorbs light in this spectral region, 

and shields the Earth from this potentially damaging radiation. Ozone is 

photochemically destroyed in the following manner by the reactions: 

O3 -f- hv —■» O2 T- O, 

O -f- O3 —> 202- 

However, more ozone is formed by diffusion of oxygen atoms from greater 

altitudes, and the balance between formation and photochemical destruction 
maintains a stable ozone layer. 

The ozone shield is susceptible to alteration by atmospheric contaminants. 

The reactions 

O3 -}- NO —> NO2 T" O2, 

0 -f- NO2 —* NO -f- O2 

are very fast, and together consume ozone and its precursor, the oxygen atom, 

faster than the reaction of 0 with 02. If we add to these reactions the process 

O3 -\- hv —> O2 T- O, 

we get a net reaction of 

2O3 hv —» 302) 

with no net consumption of NO or NO 2. Thus these nitrogen oxides can act as 

catalysts for the destruction of the atmospheric ozone layer. This observation 

is of particular significance and concern in view of the proposals to fly supersonic 

transport aircraft in the upper levels of the stratosphere. The NO formed by 

the combustion of fuel-air mixtures leaves the stratosphere very slowly, and 

consequently could significantly decrease the ozone concentration through its 

catalytic action. 

Sulfur 

Sulfur occurs in nature in the elemental state and as a variety of metal sulfides. 
The element has several allotropic forms, and the structural properties of some 

of these are very complex and not well understood. In rhombic and monoclinic 

sulfur, its two most common forms, sulfur exists as Sg molecules that have the 

puckered ring structure shown in Fig. 15.11. If sulfur is dissolved in CS2 or 
organic solvents, freezing-point depression measurements show that the molec- 
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ular weight of the dissolved sulfur corresponds to Sg. In another crystalline 

modification, sulfur exists as Sg rings. In liquid sulfur at temperatures of about 
200°C, the ring molecules open up, and long chain molecules are formed. If 

liquid sulfur at this temperature is poured into water, a solid plastic sulfur 

which contains helical chains of atoms results. Plastic sulfur is metastable and 
slowly reverts to the rhombic crystalline form. Sulfur vapor consists of Sg, S4, 

and S2 molecules in relative amounts that depend on temperature. Thus in its 
solid, liquid, and vapor phases, sulfur displays a variety of molecular structures. 

The ring structure of S8. fig. 15.ii 

Sulfur combines directly with the metallic elements to form sulfides. The 

sulfides of the alkali metals can be classified as ionic compounds which contain 

M+ and S= ions in an antifluorite lattice. The alkaline-earth sulfides also are 
best pictured as ionic compounds and have, like the corresponding oxides, the 

rock-salt lattice. These sulfides of groups IA and IIA metals are water soluble, 
and the sulfide ions are extensively hydrolyzed: 

S=(aq) + H20 = SH-(aq) + OH-(aq), K = 1. 

Acidification of solutions of soluble sulfides leads to evolution of hydrogen 
sulfide, H2S. This foul-smelling gas is very poisonous. At 25°C, a saturated 

solution of hydrogen sulfide has a concentration of approximately 0.1 M, and 
because H2S is a weak acid, such solutions contain a small concentration of 
sulfide ion: 

H2S(aq) = H+ + HS~, K — 1.1 X 10~7, 

HS~=H+ + S=, K = 1(T14. 

Consequently, saturating a solution with hydrogen sulfide is an effective way 

to precipitate many of the very insoluble transition-metal sulfides. 

The sulfides of the transition metals are not usually pictured as simple ionic 
compounds. The doubly and triply charged transition-metal ions are relatively 

small and exert large polarizing forces that tend to distort the large sulfide ions. 

The measured lattice energies of the transition-metal sulfides are, in general, 
larger than would be predicted by considering them to be ionic lattices. Con¬ 

sequently, in these sulfides there is a certain amount of covalent bonding between 

the sulfur and metal atoms. The insolubility of the transition-metal sulfides is 
related to the very stable lattices of these compounds. 
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In addition to the simple sulfides that contain the S= ion, there are poly¬ 

sulfides which contain ions, where n ranges from 2 to 6. The existence of 

such anions is associated with a general characteristic of sulfur chemistry: in 

many compounds there are chains of sulfur atoms bonded to each other. Sulfur 

exhibits this tendency toward catenation, or formation of chains of identical 

atoms, more than any other element except carbon. When solutions of the 

polysulfides are acidified, sulfanes of the general formula H2S„ are formed, 

where n ranges from 2 to 6. 

fig. 15.12 Structure of the S02 molecule. 

The two most important oxides of sulfur are S02 and SO3. Sulfur dioxide gas 
(boiling point, — 10°C) is formed by burning sulfur in air: 

S(s) + 02(g) - S02(g), 

A//0 = —70.66 kcal, 

AG° = -71.99 kcal. 

It is clear from the thermodynamic data that sulfur dioxide is a very stable 

molecule. Nevertheless, the conversion of S02 to SO3 is favored thermo¬ 

dynamically: 

S02(g) + *o2 = so3(g), 

AH° = -23.49 kcal, 

AG° = -16.73 kcal. 

The oxidation of sulfur dioxide is a slow reaction, but is catalyzed by vanadium 

pentoxide or platinum surfaces. Nearly all sulfuric acid production involves 

oxidizing sulfur dioxide by air in the presence of these “contact” catalysts. 

Sulfur dioxide is a triatomic molecule with more than sixteen valence elec¬ 

trons, and consequently is nonlinear, as Fig. 15.12 shows. The two equivalent 
sulfur-oxygen bonds can be represented by the following resonance structures. 

S 

0 0 

s 

0 o 

In the gas phase, sulfur trioxide is a planar triangular molecule with three 

equivalent sulfur-oxygen bonds, as Fig. 15.13 illustrates. This geometry is to 

be expected, for SO3 is isoelectronic in its valence shell with BF3, NO^~, and 
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C03 , which are all planar symmetrical species. The bonding in S03 can be 
represented by the structures shown below. 

. / V . . s \ . 

Sulfur forms a very large number of oxyacids and oxyanions. Most important 

of these is sulfuric acid, H2S04, which is produced by hydration of S03 in the 
following two-step process: 

so3(g) + H2S04(1) - H2S207(1), 

H2S207(1) + H20 = 2H2S04(1). 

The direct reaction of S03 with water produces a fog which is difficult to con¬ 

dense, and consequently the commercial process involves dissolving S03 in 

sulfuric acid to form pyrosulfuric acid, H2S207, and subsequent dilution with 

water to form sulfuric acid. 

Structure of a gaseous S03 molecule. FIG. 15.13 

Pure sulfuric acid is a viscous liquid that freezes at 10°C. It is a conductor 

of electricity because it is slightly dissociated according to 

2H2S04 = H3SO^ + HS07. 

The acid has a great affinity for water and forms several stable hydrates. In 

some of its chemical reactions as well, sulfuric acid removes the elements of 
water from compounds: 

HCOOH + H2S04 = CO(g) + H30+ + HSO^, 

HN03 + 2H2S04 = H30+ + 2HSCV + NO 

Hot concentrated sulfuric acid is an oxidizing agent, and will dissolve metals 

like copper, 

Cu + 5H2S04 = Cu++ -f S02 + 4HS07 + 2H30+. 
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In ililul <■ solutions, however, I he oxidizing properties associated with the sulfate 
group are virtually negligible. 

Electrolysis of cold concentrated sulfuric acid solutions produces peroxy- 
disulfurie acid, H2S2Oh. As its name suggests, this molecule contains an 
oxygen oxygen bond, 

0 0 

11 -0 -S—O—0—s—0—H. 

0 0 

I’eroxydisulfurie acid is an extremely powerful oxidizing agent: 

II2S208 f 2H+ 4- 2c" = 2fI2S04, 8° = 2.01 volts. 

Although direct oxidations by peroxydisulfate ions are slow, they are catalyzed 
by silver ions and this combination of reagents provides one of the most effective 
means available for converting soluble species to their highest oxidation states. 

The addition of S02 to water produces a solution whose mild acidity is often 
attributed to ionization of sulfurous acid, II2S03. However, sulfurous acid has 
never been isolated as a pure compound, and there is no evidence that the 
molecule ll2S();{ exists at all. The ionization of “sulfurous acid” might better 
be written 

SOa(aq) 4 H20 = HS07 4 II+, K = 1.3 X 1(T2, 

HSOr = H+ + SO”, K = 5.6 X 10~8. 

There is no doubt that both the bisulfite ion, HS07, and the sulfite ion, SO“, 
exist, for salts of both arc well known. Acidic solutions of S02 are mild reducing 
agents, and basic sulfite solutions are somewhat stronger reductants, for we 
have 

sor 4 4H+ 4 2e“ = S02(aq) 4 2H20, 8° = 0.17 volt, 

807 4 II2() 4 2e- = 807 + 20H-, 8° = -0.93 volt. 

Solutions of the sulfite ion react with elemental sulfur to form the thiosulfate 
ion, S207, according to 

S(s) 4 S07 = s207. 

The ion S207 is called the thiosulfate ion because the prefix thio indicates that 
a sulfur atom has been substituted for an oxygen atom in the parent species. 
The relation between the structures of the sulfate and the thiosulfate ions is 
shown in Fig. 15.14. 
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) ) The relation between the struc¬ 
tures of (a) S07 and (b) S*0“. 

FIG. 15.14 

1 1 

o 

() 

Iii acidic solutions, the thiosulfate ion decomposes to sulfur and sulfite ion. 
Consequently, no such species as thiosulfuric acid can ho isolated. In mildly 

acidic, neutral, or basic solutions, however, the thiosulfate ion is stable, and 

undergoes two important reactions. II- acts as a mild reducing agent and forms 
the tetrathionate ion, 840,7: 

28*0.7 = S4O7 4- 2e", 8° 0.08 volt. 

Thiosulfate ion will reduce iodine to iodide ion, and this reaction is used exten¬ 

sively in quantitative analysis. The general procedure is to allow an oxidizing 

agent whose concentration is to be determined to react with excess iodide ion 
to produce I*. The iodine is then titrated with a solution of 8*0,7 of known 

concentration, and the amount of unknown oxidant calculated. 

The thiosulfate ion also forms stable complexes with some metal ions. In 
particular, the silver thiosulfate complex ion is very stable, as is shown by 

Ag'1 + 28*07 = [Ag(8*03)*]-\ K = 1.6 X 1013. 

Solutions of thiosulfate ion can dissolve the otherwise insoluble silver halides, 

and are used as fixing agents in the photographic process. 

The following reduction-potential diagrams summarize the properties of some 

of the aqueous sulfur species. For acidic solutions we have 

S0-_odl. 80* 
10,61 

0.40 
S207 

0.60 
8 

O.H 
H*S 

>4 Of) 
0.08 

It is clear that the sulfate ion is a poor oxidizing agent in 1 M II ' . Aqueous 
sulfur dioxide is a moderately good oxidizing agent, but can be oxidized rather 

easily to sulfate ion. Thiosulfate ion is easily oxidized to tetrathionate, 840,7, 

but stronger oxidizing agents are required to convert 8*0,7 to 80*. Thiosulfate 
is unstable with respect to disproportionation to sulfur and sulfur dioxide. In 

acidic solutions, hydrogen sulfide is a mild reducing agent. 
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The reduction-potential diagram for basic solutions is the following. 

SO 
= -0.98 -0.51 0 = 

sor ~Q'58-s2or- r°-—s- 
I -0.59 

It is clear that sulfate, sulfite, and thiosulfate ions are all very poor oxidants in 

basic solutions, and in fact SOjf and S2Ojf are easily oxidized in basic solutions. 

Sulfide ion is a reducing agent in basic solutions, and S20^ is no longer unstable 

with respect to disproportionation to sulfur and sulfite ion. 

Table 15.8 The halides of sulfur 

Fluorides Chlorides Bromide 

Melting 
point 

(°C) 

Boiling 
point 
(°C) 

Melting 
point 
(°C) 

Boiling 
point 
(°C) 

Melting 
point 
(°C) 

Boiling 
point 
(°C) 

SF4 -121 -40 S2CI2 -80 138 S2Br2 —46 90 

SFo - 51 —65(sub) SCI2 -78 decomp 

S2F10 - 55 29 SCI4 decomp 

Sulfur forms a number of binary compounds with fluorine, chlorine, and 

bromine, and these are listed in Table 15.8. The halide of most practical 

importance is sulfur hexafluoride, the principal product of the direct reaction 
between sulfur and fluorine. Sulfur hexafluoride is a thermally stable, extremely 

inert gas which has great resistance to electrical breakdown. It is used, there¬ 

fore, as a gaseous insulator in high-voltage generators and other devices. As 

was discussed in Section 11.5, the six fluorine atoms in SF6 are at the corners 

of a regular octahedron, with the sulfur atom at the center. Because there are 
six pairs of electrons around the sulfur atom, the description of the bonding 

in SF6 in terms of atomic orbitals involves the 3d- as well as the 3s- and 3p- 
orbitals of sulfur. Because of its regular octahedral geometry, with six equivalent 

sulfur-fluorine bonds, SF6 is said to exhibit sp3 d2 hybrid bonding. The sulfur- 
fluorine bond in SF6 is not particularly strong: D(SF5—F) = 86 ± 3 kcal. 

Consequently, the inert nature of SF6 is attributed not to its thermodynamic 

stability alone, but also to the fact that its reactions with other reagents are 

exceedingly slow. 
The other well-characterized fluorides of sulfur are SF4 and S2Fi0. Their 

structures are given in Fig. 15.15. Disulfur decafluoride, S2Fi0, is a rather un¬ 
reactive compound like sulfur hexafluoride. In contrast, SF4 is extremely 

reactive and is rapidly hydrolyzed by water to S02 and HF. It is used as a 
fluorinating agent for organic compounds. As was discussed in Section 11.5, 

SF4 is related structurally to PC15, for both have a central atom surrounded 
by five electron pairs. The PC15 molecule has the trigonal bipyramid structure, 
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F 

(a) (b) 

and the geometry of SF4 can be pictured as a distorted trigonal bipyramid with 

a pair of nonbonded electrons occupying one of the equatorial positions. 

Selenium and Tellurium 

These elements are quite rare and are recovered as byproducts from sulfur ores. 

Selenium is a poor conductor of electricity in the dark, but its conductivity 

increases when it is illuminated. Consequently, it is used in photoconductive 
cells to measure light intensity. Selenium is also used as a component of rectifiers 
for converting alternating to direct current. Tellurium also is used in certain 

electronic and light-sensitive devices. 

The chemistry of selenium and tellurium resembles that of sulfur, and the 
differences that exist usually are associated with the metallic character that 

increases with atomic number. Selenides and tellurides of the metals are analo¬ 

gous to the sulfides, but are somewhat more covalent in nature because the 
ions Se= and Te= are larger and more polarizable than S=. The hydrides H2S, 

H2Se, and H2Te are all offensive, poisonous gases of moderate solubility in 

water. As was discussed in Section 13.4, H2Se and H2Te are thermodynamically 

unstable with respect to their elements, as is characteristic of the hydrides of 
the heavier elements of groups IV, V, and VI. The strength of the hydrides as 

acids increases in the sequence from H2S to H2Te, as the following equilibrium 
constants show: 

H2S = H+ + HS" k=i.ixio-7, 

H2Se = H+ + HSe“ K = 2 X 10~4, 

H2Te = H+ + HTe~, K = 2.3 X 10-3. 

A similar trend in the acidities of the hydrides will be found in group VII. 

The oxides Se02 and Te02 are both rather different physically from S02. 

Both Se02 and Te02 are solids at room temperature, and the structure of 
Te02 suggests that it is an ionic lattice. Selenium dioxide has an infinite chain 
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structure of the type shown in Fig. 15.16. It dissolves in water to give acidic 

solutions, and the compound H2Se03 has been prepared pure and its structure 

studied. In contrast, Te02 is quite insoluble in water and no such species as 

H2Te03 has ever been isolated. Treatment of Te02 with strong bases, however, 

does give solutions that contain the tellurite ion, TeO“. 

• <> 

FIG. 15.16 A segment of the infinite chain of Se02. 

Oxidation of selenites gives selenates, the salts of selenic acid, H2Se04. 

Selenic acid is rather similar in acid strength to sulfuric acid, but is a much 

stronger oxidizing agent, as is shown by the potential for 

SeOr + 4H+ + 2e~ = H2Se03 + H20, 8° = 1.15 volts. 

The +6 oxyacid of tellurium is quite different from those of sulfur and sele¬ 

nium. The formula of telluric acid is Te(OH)6, and x-ray crystal structure 
studies show that the OH groups are at the corners of a regular octahedron with 

the tellurium atom at the center. Besides being structurally different from 
H2S04 and H2Se04, Te(OH)6 is a weak acid, with a first ionization constant 

of about 10~7. 

15.3 THE ELEMENTS OF GROUP VIIA 

The elements fluorine, chlorine, bromine, and iodine are reactive nonmetals 
that are always found in nature in the combined state. Although these halogens 

resemble each other chemically, there is a noticeable gradation of properties in 

the family. Fluorine is the most electronegative of the elements and displays 

only the oxidation state of —1. Chlorine, bromine, and iodine are also electro¬ 

negative elements, but form compounds in which they are assigned positive as 
well as negative oxidation states. While all the halogens are oxidizing agents, 

their strength as oxidants decreases as the atomic number increases. Each of 

the halogens exists as discrete molecules in the solid, liquid, and gas phases, 

but the volatility of the elements markedly decreases as the atomic number 
increases. The variations in other properties such as ionization energy, electron 

affinity, and ionic size are evident from the data given in Table 15.9. 

Fluorine and chlorine are the two most abundant halogens. Fluorine occurs 
principally as fluorspar, CaF2, and cryolite, Na3AlFfi. Because it is such a 
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Table 15.9 Properties of the group VIIA elements 

F Cl Br 1 

Atomic number 9 17 35 53 
Configuration 2s22p5 3s23p’J 4s24p'’ 5s25pr> 
Ionization energy, kcal 402 300 273 241 
Atomic radius, A 0.72 0.99 1.14 1.33 
Melting point, °K 54 172 266 387 
Boiling point, °K 85 239 331 455 
AH/(atom), kcal 18.6 29.01 26.71 25.48 
Electron affinity, kcal 79.5 83.5 77.3 70.5 
Ionic radius, X-, A 1.33 1.81 1.96 2.19 
AHhyd, X-, kcal 123 89 81 72 

powerful oxidizing agent, fluorine is prepared commercially by electrolysis. 

Either fused potassium hydrogen fluoride, KHF2, or a solution of KHF2 in 
liquid hydrogen fluoride is electrolyzed to produce F2 at the anode and H2 at 
the cathode. 

Chlorine also is prepared by electrolysis. The process is 

Na+(aq) + Cr(aq) + H20 = *Cl2(g) + £H2(g) + Na+(aq) + OH~(aq) 

and the hydrogen gas and the sodium hydroxide solution are useful byproducts 
of the reaction. Chlorine is a very strong inexpensive oxidizing agent, and 

consequently it has many industrial uses. One of these is the oxidation of 

bromide ion in sea water to bromine, 

Cl2 + 2Br— = Br2 + 2C1~ 

While fluorine, chlorine, and bromine are found in the —1 oxidation state in 

nature and must be oxidized to the elemental state, iodine is obtained mainly 
by reduction of naturally occurring iodates. The bisulfite ion is a convenient 

reductant, and the reaction employed is 

2IO^(aq) + 5HSOr(aq) = 3HSOr(aq) + 2SOr(aq) + H20 + I2(s). 

The fifth member of the halogen family, astatine, is not found in nature. 

All its isotopes are radioactive, and the most stable, At210, has a half-life of 
only 8.3 hours. As a result, the chemistry of astatine has been studied qualita¬ 

tively, and few quantitative data on astatine are available. 

The Halides 

Most metallic elements react directly with the halogens to form compounds 

that are thermodynamically very stable. If the metal atom is relatively large 
and has an oxidation state of -f-1 or -f-2, the bonding in the halide is ionic, while 

for the higher oxidation states of the smaller metallic and semimetallic atoms 
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the bonding in the halides tends toward a covalent nature. To see what factors 
determine the stability of the ionic halides, let us examine the energetics of 

formation of a metal halide of formula MX. The overall reaction is 

M (s) + £X2(g) = MX(s), AH = A///(MX). 

This can be written as the sum of the following processes: 

M(s) = M(g), AH 8ub, 

M(g) = M+(g) + e“ /1, 

iX2(g) = X(g), hD(X2), 

e" + X(g) = X"(g), A(X), 

X“(g) + M+(g) = MX(s), A HCTya. 

Thus the enthalpy of formation of the metal halide is determined by the en¬ 

thalpies associated with sublimation and ionization of the metal, dissociation 

of the halogen molecule and electron attachment to the halogen atom, and 
formation of the ionic crystal lattice. The ionic halides as a class of compounds 

are very stable because the halogen molecules have relatively small bond 

energies and very large electron affinities. Fluorine has the smallest dissociation 

energy of all the halogens, and because F— is the smallest of the halides, fluorides 
have the most stable crystal lattices. Consequently, the ionic fluorides are 

particularly stable compounds. The relative instability of the iodides must be 
a consequence of the large size of the iodide ion and the resulting small lattice 

energies of ionic iodides. 
In addition to the simple monatomic halide ions, polyhalide ions are known. 

When iodine is added to an aqueous solution of iodide ion, the tri-iodide ion, 

I-f is formed. The ion is of moderate stability in aqueous solution as the equilib¬ 

rium constant for its dissociation 

ir(aq) = I”(aq) + I2(aq), K = 1.3 X 10~3, 

suggests. 
The corresponding dissociation constants for Bri- and Cl 3" are 6 X 10-2 

and 5.5, respectively, so these ions are less stable than IT- Direct action of the 

halogens on the halides of the larger alkali metals can produce more complicated 

polyhalides such as KI5CSICI4, and KBrF4. 
The halogens react directly with many of the nonmetallic elements to form 

compounds that in general consist of small covalently bonded molecules. To 
see what factors determine the stability of such compounds, let us examine the 

energetics of formation of a halide of a nonmetal. As a specific example, con¬ 

sider the formation of the gaseous phosphorus trihalides, PX3: 

?P4(s) + §X2(g) = PX3(g), AH = A///(PX3). 
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Table 15.10 Bond energies of halides (kcal/mole) 

B—F 154 B—Cl 109 
C—F 116 C—Cl 81 
N—F 65 N—Cl 46 
0—F 45 0—Cl 45 
Si—F 135 Si—Cl 91 
P—F 117 P—Cl 78 
S—F 68 S—Cl 61 

C—Br 68 C—1 52 

0—Br 48 _ _ 

Si—Br 74 Si—1 56 
P— Br 63 P—1 44 
S—Br 52 — — 

This overall reaction can be broken into the following steps: 

|P4(s) = P(g), A//atom, 

fX2(g) = 3X(g), fD(X2), 

P(g) + 3X(g) = PX3(g), —3D(P—X). 

Thus the enthalpy of formation of the phosphorus trihalides, or any halide, is 

the difference between the energy required to convert the elements to atoms and 

the total bond energy of the compound. The relative stabilities of the gaseous 
halides of phosphorus depend on the strength of the P—X bonds relative to 

the strength of the bonds in the X2 molecules, and an analogous conclusion 
holds for other nonmetals. The order of the dissociation energies of the gaseous 

halogen molecules is D(F2) < D(l2) < D(Br2) < D(Cl2), and if all other 

factors were the same for all halogens, this would be the order of decreasing 
stability of the halogen compounds. The energies of the bonds formed by the 

different halogens vary considerably, as Table 15.10 shows. It is clear that 
with a given element, fluorine forms bonds that are substantially stronger than 

those formed by chlorine, and chlorine forms bonds that are stronger than those 
made by bromine and iodine. As a result of both the small dissociation energy 

of fluorine and the very strong bonds it forms with nonmetals, the fluorides are 
in general the most energetically stable of the nonmetallic halides. Even though 

chlorine has the largest dissociation energy of the halogen molecules, the bonds 
it forms with other elements are strong enough to make the nonmetallic chlo¬ 

rides second to the fluorides in energetic stability. Despite the small bond 

energy of I2, the iodides are generally the least stable of the halides because 
iodine forms only very weak bonds with the nonmetals. 

The Hydrogen Halides 

The hydrogen halides can be prepared by the action of a nonvolatile non¬ 

oxidizing acid on a soluble halide, as in 

NaBr + H3P04 = HBr(g) + NaH2P04. 

The hydrogen halides exist as gaseous diatomic molecules under ordinary con¬ 

ditions, and like the other nonmetallic halides, they decrease in thermodynamic 
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Table 15.11 Properties of hydrogen halides 

HF HCI HBr HI 

Melting point, °C -83.1 -114.8 -86.9 -50.7 

Boiling point, °C 19.5 - 84.9 -66.8 -35.4 

AH?ap, kcal 7.24 3.85 4.21 4.72 

AH/, kcal -64.2 - 22.06 - 8.66 6.20 

AG/, kcal -64.7 - 22.77 -12.72 0.31 

stability as the atomic number of the halogen increases. Some of the properties 

of these compounds are listed in Table 15.11. 
The electrical conductivity of pure liquid HF is rather small, but does in¬ 

dicate that a small amount of self-ionization occurs according to 

2HF = H2F+ + F“ F“ + HF = HF^. 

The other pure liquid hydrogen halides show very little if any self-ionization. 

In aqueous solutions, however, the hydrogen halides are good electrical con¬ 

ductors. Hydrogen fluoride is a fairly weak acid, as is shown by 

HF + H20 = H30+ + F-, K1 = 7.2 X 10“4, 

F” + HF = HFr, if2 = 5.1. 

The other hydrogen halides are strong acids, and are almost totally dissociated 

in water. When HC1, HBr, and HI are dissolved in solvents that are poorer 

proton acceptors than water, they are not as extensively dissociated to ions. 

In fact, under these conditions it is possible to determine that the strength of 

the hydrogen halides as acids increases in the sequence HC1, HBr, and 

HX(g>-—-►H(g) + 

A H3 

H+(g) 

AH5 

HX(aq)--► H+(aq) 

FIG. 15.17 Thermodynamic cycle for the dis- 
sociation of a halogen acid HX. 

HI. 

X(g) 

Jah4 

x-(g) 

|a//6 

+ X-(aq) 

To see what factors determine the acid strength of the hydrogen halides, let 

us examine the thermodynamic cycle shown in Fig. 15.17. It is evident that the 

enthalpy of dissociation of the HX molecules is given by 

AHdias — AH i -f- AH 2 + AH s + AH 4 + AH 5 + AHq, 
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Table 15.12 Enthalpies associated with the 
dissociation of the halogen acids (kcal/mole) 

Acid AHi A H2(D) A H3(0 A H4(-A) AH5 + AHe A^diss 

HF 11.5 134.6 315 -79.5 -381.9 - 1 
HCI 4.2 103.2 315 -83.5 -348.8 -10 
HBr 5.0 87.5 315 -77.3 -340.7 -11 
HI 5.5 71.4 315 -70.5 -330.3 - 9 

where 

A Hx = A//dehyd( HX), AH 2 = D( HX), A Hz = 7(H), 

AT/4 = -A(X), A 7/5 + A776 = A77hyd(H+ + X"). 

The measured values of these quantities are given in Table 15.12, together with 
the computed value of A//(!iss(HX). Because A77ciiss(HF) is less negative than 

the enthalpies of dissociation of the other hydrogen halides, we are not surprised 

to find that HF is a weaker acid than any of the other hydrogen halides. The 

enthalpy of dissociation is not the only factor that determines acid strength, 

however. The entropy changes for the dissociation reaction have also been 

estimated and are given in Table 15.13. The data show that HF is the weakest 
of the acids not only because its dissociation is the least favored energetically, 

but also because the entropy change that accompanies its dissociation is the 

most negative. The relative importance of entropy and enthalpy effects can 
be assessed by comparing AHdlss with T A$diss. The data in Table 15.13 show 

that while the values of AHdiss set the general trend of the acidities of the 

hydrogen halides, entropy effects are important and in fact are what make HI 
a slightly stronger acid than HC1. 

Table 15.13 Thermodynamics of dissociation of halogen acids 

Acid 
A^diss 

(kcal) 
AHdiss 

(cal/deg) 
-TAS 

(kcal) 
^Gdi83 

(kcal) 

HF - 1 -21 6.3 5 

HCI -10 -13 3.9 -6 
HBr -11 - 9 2.7 -8 
HI - 9 - 3 0.9 -8 

The Halogen Oxides 

The known halogen oxides are listed in Table 15.14. These compounds are 

characteristically unstable reactive substances that exist as discrete small mole¬ 
cules in all phases. At room temperature they exist as gases or volatile liquids, 

with the exception of I2O5, a solid. 
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Table 15.14 The halogen oxides 

Fluorine Chlorine Bromine Iodine 

F20 Cl20 Br20 I2O4 
F2O2 CI02 Br02 I4O5 

CI2O4 Br03 I2O5 
Cl206 
ci2o7 

Br207(?) l207 

The compound F20 is the only halogen oxide that is thermodynamically 
stable with respect to its elements. Its stability is slight, however, and it reacts 
readily with a variety of reducing agents. For example, when dissolved in 
water, it produces oxygen slowly according to the reaction 

F20 + H20 = 02 + 2HF. 

The chlorine oxides are all small covalently bonded molecules that are rather 
unstable highly reactive oxidizing agents. Chlorine monoxide, C120, is prepared 
by the reaction 

2C12 + 2HgO = HgCl2 • HgO + C120 

and upon heating, explodes spontaneously to give Cl2 and 02. Chlorine dioxide 
can be synthesized by the reaction 

2C10r + S02 = 2C102 + sor. 

Chlorine dioxide is also spontaneously explosive, but is safe if treated carefully, 
and is in fact used commercially as an oxidizing agent. 

Dichlorine tetroxide is not a dimer of chloride dioxide, but rather has the 
atomic arrangement CIOCIO3, which corresponds to chlorine perchlorate. It is 
stable for only short periods at room temperature. 

Chlorine hexoxide, C1206, is formed when ozone reacts with C102, 

2C102 2O3 = C1206 -j- 202. 

Chlorine hexoxide is unstable and reacts explosively with organic compounds. 
The +7 oxide of chlorine, C1207, is a volatile liquid obtained by dehydrating 
perchloric acid, 

2HCIO4 P4°10 > C1207. 

Even though it is the most stable of the chlorine oxides, it explodes when it is 
heated or subjected to mechanical shock. 

The bromine oxides are not at all well characterized chemically or physically. 
Of the oxides of iodine, only I205 has been investigated extensively. It is the 
dehydration product of HIO3, iodic acid, for at 200°C the reaction 

2HIO3 = I205 + h2o 
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occurs. Iodine pentoxide is a stable compound and reacts in a controlled manner 

with a number of reducing agents. The most important of its reactions is the 
oxidation of carbon monoxide, 

I205 + 5CO = I2 + 5C02. 

This reaction is quantitative, and a determination of the iodine formed allows 
a quantitative analysis for CO to be made. 

The Halogen Oxyacids 

The known oxyacids of the halogens are listed in Table 15.15. The hypohalous 
acids HOX, except HOF, are formed by the disproportionation of the halogens 
in aqueous solution, 

X2(aq) + H20 = H+ + X~ + HOX. 

The values of the equilibrium constant of this reaction for the various halogens 

are: Cl2, 4.2 X 1(T4; Br2, 7.2 X 10“9; and I2, 2.0 X 10“13. From these 
equilibrium constants, it can be deduced that in a saturated solution of chlorine, 

the concentration of HOC1 is about half the concentration of chlorine, while 

only about 0.5% of a saturated solution of I2 is hydrolyzed to HOI. One method 

of producing the hypohalous acids in greater yield is to pass the halogen into 
an aqueous suspension of mercuric oxide, 

2X2 + 2HgO + H20 = HgO ■ HgX2 + 2HOX. 

The hypohalous acids are all very weak acids, for their dissociation constants 

are: HOC1, 2 X 10-8; HOBr, 2 X 1(T9; HOI, 1 X 10-11. They are also 
rather unstable, and have never been isolated as pure compounds. The com¬ 

pound HOF is made by passing F2 over ice and collecting the product in a cold 

trap. It reacts rapidly with water to produce oxygen and is thermally unstable, 

decomposing with a half-life of less than an hour at 25°C. 

Table 15.15 Oxyacids of the halogens 

Fluorine Chlorine Bromine Iodine 

HOF HOCI HOBr HOI 
HCI02 HBr02(?) - 
HCI03 

HCIO4 

HBr03 HIO3 

HI04. H5I06 

The only known oxyacid in which a halogen appears in the +3 oxidation state 

is chlorous acid, HC102. Salts of chlorous acid can be made by the reaction of 

C102 with peroxides, 

Na202 + 2C102 = 2NaC102 + 02. 
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Acidification of solutions of chlorites yields HC102, which is a moderately 

strong acid with a dissociation constant of 10-2. 
The acids HX03 and their salts are known for all the halogens except fluorine. 

Solutions of chlorates, bromates, and iodates can be obtained by the dispropor¬ 

tionation of hypohalides in basic solution, 3X0 = 2X + X03. This 
reaction is quantitative for all three heavier halogens. It proceeds rapidly at 

room temperature for iodine, and at a temperature of 75°C for chlorine and 

bromine. 
All the halic acids are strong acids, and are essentially totally dissociated in 

aqueous solution. Chloric and bromic acids have never been isolated as pure 

compounds, but iodic acid, HI03, appears as white crystals when iodine is 

oxidized by concentrated nitric acid. The acids and their anions are strong 

oxidizing agents, and chloric acid in particular reacts violently with organic 

compounds. 
The oxyacids of the halogens in the +7 oxidation state are perchloric, per- 

bromic, and periodic acids. Perchlorates are prepared by the electrolytic oxida¬ 

tion of chlorates, and when a perchlorate salt is heated with concentrated H2SO4, 
perchloric acid distills from the mixture. Perchloric acid is totally dissociated 

to ions in aqueous solution, and is probably the strongest acid known. Thus 

the oxyacids of the halogens of the type HOXO„ show a steadily increasing 
acid strength as n increases from 0 to 3. This trend of increasing acidity with 

increasing oxidation state of the central atom has been noted previously for 

other elements. 
Perchloric acid is a very strong oxidizing agent and reacts explosively with 

organic compounds. In dilute aqueous solutions at room temperature, per¬ 

chloric acid tends to be rather unreactive, for despite its very great oxidizing 

strength, its reactions with inorganic compounds are very slow. Because the 

perchlorate ion is a large ion with a small charge, it does not tend to form 

complexes with cations, and its salts are, in general, quite soluble in water. 
Consequently, perchlorate salts are often used when studies of the properties 

of cations in aqueous solutions are made. 
Perbromates have been unknown until fairly recently. They can be syn¬ 

thesized by the reaction of XeF2 or F2 on bromates: 

BrOr + XeF2 + H20 = BrOF + 2HF + Xe, 

BrOF + F2 + 20H- = BrOF + 2F“ + H20. 

Despite their elusive nature, perbromates are stable both in aqueous solution 

and as solid alkali salts such as KBrC>4. 
Periodic acid exists in several forms. In strongly acidic solutions the most 

important species is paraperiodic acid, H5IO6, a weak acid in which a central 
iodine atom is surrounded by five OH groups and an oxygen atom, all located 

at the corners of an octahedron. Paraperiodic acid is in equilibrium in aqueous 

solution with the anion H3IOF~, and with the metaperiodate ion IOF- Solutions 
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of periodic acid are strong oxidizing agents that react smoothly and rapidly with 

a number of reagents. In one of the standard procedures for the analysis of 

manganese, periodic acid is used to oxidize manganous ion to permanganate. 
Chlorine, bromine, and iodine each have extensive solution chemistry and it 

is helpful to summarize their properties with reduction-potential diagrams. 

The following diagrams apply to chlorine species in acidic and basic solutions, 
respectively. 

cior—19-cior 121 HC102—-1'64- HOC1 16? Cl2 1-36 Cl~ 

C1Q-- 0.36 C1Q- 0.33 ci0^-°-66-C10~ 0,40 Cl2 06 Cl~ 
0.50_||_0.89 

It is clear that in both acidic and basic solutions, all chlorine species except Cl- 
are strong oxidants. Hypochlorous and chlorous acids react rather rapidly to 

oxidize a variety of reagents, but the reactions of chlorate and perchlorate ions 

with inorganic reagents are usually quite slow. There are two disproportionation 
reactions that are of importance in alkaline solutions: 

Cl2 + 20H“ = Cl- + CIO- + H20, AS0 = 0.96 volt, 

3C10“ = ClOr + 2Cr, AS0 = 0.39 volt. 

The first of these reactions is used to prepare hypochlorites, and the second is 

used to synthesize chlorates. 

The reduction-potential diagrams for bromine in acidic and basic solution, 
respectively, are as follows. 

1.52 

BrOjT - HOBr 159 Br2—Br' 

0.61 

T1 U— 0.54 0.45 -D 1.07 Tj1 - 
Br03-BrO -Br2-Br 

0.71 

All species except Br- are strong oxidizing agents. The potentials show that in 

basic solutions, bromine can disproportionate spontaneously to BrO- and Br~. 
Since BrO- itself can disproportionate to Br- and BrOjf, these ions are the 

eventual products found in alkaline solutions of bromine. In acidic solutions, 

however, bromine does not disproportionate, and in fact the reaction 

BrOr + 5Br“ + 6H+ = 3Br2 + 3H20, AS0 = 0.45 volt, 

proceeds spontaneously from left to right. 
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All oxidation states of iodine except the — 1 state have strong or moderately 
strong oxidizing properties, as the following reduction-potential diagrams show. 

H5I06———IOJT———HOI———12———I- 
1.20 

Haior-07 - IO^-^-IQ- °'45-I2-^^I- 
0.29 

Like chlorine and bromine, iodine is stable with respect to disproportionation 

to the +1 and —1 states in acidic solution, but does disproportionate in alkaline 

solutions. Both hypoiodous acid and hypoiodite anion are unstable with respect 

to self-oxidation and reduction: 

5HOI = 2I2 + 10^ + H+ -f 2H20, AS0 = 0.31 volt, 

3IO~ = 21- + IOi", A8° = 0.35 volt. 

In acidic and basic solutions, the iodate ion is stable by itself, but it does react 

quantitatively with I” to produce iodine in acidic solutions: 

IOi" + 51“ + 6H+ = 3I2 + 3H20, AS0 = 0.67 volt. 

The Interhalogen Compounds 

The known binary interhalogen compounds are listed in Table 15.16. The 

principal interest in these compounds lies in their molecular structure, although 

some practical use is made of BrF3 as a fluorinating agent. 

Table 15.16 The inter¬ 
halogen compounds 

Cl Br 1 

F CIF BrF 

CIF3 BrF3 

CIFs BrF5 IFS 
IF7 

Cl BrCI ICI 
Br 1 Br 

The geometry of C1F3 is shown in Fig. 15.18. As we remarked in Section 

11.5, the structure of CIF3 is related to those of PClg and SF4, for each of these 
molecules has a central atom that is surrounded by five pairs of valence elec¬ 
trons. Interelectron repulsion should be minimized if each electron pair is 

directed toward one of the corners of a trigonal bipyramid. In CIF3, only the 

axial and one equatorial position of the bipyramid are occupied by fluorine 
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atoms. Thus we can regard the T-shape of C1F3 as a slightly distorted frag¬ 
ment of a regular trigonal bipyramid. By analogy with C1F3 we expect BrF3 

and IC13 to be T-shaped molecules, and this is found experimentally. 

F 

1.70 A 

Cl 

1.70 A 

87.5° 1.60 A 

~f^F 
87.5° 

F 

The structure of CIF3. 

The molecules C1F5, BrF5 and IF5 have respectively a central chlorine, 
bromine and iodine atom surrounded by six electron pairs, five of which are used 

to form bonds to fluorine atoms. The geometry of these molecules should be 
related to that of SF6, which also has six electron pairs around a central atom. 

Figure 15.19 shows the structure of BrF5. It can be rationalized by imagining 

the six electron pairs around the bromine atom directed toward the corners of an 

octahedron, with five of these corners occupied by fluorine atoms. If we assume, 

as we have done consistently, that the nonbonded pair of electrons occupies more 

space than bonding electron pairs, the departure of the geometry of BrF 5 from 

that of a regular octahedron is not surprising. The geometry of IF5 is similar to 

that of BrF5, for all five of the fluorine atoms lie on the same side of a plane that 

contains the iodine atom and which is perpendicular to the axis of symmetry 

of the molecule. 

FIG. 15.18 

The structure of BrF5. The bromine atom lies slightly below fig. 15.19 

the plane of four of the fluorine atoms. 

There are several ions of the interhalogens whose structures fit the patterns 

established by the interhalogens and other halides of the nonmetals. The ions 

1^, IC17, IBr^, and BrICI- are all linear and have a central iodine atom sur¬ 
rounded by five electron pairs. Their structures can be pictured as being re¬ 

lated to that of PC15, with only two of the five electron pairs at the central 
atom being used to form bonds. These two bonding pairs are directed along 

the axis of a trigonal bipyramid, and the three nonbonding electron pairs are 

directed toward the equatorial comers of the bipvramid. 
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FIG. 15.20 The structure of I Cl 4. '1 

The ion ICl^ has the structure shown in Fig. 15.20. The iodine atom is at 
the center of the square formed by the four chlorine atoms, and apparently the 
two pairs of nonbonded electrons around the iodine atom are directed per¬ 
pendicular to the plane of the ion. Thus the six electron pairs around the iodine 
atom can be regarded as directed toward the corner of an octahedron, and the 
structure of ICl^T is related to that of SF6. The ion BrFT also has a planar 
structure, as would be expected by analogy with ICip. 

15.4 THE NOBLE-GAS COMPOUNDS 

It has been known for a number of years that the noble-gas atoms form strong 
bonds to certain other atoms. For example, species such as He^, Ar^“, ArH+, 
and CH3Xe+ have been detected repeatedly as transient gaseous ions. The 
bond strength in some of these molecular ions is substantial. Dissociation of 
HeJ to He and He+ requires 60 kcal/mole and separation of ArH+ to Ar and 

requires at least 93 kcal/mole. Despite these large bond energies, such 
gaseous ions are only transient species, for if they acquire electrons, they 
dissociate immediately into atoms. The existence of these transient ions is 
important, however, for it shows that there is no mysterious property of the 
completed octet in the noble-gas atoms that absolutely prevents these atoms 
from being bonded to other species. Apparently strong electron acceptors, 
such as positive ions, can form strong bonds with the noble-gas atoms. This 
lesson was largely ignored by chemists before 1962. 

In 1962 N. Bartlett found that molecular oxygen forms a compound with 
PtF6 that can be represented as O^PtFJf. Because xenon has nearly the same 
ionization energy as oxygen, Bartlett decided to investigate the possibility of 
a reaction between xenon and PtF6. A reaction between these reagents was 
observed, and did demonstrate that xenon is not a totally inert gas. This 
observation stimulated other investigations of the chemistry of xenon and the 
other noble gases. Several compounds of xenon and krypton with the strong 
electron acceptors fluorine and oxygen are now known. 

The most stable and best characterized of the noble-gas compounds are the 
xenon fluorides, oxvfluorides, and oxides. These are listed in Table 15.17 with 
some of the known thermochemical data. The xenon fluorides can be made in 
a variety of ways, and apparently the only requirement is that xenon be exposed 
to fluorine atoms. Xenon difluoride is usually formed first, and continued expo¬ 
sure of XeF2 to fluorine atoms yields xenon tetrafluoride. Xenon hexafluoride 
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is formed by the reaction of XeF4 with a considerable excess of fluorine. These 
three binary fluorides of xenon have negative. enthalpies of formation, and 
combination of these values of AH/ with the dissociation energy of fluorine 

shows that the average xenon-fluorine bond energy in these compounds is 
30 ± 3 kcal/mole. 

Table 15.17 Some compounds of xenon 

AH/ AHf 

Compound (kcal/mole) Compound (kcal/mole) 

XeF2 -30 XeF6 -96 
XeF4 -69 XeOF4 - 
XeOF2 - Xe03 96 

The oxygen compounds of xenon are obtained by hydrolysis of the fluorides. 
For example, 

XeF6 + H20 = XeOF4 + 2HF, 

XeF6 -f 2H20 = Xe02F2 + 4HF, 

XeF6 + 3H20 = Xe03 + 6HF. 

Of these compounds, Xe03 has been prepared in quantity and is fairly well 

characterized. Although it is easy to synthesize, it is violently explosive when 
dry. In aqueous solutions, however, it is well behaved, and as its large positive 

enthalpy of formation might suggest, it is a very powerful oxidizing agent. 
Because the only byproduct of its reduction is xenon gas, it does not introduce 

extra complicating chemical species into a reaction system when it is used as an 

oxidizing agent. Because of these features, it may be used considerably in the 
future as a general oxidizing agent. 

When solutions containing Xe03 are made alkaline with sodium hydroxide, 
disproportionation of Xe03 occurs, xenon gas is evolved, and sodium perxenate, 

Na4Xe06 • 8H20 can be recovered from the solution. In acidic solutions, the 

perxenate anion decomposes slowly to Xe03 and oxygen. These acidic solutions 
of perxenate ion have strong oxidizing properties and can convert manganous 

ion to permanganate. Although standard reduction potentials are hard to 

determine for these systems, the following values have been obtained, which 

indicate clearly the powerful oxidizing properties of the xenon compounds: 

H4Xe06 + 2H+ + 2e— = Xe03 + 3H20, S° = 2.36, 

Xe03 -f- 6H+ -f- 6e = Xe -f- 3H20, 6^ = 2.12, 

XeF2 + 2H+ + 2e~ = Xe + 2HF(aq), 6° = 2.6V. 

The structures of the xenon compounds fit the patterns established by other 

isoelectronic species, so far as is known. For example, XeF2 is isoelectronic in 
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the valence shell with I^~, IClJf, and BrICI-, and like these ions, is linear and 

symmetrical. Xenon tetrafluoride is isoelectronic with ICl^ and BrF^, and is 
accordingly a symmetrical square planar molecule. Xenon trioxide is isoelec¬ 

tronic with the iodate ion 10^, and has the same trigonal pyramid structure. 
The XeO^”4 ion has the six oxygen atoms at the corners of a regular octahedron, 

as might be expected by analogy with the molecules SF6, SeF6, and TeF6. 

Xenon tetroxide, Xe04, is a tetrahedral molecule, as might be expected from the 

fact that there are four pairs of electrons around the central xenon atom, and 

also from analogy with the isoelectronic tetrahedral periodate ion, 10 T- The 

structure of XeOF4 is related to that of the isoelectronic molecule BrF5. In 

XeOF4, the four fluorine atoms form the base, and the oxygen atom the apex, 

of a square pyramid. 

The structure of xenon hexafluoride is not known. This molecule has seven 

pairs of electrons around the central xenon atom, but certain theoretical argu¬ 

ments have led to the prediction that the molecule should have the shape of a 

regular octahedron, while others predict that XeF@ should have a less sym¬ 
metrical structure. At the present time, the experimental evidence tends to 

favor the latter conclusion, but the problem has not been solved conclusively. 

Xenon difluoride can act as a fluoride ion donor, and as a result, forms a 

number of addition compounds with fluoride acceptors such as AsF 5 and SbF5. 

For example, 

2XeF2 + AsF 5 = (Xe2F^)(AsF^). 

The Xe2F3h cation has the planar structure indicated in Fig. 15.21. 

fig. 15.21 The structure of Xe2F£. 

Xenon hexafluoride can act as a fluoride ion donor, and forms such compounds 

as (XeFs")(PtF^). XeF6 also acts as a fluoride acceptor, and reacts with alkali 

metal fluorides to give heptafluoro-or octafluoro xenates: 

CsF + XeF6 = CsXeF7, 

2CsXeF 7 = XeF6 + Cs2XeF8. 

Thus the chemistry of the seemingly inert element xenon is in fact quite rich. 

15.5 CONCLUSION 

Although the nonmetallic elements display a wide range of chemical and physical 

properties, certain trends and regularities in their behavior are evident. In any 
given family, there is a trend toward metallic behavior as the atomic numbers of 

the elements increase. In any row of the periodic table the elements become less 
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metallic in nature as atomic numbers increase. All the nonmetals except the 
noble gases are electronegative and react with the active metals by accepting 

electrons to form negative ions. In addition, many of the nonmetals display a 
number of positive oxidation states, most commonly as oxides and oxyanions. 

These nonmetallic oxides are typically acidic in nature, and in general, the 
acidity is more marked, the higher the oxidation state of the nonmetal. 
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PROBLEMS 

15.1 On the basis of van der Waals forces, and the electronic properties that deter¬ 
mine them, explain the trend in volatility among the halogen elements. 

15.2 Calculate the entropy of vaporization for each of the hydrogen halides. Do 
these values indicate that one of the hydrogen halides is markedly different from the 
others? What phenomenon could be responsible for this deviation? 

15.3 Solid iodine has a dark purple color, and the crystals have a lustrous appearance. 
In addition, solid iodine displays a small conductivity that increases with increasing 
temperature. Are these observations consistent with the position of iodine in the 
periodic table? Explain. 

15.4 Make an analysis of the energetics of the electrode reaction 

2X2(g) + e“ = X“(aq) 

for F2, CI2, and Br2, and suggest reasons why the strength of the halogens as oxidizing 
agents decreases in this sequence. 

15.5 What sequence of reactions could be used to synthesize (a) Na2S20:j and 
(b) H2S2OS from the elements? 
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15.6 Nitrous oxide reacts with sodium amide to give sodium azide and water, 

N20+ NaNH2 = NaN3 + H20. 

By analogy with other triatomic molecules and ions, predict the structure of the azide 
ion, N“. Similarly, predict the geometry of the cyanate ion, OCN-, formed by the 

reaction 

(CN)2 + 20H- = CN~ + OCN- + H20. 

15.7 We noted that NF3 is not at all basic, in contrast to ammonia, NH3. With this 

fact and its interpretation in mind, try to predict whether hydroxyl amine, H2NOH, 

is more or less basic than ammonia. 

15.8 Calculate the pH of 0.10 M Na2S03. 

15.9 In the compound 02PtF6 it has been suggested that the oxygen exists as 0+. 

By considering that bond distances in solids can be determined by x-ray methods, 

suggest an experiment that will help to decide whether the oxygen is present as 02 

or 0+. 

15.10 How would you convert: (a) chlorine to KC103; (b) chlorine to HCIO4; 

(c) chlorine to C102; (d) iodine to I2O5; (e) bromine to NaBr03? 

15.11 Calculate the equilibrium constants for the following disproportionation re¬ 

actions: (a) CIO- to CIO- and Cl-; (b) Br0 to BrO~ and Br_ in basic solution; and 

(c) I2 to 10“ and I- in basic solution. 

15.12 Mercury is oxidized by N02 according to the reaction 

Hg(l) + N02(g) = NO(g) + HgO(s). 

In contrast, mercury is not attacked by N20. Is this difference in reactivity a kinetic 

or thermodynamic effect? Explain. AGy(HgO) = —13.99 kcal. 

15.13 Complete and balance the following expressions. 

Cu + H2S04 (hot, cone.) 

Zn + HN03 (dilute) -> 

Zn+ HN03 (cone.) -*■ 

Mg+ P -> 

N02 + H20 (cold) -> 

N02 + H20 (hot) -♦ 

HCIO4 P4°10 > 

Ca3P2+ H20 

15.14 What sequence of reactions leads to the synthesis of N20, if the starting 

reagents are elements? 

15.15 The ion SO“ has a pyramidal structure, and in SO“ the oxygen atoms are at 

the corners of a tetrahedron with the sulfur atom at the center. What would you 

expect the structures of SOCl2 and S02C12 to be? All the oxygen and chlorine atoms 

are bonded directly to sulfur. 

15.16 Consider the following cations to be present in 0.1-3/ aqueous solution: Fe ++, 

Zn++, Mn++, Pb++. Which of the ions will be precipitated as sulfides if the solution 

is saturated with H2S (0.1-3/) and the pH is maintained at (a) 0; (b) 2; (c) 5. Solu¬ 

bility products: PbS, 1 X 10_29; ZnS, 4.5 X 10~24; FeS, 1 X 10-19; MnS, 7 X 10~16. 

15.17 When H2S is bubbled into nitric acid solutions, sulfur, N02, NO, N2, and 

NH^ are formed. Write the four balanced reactions that describe this process. 
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CHAPTER 16 

THE TRANSITION METALS 

As was noted in Section 13.1, the transition elements occur between groups 
IIA and IIIA in the long form of the periodic table. In the first, second, and 

third transition series, respectively, the 3d-, 4d-, and Sd-electrons make their 

appearance. The third and fourth transition series also include, respectively, 
the lanthanides and the actinides, the “inner” transition elements; in each of 

these series an inner set of /-orbitals is filled. This chapter is concerned prin¬ 
cipally with the chemistry of the elements of the first transition series, but we 

shall also comment briefly about the properties of the other transition elements. 

16.1 GENERAL PROPERTIES OF THE ELEMENTS 

Before investigating the detailed chemistry of the individual elements, let us 
assess the general nature of the transition metals. All the transition elements 

are metals, and most of them have high melting points, high boiling points, 
and relatively large enthalpies of vaporization. The exceptional elements in 

this respect are those in group IIB: zinc, cadmium, and mercury. These metals 
have relatively low melting points and are moderately volatile. The atoms of 

these elements have completely filled sets of valence d-orbitals and in this 
respect also are different from the rest of the transition elements. This observa¬ 

tion suggests that among the elements that have incompletely filled valence 
d-orbitals, the d-electrons are involved in the metallic bonding and contribute 

to the cohesion of the metallic crystal. 
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Virtually all the transition metals arc good conductors of heat and electricity, 
and as was noted in Section 13.2, the elements copper, silver, and gold of 

group IB are particularly outstanding in these respects. From the thermo¬ 
dynamic point of view, many of the transition metals, particularly those of the 

first transition series, are “active” metals. That is, their electrode potentials 
indicate that they should react spontaneously with l-M H+ to yield aqueous 

solutions of their ions. On the other hand, the rates at which many of these 
metals are attacked by oxidizing agents are very small, and despite their 

thermodynamic tendency to react, they appear to be rather inert. Moreover, 
some of the heavier transition metals, particularly palladium, platinum, and 

their close neighbors, react only with the strongest oxidizing agents. Thus while 

we shall find noticeable similarities between many of the transition metals, 
there is at the same time an enormous range of properties displayed by these 
elements. 

The elements of the first transition series resemble each other in a number of 

ways. Some of the properties of these elements are summarized in Table 16.1. 
We see first that although there is a general decrease in the atomic radii of the 
elements as the atomic number increases, the radii of the elements from chro¬ 

mium through copper are very similar. The increase in the nuclear charge along 
the series tends to cause an electron cloud to contract, but the added 3d-electrons 

exert an opposing effect. Consequently, the general size of the atoms remains 
nearly constant and decreases only slowly in the transition series. 

Another indication that the effects of increasing nuclear charge and addition 

of 3d-electrons tend to offset each other is found in the variation of the first 
ionization energy of the atoms. Table 16.1 shows that although the first ioniza¬ 

tion energy, in general, increases as the atomic number increases, the ionization 
energies of neighboring elements are very nearly the same. A similar behavior 

is found for the second ionization energies, which for the most part increase 
smoothly as the atomic number increases. The exceptions are chromium and 

copper; the second ionization energies of these elements are notably larger than 
those of their neighbors. A rationalization of this observation lies in a com¬ 

parison of the electron configurations of the singly and doubly charged ions. 
The second ionization of chromium involves the removal of an electron from a 

half-filled set of 3d-orbitals, and in the second ionization of copper, an electron 
is removed from a filled set of 3d-orbitals. The extra stability of a filled or half- 

filled set of equivalent orbitals has been encountered previously, for we have 

noted that the atoms of the nitrogen and noble-gas families have higher ioniza¬ 
tion energies than do their neighbors. We shall see that the stability of the 
half-filled or filled set of d-orbitals is reflected in the chemistry of chromium 

and copper. 

The electronic configurations of the transition-metal atoms and ions illustrate 
an important point concerning the orbital energy-level scheme. Because the 
3d-orbitals of the neutral transition-metal atoms are filled only after the 4s- 

orbital is occupied, one might conclude that the 4s-orbital lies lower in energy 
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than the 3eJ-orbitals. The electron configurations of the ions show, however, 

that this is not always true. The configurations given in Table 1G.1 indicate that 

the 4s-orbitals are vacant in the gaseous transition-metal ions. In other words, 
the 3eZ-orbitals are of lower energy than the 4s-orbital in the ions, even though 

the reverse is true in the neutral atoms. This phenomenon, discussed in more 

detail in Chapter 10, shows that there is no rigid pattern of orbital energies 
that holds for all atoms and ions. 

The ionic radii given in Table 16.1 follow the trend established by the atomic 
radii. For ions of a given charge, the ionic radius decreases slowly as the atomic 

number increases. The radii of the doubly charged ions are all somewhat 

smaller than that of Ca++, and thus we should expect to find the oxides of the 
transition elements similar to, but perhaps less basic and less soluble than CaO. 

This is found to be true experimentally. In addition the magnitudes of the ionic 
radii suggest that the hydration energies of the +2 ions of the transition elements 

should be similar to but greater than that of Ca++ (395 kcal). Examination of 

the hydration energies in Table 16.1 confirms this expectation. 
The radii of the +3 ions of the transition elements are slightly larger than 

that of Ga'1(0.60 A). Consequently we should expect the hydration energies 

of the +3 transition-metal ions to be similar in magnitude to that of Ga+3 
(1124 kcal). Table 16.1 shows that this expectation is realized. Similarly we 

might expect the -(-3 oxides of the transition metals to be similar to but slightly 
less acidic than Ga203. We shall see that this is in fact true. 

Examination of the standard electrode potentials given in Table 16.1 shows 

that all metals of the first transition series, with the exception of copper, should 
be oxidized by l-M H+. While these transition metals are good reducing 

agents, they are not as strong as the metals of groups IIA and IIIA. If we 
recall from Section 14.1 how the enthalpies of vaporization, ionization, and 

hydration influence the performance of metals as reducing agents, we can 

understand why the transition metals are not as good reductants as the alkaline- 
earth metals are. The enthalpies of vaporization of all the transition metals are 

quite large, and it is this relatively great stability of the metallic lattices that 
makes the transition elements poorer reductants than magnesium or aluminum. 

The reason that copper is a particularly poor reductant can be found by examin¬ 
ing the data in Table 16.1. The second ionization energy of copper is quite a 

bit larger than the corresponding quantity for the other transition elements, 

and this factor makes the aqueous Cu++ ion relatively less stable and copper 
metal a poorer reductant than the other transition metals. 

Although the electrode potentials indicate that the metals of the first transi¬ 
tion series are relatively good reductants under equilibrium conditions, the 

actual rate at which the metals react with oxidizing agents like hydrogen ion is 
sometimes immeasurably small. Several of the metals are protected from 

chemical attack by a thin impervious layer of inert oxide. Chromium provides 

the best example of this, for despite its electrode potential, it can be used as a 
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protective nonoxidizing metal, because it is coated with a nonreactive oxide, 

Cr203. Thus while the transition metals can behave as active reductants under 
the proper circumstances, in other situations they may appear to be essentially 
inert because of reaction rate effects. 

16.2 THE SCANDIUM FAMILY 

This group includes scandium, yttrium, lanthanum, and the lanthanides, the 
fourteen elements that follow lanthanum in the periodic table. Although 

scandium is not a particularly rare element, rather little is known about its 
chemistry. In a number of respects scandium resembles aluminum. The metal 

reacts vigorously with water to liberate hydrogen as does aluminum, when it is 
freed of its oxide coating. The oxide Sc203 is insoluble in water as is A1203, 

but because of the larger size of Sc43, Sc203 is basic rather than amphoteric 
like A1203. Like aluminum, scandium forms stable compounds only in the 
-f 3 oxidation state. 

Yttrium is very similar to scandium. It is an active metal, as is shown by 

Y+3 + 3e“ = Y, 8° = -2.37 volts. 

The oxide of yttrium, Y203, is a white powder, insoluble in water but soluble 

in acids. In its compounds, yttrium displays the +3 oxidat ion state exclusively. 

Lanthanum also displays only the +3 oxidation state and has an insoluble 
basic oxide and a negative standard reduction potential: 

La+3 -T 3e- = La, 8° = —2.52 volts. 

The fourteen elements that follow lanthanum also display the -f3 oxidation 

state and in this respect resemble the members of group IIIB. These lanthanide 
elements are listed in Table 1G.2, together with their oxidation states and elec¬ 

tron configurations. The configurations and the occurrence of oxidation states 
other than +3 for some of the elements suggest that there is some extra stability 

associated with a half-filled or completely filled set of 4/-orbitals. 
The values of the standard reduction potentials for the -f3 ions of the lan¬ 

thanides, given in Table 1G.2, demonstrate the remarkable similarity of the 

chemistry of these elements. There is a smooth but rather slight trend toward 
less negative reduction potentials as the atomic numbers increase. This trend 
is parallel to the lanthanide contraction, the decrease in ionic radii in this series 

that we discussed in Section 13.2. Because of the similarity between the lan¬ 
thanides, they are difficult to separate, and many of the early investigations of 

their chemistry were made on mixtures of the elements. Particularly pure 
preparations of the lanthanide elements were made in the 1940’s with the aid 

of ion-exchange techniques, and now the properties of the individual pure 

elements and their compounds are well known. 
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Table 16.2 Some properties of the lanthanide elements 

Name Symbol 
Configurations 

6°, 
M+3 + 3e~ = M M M++ M+3 M+4 

Lanthanum La 5d6s2 - [Xe] - -2.52 

Cerium Ce 4f26s2 - 4 f [Xe] -2.48 

Praseodymium Pr 4f36s2 - Af2 Af -2.47 

Neodymium Nd 4f46s2 4 f 4 f3 Af2 -2.44 

Promethium Pm 4f56s2 - Af - -2.42 

Samarium Sm 4f66s2 4 f6 4f5 - -2.41 

Europium Eu 4f76s2 4f7 4 f - -2.41 
Gadolinium Gd 4P5d6s2 - Af - -2.40 

Terbium Tb Af6s2 - Af8 Af7 -2.39 
Dysprosium Dy 4f106s2 - Af9 Af8 -2.35 

Holmium Ho 4fn6s2 - 4f10 - -2.32 

Erbium Er 4f126s2 - 4fu - -2.30 

Thulium Tm 4f136s2 4f13 4f12 - -2.28 

Ytterbium Yb 4f146s2 4f14 4f13 - -2.27 

Lutetium Lu 4f145d6s2 - 4f14 - -2.25 

16.3 THE TITANIUM FAMILY 

The atoms of titanium, zirconium, and hafnium have valence-electron con¬ 

figurations of the type (n — 1 )d2ns2. Of the possible oxidation states, +2 and 

+3 are observed only in the chemistry of titanium and zirconium, while the 

+4 state is common to all the elements. The tendency of the lower oxidation 

states to be less important for the heavier elements in a group is typical of the 

transition-metal families. 
The data in Table 16.3 show that all of the group IVB metals have high 

melting and boiling temperatures and large enthalpies of vaporization. Despite 

the stabilities of the metallic crystals themselves, the compounds of the elements 
are formed with the evolution of considerable energy. On the basis of thermo¬ 

dynamic properties alone, each of the metals would be considered to be very 

reactive. However, all three metals are protected from chemical attack by a 

thin transparent layer of oxide M02 and therefore are quite resistant to chemical 

attack at ordinary temperatures. 
It is difficult to prepare the pure titanium, zirconium, and hafnium metals, 

for each element reacts readily with oxygen, nitrogen, and carbon at elevated 

temperatures. The commercial preparation of titanium involves conversion of 

the oxide Ti02 to the tetrachloride. The latter is a volatile compound that can 

be purified by distillation and then reduced with magnesium metal. Thus the 

process can be represented by 

Ti02 Cl2,C-> TiCl4 Mg > Ti. 
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Table 16.3 Properties of the group IVB elements 

Atomic number 
Configuration 

Atomic radius, A 
Melting point, °K 
Boiling point, °K 
AHj- (atom), kcal 
Ionization energy, kcal 
Ionic radius, M+4, A 
Ah” (M02), kcal 

AH” (MF4), kcal 

AH” (MCU), kcal 

Ti Zr Hf 

22 40 72 
3d24s2 4d25s2 (4f14) 

5d26s2 
1.32 1.45 1.44 

1950 2125 2495 
3550 4700 5500 
112.7 146 168 

158 158 160 
0.68 0.74 0.75 

-218 -258 -271 

-370 -445 - 

-179 -230 - 

In the laboratory, small amounts of the very pure metals of group IVB can be 
prepared by the thermal decomposition of the volatile tetraiodides MI4 on a 

very hot wire. The reaction for titanium is simply 

Til4(g) -> Ti(s) + 212(g). 

There is no particularly strong resemblance between the metals of groups 

IVA and IVB. The important oxidation state of tin and particularly lead is 

+2, not +4, while the reverse is true in the titanium family. The tetrahalides 
of both groups are, however, somewhat similar. Like SnCl4, TiCl4, ZrCl4, and 

HfCl4 are relatively volatile compounds that exist as discrete covalently bonded 

molecules. 

Titanium 

Of the three known oxidation states of titanium, +2, +3, and +4, the +4 state 

is most common and most stable under many conditions. Compounds of 

titanium in the +2 oxidation state can be prepared by reduction of the +4 state: 

Ti02 + Ti = 2TiO, 

TiCl4 + Ti = 2TiCl2. 

The oxide TiO somewhat resembles the oxides of group IIA metals. It is basic, 

ionic, and has a rock-salt crystal lattice. Like many of the other transition- 

metal oxides, however, it is a nonstoichionietric compound and has a composi¬ 

tion close to TiOo.75. Titanium in the +2 state is an extremely good reducing 
agent, and both TiO and TiCl2 will reduce water to hydrogen. Because Ti++ 
decomposes water, there is essentially no aqueous solution chemistry of this ion. 
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The titanous ion, Ti + '\ is a violet species which, although stable in aqueous 

solution, is a strong reducing agent. It reacts rapidly and quantitatively with 

oxidizing agents like Fe+3 and MnOT and with the oxygen of the air. The 

oxide Ti203 can be prepared by reduction of Ti02 with hydrogen at high 

temperature: 

2Ti02 T H2 = Ti203 + H20. 

Like many of the other +3 oxides of the transition metals, Ti203 is stable with 

respect to the elements, basic, and quite insoluble in water. 

The best known of the compounds of titanium in the -f 4 oxidation state is 

Ti02. This oxide is a white insoluble powder that is used as a paint pigment. 

Because Ti02 has a large refractive index, crystals of the oxide have a greater 

brilliance than diamonds, but are rather soft and are therefore relatively un¬ 

suited for use in jewelry. Although Ti02 is very insoluble in pure water, it does 

dissolve slightly in strong base to form the titanate ion, whose formula is prob¬ 

ably [Ti02(0H)2]=. When treated with strong acids, Ti02 dissolves to form 

species such as Ti(OH)^ and Ti(OH)J+. The structures of these ions are not 

known, and the latter is sometimes represented by the formula TiO++. In any 

case, it is clear that Ti02 has both acidic and basic properties, and that the 

simple ion Ti+4 does not exist in aqueous solutions. 

All of the tetrahalides of titanium have been prepared. A comparison of 

titanium tetrachloride, TiCl4, with TiCl2 and TiCl3 is interesting because it 

illustrates a useful correlation between oxidation number and physical prop¬ 

erties. The compounds TiCl2 and TiCl3 are ionic crystals whose vapor pressure 

reaches 1 atm only at temperatures near 1000°C. On the other hand, TiCl4 is a 

liquid at room temperature and boils at 137°C. To explain the marked increase 

in the volatility of the halides as the oxidation number of titanium increases 

from three to four, it has been suggested that the bonds in TiCl4 are of a covalent 

nature. Certainly it is difficult to imagine that four chloride ions could sur¬ 

round Ti+4 without being so distorted as to share their electrons with the 

central titanium atom. 

When Ti, TiF4, or Ti02 are treated with aqueous HF, the very stable anion 

TiFF is formed. The anion TiClF is less stable: while it can be formed by 

reaction of TiCl4 with KC1, it is rather easily hydrolyzed in aqueous solution 

to species which contain oxygen. 

Zirconium and Hafnium 

These two elements are so similar chemically and physically that for some time 

a mixture of them was thought to be a single element. As Table 1G.3 shows, the 

atomic and ionic radii of zirconium and hafnium are virtually identical. The 

expected larger size of the heavier element is not observed, because the lan¬ 

thanide elements precede hafnium in the periodic table. The contraction in size 

692 THE TRANSITION METALS 16.3 



associated with these elements makes the atoms of the elements that follow 
them smaller than would otherwise be expected. 

The best known compounds of zirconium and hafnium are the oxides Zr()2 

and IIf()2. Zirconium dioxide has an extremely high melting point (3100°K) 

and once it has been heated to a high temperature, it is not attacked by acids 
or bases, and it has very favorable mechanical properties. Consequently it is 

used as a refractory material in furnace linings and in the manufacture of 

crucibles. The oxides of zirconium and hafnium are more basic than Ti02, and 
thus are less soluble in alkalis and more soluble in acids. This change to a more 

basic nature is to be expected from the increased size of Zr+4 and Hf+4 com¬ 
pared to Ti *4. Because of this increase in size, the solutions of Zr(IV) and 

Ilf(IV) are less hydrolyzed than the acid solutions of Ti(IV), and consequently 

the aqueous solution chemistry of the heavier elements is more extensive than 
that of titanium (IV). 

This chemistry is quite complicated, however. Acidic solutions of Zr(IV) 

contain polymeric cations such as ZrTOH)^8 and Zr4(OII)j| K. In concentrated 

HF, the situation is simpler, and the ions ZrFfj and HfFd are the principal 
species in solution. 

Table 16.4 Properties of the group VB elements 

Atomic number 
Configuration 
Ionization energy, kcal 
Atomic radius, A 
Melting point, "K 
Boiling point, °K 
AH/ (atom), kcal 

AH" (M20r,), kcal 

AH" (M2O:0, kcal 

V Nb Ta 

23 41 73 
3d:,4s2 4d45s1 5d:i6s2 

155 159 182 
1.22 1.34 1.34 

2190 2770 3270 
3650 4900 5600 

123 173 186 

-373 -463 -500 

-290 _ - 

16.4 THE VANADIUM FAMILY 

The three elements of group VB are vanadium, niobium, and tantalum. As 

Table 10.4 shows, these metals have high melting and boiling points and large 
enthalpies of vaporization. The gross features of their chemistry resemble in a 

general way those of the group IVB metals. All elements of the vanadium 
family show several oxidation states: +2, -j-3, +4, and +0. All of these states 

are important in the chemistry of vanadium, but only the TO state and to a 
lesser extent the T3 state are important for niobium and tantalum. Like the 

metals of group IVB, the metals of the vanadium family react readily with 
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oxygen, carbon, and nitrogen at high temperatures, and thus are difficult to 

prepare by conventional high-temperature reduction processes. At lower tem¬ 
peratures an oxide coating protects the metals from chemical attack, even 

though they are strong reducing agents from the thermodynamic standpoint. 

Another feature which is held in common with the metals of the titanium family 

is that the two heavier elements of the group, niobium and tantalum, have 

virtually the same atomic radii. Consequently niobium and tantalum, like 

zirconium and hafnium, resemble each other chemically and physically. 

Vanadium 

The chief commercial use of vanadium is as an alloying agent in steels. Its 

general effect is to increase the ductility and tensile strength of the alloy. 

Fortunately this application does not require very pure vanadium, which, as 

we have noted, is difficult to prepare in quantity because of its high-temperature 
reactivity with carbon, nitrogen, and oxygen. Small amounts of very pure 

vanadium can be prepared by the decomposition of VI4 on a hot wire. 

The most important compound of vanadium is the pentoxide, V2O5. This 

red solid can be prepared by the direct combination of the elements at an 

elevated temperature, and it is used commercially as a catalyst in the contact 

process for preparation of sulfuric acid. Vanadium pentoxide is amphoteric. 

It dissolves in acids to form the pervanadyl ion, VO2". 

V205 + 2H+(aq) = 2VO^(aq) + H20. 

There is a tendency for the vanadium species to polymerize in solutions of 

moderate acidity according to the reaction 

lOVO^ + 8H20 = H2V10OF84 + 14H+. 

When treated with strong base, V2Os dissolves as VO^3, which also has a 

tendency to polymerize: 

2VOT3 + 3H+ = HV2OF3 + H20, 

HV20r3 + VOT3 + 3H+ = V30g3 + 2H20. 

Thus the aqueous solution chemistry of vanadium (V) involves some rather 

complex species. 
If an acidic solution of vanadium (V) is treated with a reducing agent like 

zinc metal or ferrous ion, a blue solution of vanadium (IV) or VO++, the vanadyl 

ion, results. The vanadyl ion occurs as a discrete unit in such salts as VOSO4 

and VOCl2. Like titanium (IV), vanadium (IV) is amphoteric. If a solution of 
VO++ is treated with alkali, V02 precipitates, but further treatment of this 

oxide with strong base dissolves it as the ion VO^4 and its polymerization 

products. Another point of resemblance between titanium (IV) and vanadium 
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(IV) is that VC14, like TiCl4, is a low-boiling liquid (boiling point 154°C). This 

again illustrates the tendency of halides to exist as discrete small molecules 

when the oxidation number of the metal is high or the size of the metallic atom 
is small. 

An aqueous solution of vanadium (III), V+3, can be prepared by reduction 

of VO + + with zinc. As the reduction proceeds, the color of the solution changes 
from the bright blue of the vanadyl ion to the green color of V+3. The +3 

state of vanadium is entirely basic in nature, and treatment of a solution of 

V+3 with alkali precipitates the insoluble V2O3. The salts of V+3 are all ionic 
compounds. 

Exhaustive reduction of aqueous solutions of any of the higher oxidation 

states of vanadium yields a violet solution of V++. This ion is a rapid and 

moderately strong reducing agent. The oxide VO is basic and insoluble and 

has a nonstoichiometric composition. In each of these respects, vanadium (II) 
resembles titanium (II). 

The following reduction-potential diagram provides a concise summary of 

the chemistry of vanadium in acidic aqueous solution: 

YQ + 10 YQ++ °-36 Y + 3 —0.25 Y++ —1-2 Y 

We can see from the reduction potentials that vanadium (V) and (IV) are 

easily reduced, that V++ is a moderately good reductant, and that vanadium 

metal is a strong reducing agent. 
The only known halide of vanadium (IV) is VF 5, a viscous liquid which boils 

at 48°C. Both VF4 and VC14 are known and are volatile substances which can 

be rather easily reduced to lower halides. VC14 resembles TiCl4 in its general 

physical properties and in its very rapid reaction with water to form the oxide 

and oxychloride V0C12. All the vanadium trihalides are known and are intensely 

colored solids which can be decomposed at moderate temperatures (300-500°C) 
to the dihalides. The latter are ionic solids of considerable stability. 

Niobium and Tantalum 

Niobium and tantalum are frequently found together in nature, have similar 

chemical and physical properties, and are difficult to separate and prepare in a 

very pure state. There is considerable interest in niobium metal, for it loses 
all electrical resistance and becomes a superconductor at low temperatures. 

Tantalum is a very ductile metal, is resistant to chemical attack, and has good 

mechanical properties at high temperatures. It forms a carbide, TaC, that is 
extremely hard and which is used in the fabrication of cutting tools. 

The most important oxidation state of niobium and tantalum is +5. The 
oxides Nb205 and Ta2Os can be dissolved by fusing them with hydroxides, 

but they are not attacked by hydrogen ion. Like the anions of vanadium (V), 

the anions of niobium (V) and tantalum (V) are polymeric. However, the only 

16.4 | THE VANADIUM FAMILY 695 



species that exist in aqueous solutions have the formula M60i98, where M is Nb 

or Ta. In these ions, the six metal atoms occupy the corners of a regular octa¬ 

hedron, and are themselves surrounded by octahedra of oxygen atoms which are 

shared in manner consistent with the stoichiometry of the anion. This tendency 

to polymerize is also found in the halides: NbCls and TaCl5 are dimeric molecules 

in the solid, with two chlorine atoms shared by forming bridge bonds between 

metal atoms. In the lower halides such as NbCl3 and NbCl2, the basic structural 
unit is the (M6X12)+2,+3 cation combined with halide anions. The M6X12 

unit consists of an octahedron of metal atoms with a bridging halogen atom 

along each edge of the octahedron. Because this unit may bear either a +2 

or +3 charge, both species can appear in the same crystal lattice, and the niobium 

and tantalum halides are typically nonstoichiometric compounds. 

16.5 THE CHROMIUM FAMILY 

The metals of group VIB are chromium, molybdenum, and tungsten. As 

Table 1G.5 shows, they are high-melting, high-boiling elements and have large 
enthalpies of vaporization. Tungsten, in fact, is the least volatile of all the 

elements. All the metals are hard and corrosion resistant and have a variety 

of technical uses, both as pure metals and alloying agents. Again the two 

heavier members of the family resemble each other markedly and differ some¬ 
what from the first element in the group. Chromium forms the ions Cr++, 

Cr+3, and CrOT, and each oxidation state has an extensive solution chemistry. 

Table 16.5 Properties of the group VIB elements 

Atomic number 
Configuration 
Ionization energy, kcal 
Atomic radius, A 
Melting point, °K 
Boiling point, °K 
AHf (atom), kcal 

AH°f (M03), kcal 

AH°f (MCI2), kcal 

AH°f (MCI6), kcal 

Cr Mo W 

24 42 74 
3d5As1 4ds5s1 5d46s2 

156 164 184 
1.17 1.29 1.30 

2176 2890 3650 
2900 4900 5900 

95 157 200 

-145 -180 -201 

-94.6 - 44 - 38 
- - 90 -98.7 

On the other hand, the solution chemistry of molybdenum and tungsten is largely 

confined to the +6 state, and in contrast to chromium (VI), molybdenum (VI) 
and tungsten (VI) show no oxidizing properties. 
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Chromium 

The most stable oxidation state in most circumstances is chromium (III). 
Chromium (II) compounds are reducing agents, and chromium (VI) com¬ 

pounds are strong oxidizing agents. The acid-base properties associated with 

these oxidation states vary in the expected manner, with the acidity increasing 

as the oxidation number of chromium increases. The oxide CrO and the hy¬ 
droxide Cr(OH)2 are basic, Cr203 is amphoteric, and Cr03 is acidic. 

The preparation of chromium from its ore illustrates some important features 

of its chemistry. The principal chromium ore is the mixed oxide chromite, 

FeO • Cr203. Direct reduction of chromite with carbon produces an iron- 
chromium mixture that is used in the manufacture of steel, 

FeO ■ Cr203 + 4C = 2Cr + Fe + 4CO. 

To obtain pure chromium, the chromite ore is first oxidized with air under 
basic conditions at high temperature: 

FeO • Cr203 K2Cr04 + Fe203. 

Potassium chromate, Iv2Cr04, is readily soluble in water, but Fe203 is not, 
so the iron and chromium can be separated. The chromate is reduced to Cr203 

with carbon: 

2K2Cr04 + 2C = K2C03 + K20 + CO + Cr203. 

Finally, Cr203 is reduced with aluminum in the thermite process: 

Cr203 -f- 2A1 = A1203 -f- 2Cr. 

From the thermodynamic standpoint, chromium metal is a good reducing 
agent, and in fact, when it is finely divided it reacts rapidly and completely 

with oxygen. In the massive state, however, chromium is protected by a thin 

transparent coat of Cr203, and is extremely resistant to corrosion. Conse¬ 
quently chromium is used as a protective and decorative coating for other 

metals, and when incorporated in alloys like the stainless steels, it endows them 

with corrosion resistance. 
Aqueous solutions of chromium (III) can be obtained by dissolving Cr203 

in acid or alkali: 

Cr203 + 6H+ = 2Cr+3(aq) + 3H20, 

Cr203 + 20H- + 3H20 = 2Cr(OH)7. 

It is well established that Cr+3 in aqueous solution consists of a central ion 

surrounded by six water molecules located at the apices of a regular octahedron. 
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This ion is hydrolyzed, or in other words, it is a weak acid: 

Cr(H20)^3 = [Cr(H20)6(OH)]+2 + H+, K= 1.3 X 10"4. 

It is interesting to note the relation of Cr+3 to the other M+3 ions of the 3d 

transition series (Ti+3, V+3, Mn+3, Fe+3, and Co+3). The first two of these 

ions are reducing agents, while the last three are oxidizing agents. Chromium 
(III) is intermediate in behavior, since it is neither a strong reductant nor a 

strong oxidant. 
Perhaps the outstanding characteristic of chromium (III) is its tendency 

to form stable complex ions with an enormous number of electron donors. The 

other di- and tripositive ions of the transition metals also display this property, 

but the complexes of chromium (III) are particularly inert once formed, and 

therefore have been studied extensively. Examples include the hexaquo ion 

Cr(H20)'63, the hexammine complex Cr(NH3)6~3, and anion complexes such as 

CrFiT3. The nature of these complexes, as well as those of the other transition 

elements, will be considered in some detail in Section 16.11. 
Alkaline solutions of chromium (III) are easily oxidized to chromium (VI), 

as the following standard potential shows: 

CrOr + 4H20 + 3e" = Cr(OH)3 + 50H“ 8° = -0.13 volt. 

Solutions of the chromate ion, CrOF, are bright yellow. When these solutions 

are acidified, the orange dichromate ion, Cr2OF, is formed: 

2CrOF + 2H+ = Cr2Or + H20, K = 4.2 X 1014. 

The dichromate ion is a very powerful oxidizing agent, as shown by 

Cr2OF + 14H+ + 6e_ = 2Cr+3 + 7H20, 8° = 1.33 volts. 

Comparison of this standard potential with that of 

02 + 4H+ + 4e" = 2H20, 8° = 1.23 volts, 

shows that solutions of the dichromate ion are intrinsically unstable with 

respect to decomposition to oxygen and Cr+3. This reaction is slow, however, 

and solutions of dichromate ion can be kept for long periods without significant 

decomposition. 
Addition of chromate salts to concentrated sulfuric acid produces a solution 

of the red oxide Cr03. The reaction can be written 

Na2Cr207 + 3H2S04 = 2Na+ + H30+ 4- 3HSOF + 2Cr03. 
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These solutions have extremely powerful oxidizing properties, and are used to 
clean chemical glassware of grease. 

The aqueous chromous ion can be obtained by reducing solutions of Cr+3 

with zinc. The potential for the reaction 

Cr+3 + e~ = Cr++, £° = —0.41 volt, 

shows that chromous ion is one of the strongest reducing agents that can exist 
in aqueous solution. Solutions of chromous ion react rapidly and quantitatively 

with oxygen, and are sometimes used to remove oxygen from a mixture of gases. 

Molybdenum and Tungsten 

The ores of these metals can be converted to M0O3 and W03, and reduction of 
these oxides with hydrogen yields the pure metals as powders. Because of the 

extremely high melting points of these metals, the fabrication of the powders 

into useful objects is very difficult. Both metals are used in situations where 
high temperatures may develop: x-ray tubes, electron tubes, electric furnaces, 

and electric light filaments are some examples. When incorporated into steels, 
molybdenum acts as a toughening agent, and tungsten extends the temperature 

range in which the steel remains hard. 

Both molybdenum and tungsten form halides in the T4, +5, and T6 oxida¬ 
tion states, but only in the -j-6 state do these elements have any significant 

solution chemistry. The oxide Mo03 is acidic and dissolves in base to form a 

very complicated series of polymeric oxyanions. Such ions as Mo2OV and 
Mo70^6 occur, as well as many others. The behavior of tungsten (VI) in 

aqueous solution is similar. 
In the lower oxidation states, the halides have structures in which the fun¬ 

damental structural unit is a cluster of metal and halogen atoms. Thus in 

MoC12, the structural unit is MoeClg"4, which consists of eight Mo atoms at the 

corners of a regular octahedron, with one Cl atom on each triangular face of the 

octahedron. In WC13, the structural unit is the W6Cli"26 ion, an octahedron of 

tungsten atoms, with bridging chlorine atoms along each edge of the octahedron. 

Thus, both with regard to formation of polymeric anions and halides which 

contain cluster cations built on metal octahedra, Mo and W resemble Nb and 

Ta rather clearly. 

16.6 THE MANGANESE FAMILY 

Of the elements manganese, technetium, and rhenium, manganese is by far the 
most abundant and important. Technetium does not occur in nature, for all its 

isotopes are radioactive and have fairly short half-lives. Rhenium is very rare, 
so rare that it was not discovered until 1925. It has a few applications in high- 
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Table 16.6 Properties of the group VIIB elements 

Atomic number 
Configuration 
Ionization energy, kcal 
Atomic radius, A 
Melting point, °K 
Boiling point, °K 
AH°f (atom), kcal 

AH°f (M02), kcal 

Mn Tc Re 

25 43 75 
3cP4s2 4d65s1 5d56s2 

171 168 182 

1.17 - 1.28 

1517 - 3453 
2340 - 5800 

67.2 - 187 

-124.2 - -100 

temperature technology and catalysis. Some properties of these elements are 

given in Table 16.6. 

Manganese 

This element is a high-melting, high-boiling metal of considerable chemical 

reactivity. The potential for the reaction 

Mn++ + 2e~ = Mn, £° = —1.18 volt, 

shows that manganese should dissolve readily in dilute acids, and indeed it does. 

In contrast to previous members of the first transition series, the metal is not 

protected by an oxide coating. Manganese occurs naturally as the oxide Mn02. 

Small amounts of pure manganese can be made by thermal decomposition of 

Mn02 to a mixture of the oxides MnO and Mn2C>3, followed by reduction with 

aluminum: 

3Mn02 = MnO • Mn203 -(- 202, 

3MnO • Mn203 + 8A1 = 4A1203 + 9Mn. 

The principal use of manganese is as an additive in steels. F or this purpose the 

impure manganese that results when the ores are reduced directly with carbon 

is satisfactory. Small amounts of manganese in steels react with the oxygen 

and sulfur and remove them in the slag as Mn02 and MnS. Addition of larger 

amounts of manganese toughens and hardens the steel. 

Compounds of manganese in the +2, —1-3, +4, +5, +6, and +7 oxidation 

states are known. Dissolution of the metal in dilute acid produces Mn++, an 

ion with a faint pink color. In contrast with the aqueous doubly charged ions 

of titanium, vanadium, and chromium, Mn++ has no reducing properties. In 

fact, the potential of the reaction 

Mn+3 + e- = Mn++, £° = 1.51 volts, 

shows that it is very difficult to oxidize Mn++ to Mn+3 in aqueous solution. 
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When solutions of Mn 1 + are treated with alkali, a gelatinous precipitate of 

Mn(OII)2 forms. This hydroxide and the oxide MnO are entirely basic. 

It is not possible to obtain significant quantities of Mn+3 in aqueous solution, 

for as its reduction potential of 1.51 volts shows, it is an oxidizing agent powerful 
enough to evolve oxygen from water. Moreover, combination of the half¬ 
reactions 

Mn+3 + c” = Mn++, 8° = 1.51 volts, 

Mn02 + 4H+ + e“ = Mn+3 + H20, 8° = 0.95 volt, 

to give 

2Mn+3 + 2H20 - Mn++ + Mn02 + 4H+ A8° = 0.56 volt, 

shows that Mn-1 3 is unstable with respect to disproportionation to Mn++ and 

Mn02. Consequently there is essentially no aqueous solution chemistry of 

manganese (III). The ion Mn+3 is stable in the solid state, however, and can 
be obtained by oxidation of Mn(OH)2 under basic conditions: 

2Mn(OH)2 + i02 = Mn203 + 2H20. 

The solid Mn203 is a completely basic oxide. 

The chemistry of manganese (IV) is not extensive. Virtually the only stable 
compound of manganese in this state is Mn02, a dark brown powder which is a 
nonstoichiometric compound that is always noticeably deficient in oxygen. In 

acidic media Mn02 is a very powerful oxidizing agent: 

MnO2 + 4H+ + 2e— = Mn++ + 2H20, 8° = 1.23 volts. 

Quite a different situation obtains in basic solution: 

Mn02 + 2H20 4- 2e“ = Mn(OH)2 + 20II-, 8° = —0.50 volt. 

These potentials illustrate the important generalization that oxyanions and 
oxides are most powerful oxidizing agents when in acid solution, and correspond¬ 

ingly, that it is easiest to produce these oxygenated species of high oxidation 
state in basic solution. 

When Mn02 is heated with KN03 and KOII, solid K2Mn04, or potassium 

manganate, is produced. This salt, in which manganese is the +6 oxidation 
state, is bright green, soluble in water, and is stable only in basic solutions. 

The half-reactions 

MnOr + 4H+ + 2e“ = Mn02 + 2H20, 8° = 2.26 volts, 

MnO“ = MnO^ + e—, 8° = 0.56 volt, 

show that manganate ion is unstable with respect to disproportionation in acid 

16.6 | THE MANGANESE FAMILY 701 



solution: 

3Mn0r + 4H+ = 2Mn07 + Mn02 + 2H20, 8° = 1.70 volts. 

As a consequence of this extreme instability in acidic solution, there is very 

little aqueous solution chemistry of manganese (VI). 
Perhaps the best known compound of manganese is potassium permanganate, 

KMn04. This salt has a very intense purple color and is a very powerful 

oxidizing agent: 

Mn(V + 8H+ + 5e_ = Mn++ + 4H20, 8° = 1.51 volts. 

Even though permanganate is capable of oxidizing water to oxygen, the reaction 

is rather slow, and aqueous solutions of permanganate are important reagents 

in analytical chemistry. By addition of potassium permanganate to concen¬ 

trated sulfuric acid, it is possible to produce the extremely unstable liquid 
Mn207. As we might have anticipated from the trend established among the 

other transition elements, compounds of manganese (VII) are entirely acidic. 

Technetium and Rhenium 

These two elements resemble each other and differ in a number of respects from 
manganese. The +2 oxidation state, important for manganese, is unknown in 

the chemistry of technetium and rhenium. The most important oxidation states 

of technetium are -f4 and -(-7, while the +3, +5, and +6 states are difficult to 

prepare. For rhenium, the +3, -f4, and -f7 states are best known, while +5 

and +6 states are difficult to prepare. 
When technetium and rhenium arc heated in air, the heptoxides Tc2()7 and 

Re207 are obtained. Both these compounds are low-melting solids (119 and 

220°C, respectively). The oxides dissolve readily in water to give acidic solu¬ 

tions of TcO^ and ReO^. These solutions possess only moderate oxidizing 

strength, in contrast to solutions of MnO^”. The lower oxides of technetium 
and rhenium can be made by heating the metals with the heptoxides, as for 

example in 
Re + 3Re207 = 7Re03. 

For both technetium and rhenium, the oxides MO3 and M02 are known. 
In contrast to manganese, the heavier elements of group VIIB form a number 

of relatively volatile halides. The known halides of technetium are TcC14, 

TcC16, and TcF6. Rhenium forms a more extensive series of halides. The 
compounds ReX4 are known; here X stands for F, Cl, Br, and I. Only fluorine, 

chlorine, and bromine form compounds of the formula R0X5. The only known 

halides of rhenium (VI) are ReFg and ReClo, while ReF7 is the only halide of 
rhenium (VII). Once again, the tendency for the heavy transition metals to 

form clusters in the halides of lower oxidation number is displayed. ReCl3 

actually consists of Re3Cl9 units, with the three Re atoms forming an equilateral 
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triangle. Along each edge, and in the plane of the triangle, there is a Cl atom 

forming bridge bonds between Re atoms. In addition, two more Cl atoms are 

bonded to each Re, one above and one below the plane of the triangle. 

16.7 IRON, COBALT, AND NICKEL 

At this point we will temporarily abandon our practice of discussing the vertical 
groups of the transition metals, and instead treat the horizontal triad iron, 

cobalt, and nickel together. The reason for this is that the horizontal resem¬ 
blances among these members of the first transition series are more noticeable 

than are their similarities to the heavier members of their vertical groups. 
These latter six elements, ruthenium, rhodium, and palladium in the second 

transition series, and osmium, iridium, and platinum in the third series, bear 

some strong resemblances to each other and will be treated as a group in the 
next section. 

Table 16.7 Properties of the iron triad elements 

Fe Co Ni 

Atomic number 26 27 28 
Configuration 3d64s2 3d~4s2 3d84s2 
Ionization energy, kcal 182 181 176 
Atomic radius, A 1.16 1.16 1.15 
Melting point, °K 1812 1768 1728 
Boiling point, °K 3150 3150 3160 
AH°f (atom), kcal 99.5 102 103 

AH°f (MO), kcal -63.8 -57.2 -58.4 

Iron, cobalt, and nickel are hard, high-melting, high-boiling metals of mod¬ 

erate reactivity. Table 16.7 summarizes some of their properties. They are all 
ferromagnetic to some degree. Their chemistry is principally confined to the 

lower oxidation states -f2 and +3. Some higher oxidation states are known, but 
in accordance with the trend established by Ti, V, Cr, and Mn, these higher 

oxidation states are very unstable and have powerful oxidizing properties. 

Iron 

Iron constitutes 4.7% of the earth’s crust and is second in abundance only to 

aluminum among the metals. This abundance, and its desirable mechanical 
properties in the impure condition, make iron an element of foremost techno¬ 

logical importance. As is well known, metallic iron is produced by the reduction 
of iron oxide in a blast furnace. Some of the reactions that occur in the furnace 

reveal notable features of the chemistry of iron. One of the first changes that 

16.7 | IRON, COBALT, AND NICKEL 703 



the oxide Fe2C>3 undergoes occurs in the relatively cool regions (200°C) of the 

furnace: 

3FC2O3 -)- CO = 21*6304 -)- C02. 

The oxide of composition Fe304 also occurs naturally as magnetite, the mag¬ 

netic iron oxide. It can be regarded as a mixed oxide of iron (II) and iron (III): 

FeO • Fe203. At somewhat higher temperatures (350°C), further reduction of 

the iron oxide occurs: 

Fe304 + CO = 3FeO + C02. 

As the oxide drops further down into the blast furnace, it encounters higher 

temperatures and is finally reduced to the metal: 

FeO -f- CO = Fe + CO 2- 

The iron that is drawn from the blast furnace contains sulfur, phosphorus, 

and silicon impurities as well as 4% carbon, which is present as the carbide 

Fe3C. To produce high-quality steels in which the carbon content is, in general, 

less than 1.5%, the molten iron is treated with air or oxygen until most of the 

carbon is burned out, and the other impurities are separated as oxides in a slag. 

The desired alloying metals are added, and the steel poured into molds to cool. 

As pointed out in the summary of the steel manufacturing process, there are 

three important oxides of iron, FeO, Fe203, and Fe304. Each of these com¬ 

pounds has a marked tendency to have a nonstoichiometric composition, and 

each is rather readily oxidized or reduced into one of the other forms. We can 

rationalize these features in terms of the crystal structures of the solids. Imagine 

a cubic closest-packed lattice of oxide ions. If all the octahedral holes were 

filled with Fe++ ions, we would have a perfect rock-salt lattice, which is the 

structure of FeO. If a small number of the Fe++ ions are replaced by two-thirds 

as many Fe+3 ions, we would have an iron-deficient, but electrically neutral 

crystal. The actual composition of iron (II) oxide as usually prepared is Fe0.95O. 

Conversion of two-thirds of the Fe++ ions to Fe+3 would give a composition 

FeO • Fe203 or Fe304. In this mixed oxide, all Fe++ ions are in octahedral 

sites, but half of the Fe+3 ions are in octahedral sites and half are in tetrahedral 

sites. Finally, replacement of all the Fe++ ions by two-thirds as many Ie+,! ions 

gives the composition Feo.670 or Fe203. Thus each of the oxides can change 

its composition in the direction of one or two of the others without the occur¬ 

rence of a major structural change in the oxide lattice. 

As the potential for the reaction 

Fe++ + 2e~ = Fe, 8° = -0.44 volt, 

shows, iron is a moderately good reducing agent, and it does in fact dissolve 

slowly in dilute acids. When treated with concentrated nitric acid, however, a 

protective oxide film forms and the metal becomes “passive” and does not 
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dissolve. Although the anhydrous salts of iron (II) like FeCl2 are colorless, 
the hydrated salts and aqueous solutions of Fc”1'^ are pale green. In aqueous 
solution Fe++ can be oxidized by air to Fe+3, as the following potentials show: 

Fe+3 + e“ = Fe++, S° = 0.771 volt, 

2Fe++ + \02 + 2H+ = 2Fe+3 + H20, A8° = 0.46 volt. 

This oxidation of Fe++ is moderately rapid in neutral solution, but is somewhat 
slower in acidic solution. Because of air oxidation, solutions of Fe++ always 
contain some Fe+3 unless they have been freshly prepared and are acidic. 

When solutions of Fe++ are treated with base, Fe(OH)2 precipitates. Al¬ 
though this compound is white, it is darkened very rapidly by air oxidation. 
Although Fe(OH)2 dissolves readily in acids and appears therefore to be basic, 
it does show some amphoteric behavior. Prolonged treatment with hot concen¬ 
trated XaOH dissolves Fe(OH)2, and when the solution is cooled, Na4[Fe(OH)6] 
precipitates. Under most circumstances, however, Fe(OH)2 behaves like a 
basic hydroxide. 

Iron (III) exists in aqueous solution as the hydrated ion Fe+3. Because of 
its large charge and small size, Fe+3 hydrolyzes, or acts as an acid, as the 
following equilibrium constants show: 

[Fe(H20)6]+3 = [Fe(H20)5(0H)]++ + H+, K = 9 X 10"4, 

[Fe(H20)5(0H)]++ = [Fe(H20)4(0H)2]+ + H+, K = 5.5 X 10“4. 

The reddish-brown color of solutions of Fe+3 is attributed to the hydrolysis 
products, as the solutions can be almost decolorized by the addition of nitric 
acid. On the other hand, as the pH of a solution of Fe+3 is raised, the color 
deepens until hydrated Fe203 precipitates from solution. As might be expected 
from the extreme acidity of Fe+3 in aqueous solution, hydrated Fe203 dissolves 
somewhat in base as well as in acids and is therefore slightly amphoteric. 

Both Fe++ and Fe+3 form complexes with a large number of electron donors. 
The nature of some of these will be discussed in Section 16.11. At this point, 
however, a comparison of the reduction potentials 

Fe+3 + e~ = Fe++, 8° = 0.771 volt, 

Fe(CN)jf3 + e“ = Fe(CN)^4, 8° = 0.36 volt, 

provides a good example of how the relative stabilities of oxidation states can 
be affected by complex-ion formation. Aqueous ferric ion is a good oxidizing 
agent, but the ferricyanide ion, Fe(CN)jf3, is much less powerful. Apparently, 
formation of the complex ion stabilizes Fe(III) more than it does Fe(II). 

While virtually all the solution chemistry of iron is confined to the -j-2 and 
+3 oxidation states, it is possible to prepare a compound of iron (VI). Treat¬ 
ment of Fe203 with strong base and chlorine produces a solution of the ferrate 
ion, FeOip. Although stable in basic solution, in neutral or acidic media it 
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decomposes according to 

2FeOr + 10H+ = 2Fe+3 + §02 + 5H20. 

The ferrate ion is a powerful oxidizing agent, even stronger than Mn04 . 

Cobalt 

This element occurs in nature as the sulfide C03S4 and arsenide CoAs2. Its ores 

also usually contain nickel and often iron and copper. Ihe recovery of cobalt 

involves roasting the ores to convert them to the oxide CoO, which is then 

reduced with carbon, aluminum, or hydrogen. The metal itself is hard, has a 

bluish-white lustre, and is moderately reactive. The potential for the reaction 

Co++ + 2e— = Co, 8° = —0.28 volt, 

shows that cobalt is a less active reducing agent than iron, but will nevertheless 

dissolve in dilute acids. Like iron, cobalt has two important oxidation states: 

+2 and +3. However, cobalt (III) is a much more powerful oxidant than 

iron (III). As the potential for the reaction 

Co+3 + e~ = Co++, 8° = 1.84 volts, 

shows, Co+3 can oxidize water to oxygen, and does so quite rapidly. Conse¬ 

quently there is essentially no aqueous solution chemistry for the free Co+3 ion. 

Complexes of cobalt (III) are important, however, and are considerably weaker 

oxidants than the aqueous Co43, as is shown by 

[Co(NH3)6]+3 + e“ = [Co(NH3)6]+2, 8° = 0.1 volt. 

Many other complex ions of cobalt (III) are known, and some of these will be 

discussed in Section 16.11. 

The hydroxide Co(OH)2 is insoluble, and somewhat amphoteric. It dis¬ 

solves readily in dilute acids, but very concentrated alkali is necessary to 

dissolve it as [Co(OH)4]=. Thus it behaves quite similarly to Fe(OH)2. The 

oxide CoO, like FeO, has the rock-salt structure with the Co44 ions occupying 

the tetrahedral sites in the cubic closest-packed oxide lattice. Treatment with 

oxygen at high temperatures converts CoO to Co304, another cubic close- 

packed lattice of oxide ions with Co+2 at tetrahedral sites and Co43 at octa¬ 

hedral sites. The simple oxide Co203, which would be analogous to le203 is not 

known, but the hydrate Co203 • H20 is known. Thus while there are some 

similarities between the Co-0 and Fe-0 systems, they are not completely 

analogous. 

Nickel 

Nickel continues the trend of decreasing stability of higher oxidation states 

established by the other transition elements. The only important oxidation 

706 THE TRANSITION METALS | 16.7 



state that occurs in aqueous solution is -f-2, and the -f3 and +4 states appear 
only in a few compounds. The electrode potential 

Ni++ + 2e“ - Ni, 8° = -0.25 volt, 

shows that from the thermodynamic standpoint, nickel is only slightly poorer 
as a reductant than cobalt is. In fact, nickel is quite corrosion resistant, for it 

is covered with a thin protective coating of oxide, and reacts only very slowly 

with oxidizing agents. It is particularly resistant to attack under alkaline con¬ 
ditions, and is often used to make crucibles or electrodes for use with basic media. 
Finally divided nickel can absorb large amounts of hydrogen gas, which enters 

the metallic lattice as atoms. As a result, porous nickel “sponge” is an excellent 

catalyst for the hydrogenation of organic compounds: 

h2 + c2h4 ™ c2h6. 

Monel, an alloy of nickel and copper, resists attack by fluorine, and is used to 
contain and handle this gas. 

In Nature, nickel is frequently found as the sulfide NiS. Roasting this 

compound in air produces the oxide NiO, which can be reduced with carbon to 

give metallic nickel. Very pure nickel can be made by the carbonyl process. 

Crude metallic nickel reacts readily with carbon monoxide at 50°C to give the 

volatile nickel tetracarbonyl, Ni(CO)4. The pure metal can be recovered merely 

by pyrolysing the carbonyl at approximately 200°C. 
In aqueous solution the hydrated Ni+2 is green, and the salts of Ni+2 are 

green or blue. Like iron (II) and Co (III), nickel (II) forms many complex ions. 
Like Fe(OH)2 and Co(OH)2, Ni(OH)2 is insoluble, but in contrast to the 

former substances, Ni(OH)2 shows no amphoteric properties. The oxide NiO, 

like FeO and CoO, has the rock-salt structure. 
When Ni(OH)2 is treated with alkali and a moderately strong oxidizing agent 

like bromine, a black solid whose composition is close to Ni203 • H20 is obtained. 

Strong oxidizing agents like Cl2 acting on Ni(OH)2 give a solid whose com¬ 
position approaches Ni02. Thus it is possible to prepare both the nickel (III) 

and (IV) oxides, although neither is pure. Both oxides are very strong oxidizing 

agents. In fact, Ni203 is used in the Edison cell, which employs the reaction 

Fe + Ni203 • H20 + 2H20 Fe(OH)2 + 2Ni(OH)2 
charge 

and delivers about 1.3 volts. 

16.8 THE PLATINUM METALS 

Ruthenium, rhodium, palladium, osmium, iridium, and platinum are the ele¬ 
ments of the Ad- and 5d-triads of group VIII, and are commonly known as the 

platinum metals. They are rather rare metals and have in common a general 
resistance to chemical attack. As Table 1G.8 shows, the platinum metals have 
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Table 16.8 Properties of the platinum metals 

Ru Rh Pd Os Ir Pt 

Atomic number 44 45 46 76 77 78 

Configuration 4d'5s1 4d85s‘ 4d10 5dr’6s'J 5 d'J 5d!'6s‘ 

Ionization energy, kcal 170 172 192 200 200 210 

Atomic radius, A 1.24 1.25 1.25 1.26 1.26 1.29 

Melting point, °K 2770 2250 1823 2970 2720 2043 

Boiling point, °K 4000 4000 3300 4500 4400 4100 

AH? (atom), kcal 144 133 91 165 155 135 

high melting and boiling temperatures and large enthalpies of vaporization. 

Apparently it is this great stability of the metallic lattice that is largely respon¬ 

sible for the inert nature of the metals. 
The platinum metals differ somewhat in physical appearance and mechanical 

properties. Ruthenium and osmium are gray brittle metals that are very hard. 

Rhodium and iridium are white in appearance, and rhodium is rather soft and 

ductile while iridium is hard and brittle. Palladium and platinum are white 
metals of considerable lustre and are softer and more malleable than the other 

metals of the group. In this latter respect palladium and platinum resemble 

silver and gold, their neighbors in the periodic table. 
Many of the generalizations that apply to the behavior of the other transition 

metals fail or are modified when applied to the platinum metals. rl he impor¬ 
tance of the higher oxidation states, so obvious for the other heavy transition 

elements, is considerably diminished among the platinum metals. Ruthenium 
and osmium, members of the iron family, do form the oxides R11O4 and O.SO4 

in which the oxidation number of the metal is +8. However, Table 10.9 shows 
that none of the other platinum metals displays an oxidation number higher 

than +4 in its oxide. In general, oxidation states of T4 and lower are most 

important in the chemistry of the platinum metals. 
Although the metals have in common a general inert nature, their response 

to the various oxidizing agents is rather different. Only osmium and ruthenium 

are readily attacked by oxygen and form volatile oxides. Only palladium will 

Table 16.9 Principal oxides and halides of the platinum metals 

Ru Rh Pd Os Ir Pt 

F RuF5 RhF.j PdF.j OsF.s, OsFo lrF3, IrFe PtF4> PtFfi 

Cl RuCI:j RhClu PdCI2 OsCI:{, OsCti I rCI 3 PtCI2, PtCI 3, 

Br RhBr:j PtBr2, PtBr3, 

1 Ptl2, Ptl3, Ptl 

M11 PdO 

Mm Rh203 lr203 

MIV Ru02 Rh02 Os02 1 rO 2 Pt02 
Mvin Ru04 OsO j 
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dissolve in nitric acid, while platinum, osmium, and palladium are attacked by 
aqua regia, a mixture of nitric and hydrochloric acids. Osmium and ruthenium 
react with alkaline oxidizing agents to give Na20s04 and Xa2Ru04, and 
similar treatment attacks platinum and palladium. Iridium combines rather 
readily with fluorine, but the other metals must be heated above 300°C before 
they react. Chlorine combines with all the metals at elevated temperatures, 
but ruthenium and palladium are particularly resistant and must be raised to a 
red heat before they react. In the use of platinum laboratory apparatus, it is 
important to remember that the: platinum metals react with the semimetallic 
elements, particularly sulfur, phosphorus, arsenic, antimony, and lead. 

The chemistry of the platinum metals is difficult to systematize, and in some 
respects is not well documented. Like the other heavy transition metals, these 
elements do not form simple monatomic cations. Moreover, only ruthenium 
and osmium form oxyanions. The oxides, halides, and sulfides are the only 
compounds that do not involve coordination or complexation of the metal atom. 
For a description of the complex compounds of t he platinum metals, an advanced 
textbook of inorganic chemistry should be consulted. 

16.9 COPPER, SILVER, AND GOLD 

Copper, silver, and gold are moderately soft, very ductile and malleable metals 
that are excellent conductors of heat and electricity. These group IB elements 
show little resemblance to the alkali metals of group I A. Table 10.10 shows 
that copper, silver, and gold are moderately high-melting and high-boiling 
metals that have enthalpies of vaporization from two to four times greater than 
those of the alkali metals. The ionization energies of the atoms of the copper 
family are nearly twice those of the alkali atoms. Thus we might expect, and in 
fact find, that the metals of group IB are more inert than those of group I A. 
Copper, silver, and gold are sufficiently resistant to oxidation that they are 
sometimes found in the uncombined state in nature. 

Table 16.10 Properties of the group IB elements 

Cu Ag Au 

Atomic number 29 47 79 
Electron configuration 3dl04s' 4c/‘°5s1 5du'6s' 
Ionization energy, kcal 178 174 213 
Atomic radius, A 1.17 1.34 1.34 
Melting point, &K 1356 1234 1336 
Boiling point, °K 2855 2450 
Ah/ (atom), kcal 81.1 68.4 87.3 
Oxidation states + 1, +2 + 1, +2 + 1, +3 
AH? (MCI), kcal -32.5 -30.4 -8.4 

AH/ (M20), kcal -39.8 - 7.3 — 

AH/ (MO), kcal -37.1 - 6.0 — 

16.9 | COPPER, SILVER, AND GOLD 709 



Copper 

Table 1G.10 gives the oxidation states displayed by the group IB elements. 

The +1 oxidation state is very important in the chemistry of silver, but less 
important for copper and gold. The -f2 state is the most important oxidation 

state of copper, but occurs in only a few silver compounds, and does not appear 

at all in the chemistry of gold. The +3 state is not at all important for copper 

and silver, but is the most important state of gold. In the aqueous solution 

chemistry of these elements, the number of oxidation states is even further 

restricted. Only the +2 ion of copper and the +1 ion of silver exist in important 

concentrations in aqueous solutions. 

The extraction and refinement of copper are relatively simple processes and 

reveal some of its more important chemical properties. The carbonate ores of 

copper can be reduced with carbon : 

CuC03 • Cu(OH)2 + C = 2Cu + 2C02 + H20. 

Sulfide ores are partially oxidized and then smelted to give a rather impure 

product: 

Cu2S -£*-> Cu20 + Cu2S Cu + S02. 

The copper obtained from these reductions contains iron and silver impurities 

which can be removed by electrolysis. The impure copper is oxidized at the 

anode and the pure product recovered at the cathode. The half-reaction 

potentials 
Ag+ + e~ = Ag, 8° = 0.80 volt, 

Cu++ + 2e— = Cu, 8° = 0.34 volt, 

Fe++ + 2e- = Fe, 8° = —0.44 volt, 

show that metallic silver is more difficult to oxidize than copper, and ferrous 

ion is more difficult to reduce than cupric ion. Thus by applying an appropriate 

potential to the electrolysis cell, it is possible to oxidize copper and iron, but not 
silver, and to reduce cupric ion, but not ferrous ion. The copper metal is re¬ 

covered pure at the cathode, and the metallic silver is left as a sludge in the 

anode compartment. 
In its most common compounds, copper is found in the +1 or the +2 oxidation 

states. The potentials for the half-reactions 

Cu+ + e- = Cu, 8° = 0.52 volt, 

Cu++ + 2e— = Cu, 8° = 0.34 volt, 

show that cuprous ion, Cu+, is unstable in aqueous solution, for we have 

2Cu+ = Cu + Cu++, A8° = 0.18 volt, 
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and thus 

Consequently there is no aqueous solution chemistry for uncomplexed copper 

(I) ions. On the other hand, complexes of copper (I) can be prepared without 
difficulty and many are stable in aqueous solution. For example, if a solution of 

Cu++ is boiled with excess chloride ion and metallic copper, the following 
reaction occurs: 

Cu++ + Cu + 4C1“ = 2CuCl^. 

If the resulting solution is diluted, the chloride-ion concentration decreases, 
and the insoluble CuCl precipitates: 

CuCir(aq) + H20 = CuCl(s) + Cl“(aq), K = G.5 X 10“2. 

The cuprous halides CuCl, CuBr, and Cul are quite different from the alkali- 

nietal halides. In the first place, the cuprous halides are only slightly soluble in 
water, as is shown by 

CuCl = Cu+ + Cl", 

CuBr = Cu+ + Br“ 

Cul = Cu+ + 1“ 

K = 3.2 X 10-7, 

K = 5.9 X 10~9, 

K = 1.1 X 10~12 

Secondly, the cuprous halides have the zinc-blende crystal structure in which 
the coordination number is only four, while the alkali halides have either the 

rock-salt or cesium-chloride structure. Third, although the lattice energies of 
the alkali halides can be calculated quite accurately on the assumption that 

they are ionic crystals, the lattice energies of the cuprous halides are slightly 
greater than would be expected from the ionic model. This suggests that in 

contrast to the alkali halides, the cuprous halides exhibit a certain degree of 
covalent bonding. 

Other well-known compounds of copper (I) are the oxide Cu20 and the 
sulfide Cu2S. Both these compounds can be made by direct combination of 

the elements at high temperature, both tend to be nonstoichiometric, and both 
are extremely insoluble in water. In these latter respects they differ noticeably 

from the corresponding compounds of the alkali metals. 
The chemistry of copper in the -f 2 oxidation state is similar to the chemistry 

of the other +2 ions of the transition metals. The cupric ion is colored and 
reacts with a number of electron donors to form complex ions. Addition of 

base to a solution of Cu++ precipitates Cu(OII)2. This hydroxide dissolves 

readily in acids and to a slight extent in excess base to form the anion Cu(OH)F- 
Like the other sulfides of the transition metals, CuS is only very slightly soluble 

in water. 
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FIG. 16.1 

Silver 

Cupric fluoride is an ionic compound which has the fluorite crystal lattice. 

In contrast, anhydrous cupric chloride and bromide consist of infinite chains 

of atoms with the arrangement shown in Fig. 16.1. This type of structure is a 

departure from those found in the dihalides of the alkaline-earth metals and the 

metals of the first transition series, and the low coordination number of copper 

in cupric chloride and bromide is interpreted by some chemists as an indication 
of some covalent bonding in these compounds. Cupric iodide is not known. 

Addition of I- to Cu++ solutions results in the rapid, quantitative production 

of Cul and 12. 

The infinite chain structure of cupric chloride. 

Both in solid compounds and in aqueous solutions, the normal oxidation state 

of silver is +1. The colorless salts AgN03 and AgC104 are readily soluble in 

water, but for the most part the simple binary compounds of silver are sparingly 
soluble. Thus addition of base to a solution of Ag+ precipitates the brown oxide 

Ag20. This compound is predominately basic, but it does dissolve slightly in 

concentrated alkali to form Ag(OH)2 . 

except the fluoride are quite insoluble: 

Similarly, silver sulfide 

Ag2S = 2Ag+ + S , II 0
 l C
n

 O 

AgCl - Ag+ + Cl", K = 2.8 X 10~10, 

AgBr — Ag+ + Br—, K = 5.0 x icr13, 

Agl = Ag+ + I-, K = 8.5 X 10-17. 
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Silver forms a number of complexes in aqueous solution. The following 
equilibrium constants indicate the range of stabilities: 

AgCl2- = Ag+ + 2C1- 

Ag(NH3)+=Ag++2NH3, 

Ag(S203)2 3 = Ag+ + 2S20t, 

Ag(CN)i- = Ag+ + 2CN- 

K = 2.2 x icr6, 

K = 5.9 X 10~8, 

K = 5.9 X 10-14, 

K = 1.8 X 10~19. 

Combination of the reactions 

AgCl(s) = Ag+ c r 
2cr 

— 10 

gives us 

AgCl2- = Ag+ 

AgCl(s) + Cl- = AgCir, 

IC = 2.8 X 10 

K = 2.2 X 10-6, 

K = 1.2 X 10 —4 

This reaction and its equilibrium constant show that the slightly soluble AgCl 
can be dissolved in an excess of chloride ion. 

Combination of the dissociation constant of the silver-ammonia complex ion 

with the solubility products of the silver halides yields the equilibrium con¬ 
stants for the following reactions: 

AgCl + 2NH3 = Ag(NH3)2+ + Cl" K = 4.7 X 10~3, 

AgBr + 2NH3 = Ag(NH3)^ + Br“ K = 8.5 X KT6, 

Agl + 2NH3 = Ag(NH3)2+ + I”, K - 1.4 X KT9. 

Thus AgCl is moderately soluble in concentrated ammonia, but AgBr and Agl 

do not dissolve to an appreciable extent. Silver bromide and silver iodide are 

soluble in solutions of thiosulfate ion, S2OT, for the silver-thiosulfate complex 
ion has a very small dissociation constant. In the photographic process, the 

developed image is fixed by washing out unexposed grains of AgBr with a 
solution of sodium thiosulfate. 

The electrode potential 

Ag+ -|- e = Ag, 8° = 0.799 volt, 

shows that silver metal is rather difficult to oxidize to the aqueous ion. It is 

even more difficult to obtain higher oxidation states of silver. Treatment of 
aqueous silver nitrate with ozone yields a solution in which Ag++ exists as a 

short-lived species which is partially stabilized by complex formation with 

nitrate ion. The potential for the reaction 

Ag++ + e~ = Ag+, 8° = 2.0 volts, 

is only approximate, but does show how strong an oxidizing agent Ag++ is. 
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One of the few known binary compounds of silver (II) is AgF2, which is also a 

powerful oxidizing agent. Thus the +2 oxidation state, so important in the 

chemistry of copper, is not at all common for silver. 

Gold 

This element is the most ductile and malleable of metals and is an excellent 

conductor of heat and electricity. It is also quite inert to chemical attack, as 

the potentials for the reactions 

Au+ + e“=Au, 8° = 1.7 volts, 

Au+3 + 3e~ = Au, 8° ^ 1.5 volts, 

suggest. In fact, these electrode potentials cannot be measured directly, since 

both the aurous ion Au+ and the auric ion Au+3 are oxidizing agents powerful 
enough to oxidize water. 

Aurous ion is also unstable with respect to disproportionation. Use of the 

estimated potentials gives 

3Au+ = Au+3 + 2Au, 

[Au+3] 

[Au+]3 
= K ^ 1010. 

AS0 ^ 0.2 volt, 

Thus for two reasons Au+ does not exist as a simple cation in aqueous solution. 

In both its oxidation states, gold forms stable complex compounds and ions. 

For example, gold can be oxidized readily in the presence of cyanide ion 

Au + 2CN = Au(CN)2 + e , 8° = 0.60 volt. 

Combination of this half-reaction potential with that for reduction of Au+ to 

the metal gives a standard potential and an equilibrium constant for 

Au(CN)4 = Au+ + 2CN-, K ^ 5 X 10~39. 

Gold also can be dissolved by nitric acid in the presence of chloride ion 
according to the reaction 

Au + 3NOT + 4C1“ + 6H+ = AuClT + 3N02 + 3H20. 

It is the formation of the stable complex ion AuClif that causes this reaction to 
proceed spontaneously. 

16.10 ZINC, CADMIUM, AND MERCURY 

These metals differ noticeably from the elements that precede them in the 

periodic table, and even among themselves display a considerable range of 

properties. As Table 16.11 shows, the metals of group IIB have rather low 

714 THE TRANSITION METALS 16.10 



melting and boiling temperatures. Cadmium and particularly zinc are electro¬ 

positive metals and in this respect resemble the elements of group IIA. Mercury, 
on the other hand, does not dissolve in hydrogen ion and is about as inert as 

silver and copper. Besides displaying the +2 oxidation state common to the 

group IIB elements, mercury forms the Hg2~+ ion, and compounds of this species 

have considerable stability. In contrast, Zn and Cd form the M^+ ion only 

under very special conditions. Thus while cadmium and zinc resemble each 

other fairly closely, mercury displays rather different properties. 

Table 16.11 Properties of the group IIB elements 

Atomic number 
Configuration 
Ionization energy, kcal 
Atomic radius, A 
Melting point, °K 
Boiling point, °K 
AH°f (atom), kcal 
Ionic radius, M++, A 
AH°} (MO), kcal 

AH°f (MCI2), kcal 
8°, M++ + 2e = M, volts 

Zn Cd Hg 

30 48 80 
3d104s2 4d105s2 5d106s2 

217 207 240 
1.25 1.41 1.44 
693 594 234 

1181 1040 630 
31.2 26.7 15.3 
0.74 0.97 1.10 

-83.17 -60.86 -21.68 

-99.40 -93.00 -53.4 
-0.763 -0.402 +0.854 

Zinc occurs in a number of minerals, of which zinc blende, ZnS, calamine, 

Z11CO3, and zincite, Z11O, are most important. Cadmium is found in these zinc 
ores and is recovered as a byproduct of the zinc reduction process. Zinc ores 

are usually roasted to produce the mixed oxides which are then reduced with 
carbon to give a mixture of zinc and cadmium metals. The cadmium and zinc 

are separated by distillation. 
The principal source of mercury is the mineral cinnabar, HgS. To recover 

the metal, HgS is roasted to HgO, and when the oxide is heated to 500°C, it 
decomposes to give free mercury. Most of the world’s supply of mercury comes 

from Spain, and the once copious ores in California and Nevada are all but 

exhausted. Unless substantial new deposits are found, all sources of mercury 

may be used up by the end of the 20th century. 

As we have remarked, zinc and cadmium react with aqueous hydrogen ion, 
but mercury does not. All the metals react with oxygen and other nonmetals 

such as sulfur, phosphorus, and the halogens either at room temperature or 
upon moderate heating. The oxides ZnO, CdO, and HgO have very slight 

solubility in water, but all dissolve in solutions of strong acids. Zinc oxide also 
dissolves in strong bases according to the reaction 

ZnO + 20H- + H20 = Zn(OH)r 
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and is therefore amphoteric. As might be expected from the larger size of the 
cadmium ion, CdO is not amphoteric, but is a basic oxide. Mercuric oxide is 

also basic, but very weakly so. 
The halides of the group IIB metals show interesting trends in their prop¬ 

erties. The halides of zinc have only moderately high melting temperatures, 

but when these compounds are fused, they conduct electricity. Consequently 
they are generally classified as ionic compounds. The structures of zinc chloride, 

bromide, and iodide can be pictured as close-packed lattices of halide ions with 

zinc ions occupying the tetrahedral holes. The cadmium halides are similar to 

the zinc halides, but have slightly different structures. The structures of the 

chloride, bromide, and iodide again can be thought of as a close-packed halide 

lattice, but the cadmium ions occupy the octahedral holes, rather than the 

tetrahedral holes. 
While mercuric fluoride has a fluorite lattice that is associated with an ionic 

bonding, the other mercuric halides are covalently bonded. In the mercuric- 

chloride lattice, discrete, linear, symmetrical HgCl2 molecules can be identified. 
This compound melts at 280°C and when fused does not conduct electricity. 

Moreover, in aqueous solution mercuric chloride remains largely as undissociated 

HgCl2 molecules, for the equilibrium constants of the reactions 

HgCl2(aq) = HgCl+ + Cl", K = 3.2 X KT7, 

HgCl+ - Hg++ + cr, K = 1.8 X KT7, 

are quite small. 
Although zinc and cadmium display only the -f-2 oxidation state, both the 

+1 and -\-2 states are known for mercury. There is a wealth of evidence that 

the mercurous ion has the formula IIg^ + ; perhaps the most convincing is the 

direct observation of this structure in the x-ray analysis of mercurous salts, 
and the observation of a spectral feature of aqueous mercurous solution that 

can only be due to Hg^+. The conditions under which mercurous ion is formed 

can be understood with the aid of the following half-reaction potentials: 

Hg^+ + 2e“ = 2Hg(l), 8° = 0.789 volt, 

2Hg++ + 2e“ = Hg^+, 8° = 0.921 volt, 

Hg++ + 2e“ = Hg(l), 8° = 0.854 volt. 

Combination of the second and third half-reactions gives 

Hg(l) -f- Hg++ = Hg^“+, AS0 = 0.0GG volt, 
_ iq[(2)(AS°)]/0.059 

= 1.7 X 102. 

Thus mercurous salts have a slight tendency to disproportionate to Hg and 
Hg++. If a solution of a mercurous salt is treated with a reagent that removes 
Ug++ from solution, the mercurous ion decomposes to form more IIg+ + and 
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mercury, and is eventually consumed. Thus we have reactions such as 

Hg2++ + H2S = HgS + Hg + 2H+, 

Hg++ + 20H" = HgO + Hg + H20, 

and consequently no mercurous oxide or sulfide exists. Among the mercurous 
salts that do exist are the halides, the nitrate, perchlorate, and sulfate. 

16.11 TRANSITION-METAL COMPLEXES 

Throughout our discussion of inorganic chemistry we have referred to the 
existence of complex ions such as BF^, Ag(NH3)+, Fe(CN)^3, and others. 

These complex ions, and neutral complex compounds as well, have distinctive 

properties that may be quite unlike those associated with their constituent 
molecules and ions. Because of their electronic structure, the transition metals 

form a large number of complex compounds, and a major part of current 
research in chemistry is devoted to the study of transition-metal complexes. 

In general, a complex ion or compound consists of a central atom closely 
surrounded by a number of other atoms or molecules that have the property 

of donating electrons to the central atom. The central atom in a complex is 

sometimes called the nuclear atom,, and the surrounding species are called co¬ 
ordinating groups or ligands. The nearest neighbor atoms to the nuclear atom 

constitute the first or inner coordination sphere, and the number of atoms in 
this first coordination sphere is the coordination number of the nuclear atom. 

A complex compound is distinguished from any other type of chemical com¬ 

pound by the fact that both the central nuclear atom and the ligands are 

capable of independent existence as stable chemical species. 
As suggested above, the ligands in a complex compound, in general, donate 

electrons to the nuclear atom, which is usually an electron-deficient species. 

The word “donate” must not be overinterpreted, however, for in many instances 
it is not clear whether the ligand-nuclear atom interaction truly involves the 
sharing of electrons or is better described as Coulomb attraction between 

oppositely charged ions. In either case we can expect that the most stable 
complexes will be formed by small highly charged positive ions interacting with 

electron-donating atoms. This crude analysis accounts in some measure for the 
frequency with which transition-metal ions in particular form complexes with 

such species as NH3, H20, Cl-, and CN—. There are many subtle features 
associated with the stability of complex ions, however, and we shall investigate 

some of them after discussing the geometric properties of complexes. 

Stereochemistry 

Complexes with coordination numbers from two to nine are known, but most 

exhibit two-, four-, or sixfold coordination and have structures with the geom¬ 
etry illustrated in Fig. 1G.2. Twofold coordination occurs in the complexes of 
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Cu(I), Ag(I), Au(I) and some complexes of Hg(II); common examples are 
Cu(CN)^~, Ag(NH3)^, Au(CN)^~, and Hg(NH3)J+. Fourfold coordination 

with tetrahedral geometry is common among complexes of the nontransition 

elements, but occurs with less frequency in transition-metal complexes. The 

ions ZnCl^, Zn(CN)T> Cd(CN)^, and Hg(CN)^ all have the tetrahedral con¬ 
figuration, but this geometry is otherwise fairly rare in the transition series. 

(a) 

fig. 16.2 Common shapes for complex ions: (a) linear, (b) square planar, (c) tetrahedral, (d) octa¬ 
hedral. (After K. B. Harvey and G. B. Porter, Physical Inorganic Chemistry. Reading, Mass.: 
Addison-Wesley, 1963.) 

Fourfold coordination with square planar geometry occurs in complexes of 

Pd(II), Pt(II), Ni(II), Cu(II), and Au(III). For most other ions this arrange¬ 
ment of ligands virtually never occurs. Sixfold coordination is the most common 

and occurs only in one geometric form, the octahedron. 

A ligand that is capable of occupying one position in the inner coordination 

sphere and forming one coordinate bond to the nuclear atom is called a unidentate 
ligand. Examples are F-, Cl-, OH-, H20, NH3, and CN-. When a ligand 

has two groups that are capable of bonding to the central atom, it is said to be 

bidentate. Common bidentate ligands are ethylene diamine, NH2CH2CH2NH2, 
where both nitrogen atoms can act as coordinating groups, and the oxalate ion, 
which has the structure 

O 0 1 

c—c 
/ \ 

L-o o-J 

Because the two bonds from a bidentate ligand appear to enclose the metal 

atom in a pincerlike structure, the resulting compound is known as a chelate 
(Greek, chele-claw). Other ligands which have up to six coordinating groups 

are known, and the most common example is versene, or ethylene diamine 
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FIG. 16.3 The ethylene diamine tetra-acetic complex of 
iron. The oxygen and nitrogen atoms occupy 
the corners of an octahedron with the iron 
atom at the center. 

tetra-acetic acid. The way in which versene occupies all six positions in the 
inner coordination sphere is shown in Fig. 16.3. 

Several types of isomerism occur among complex ions. Structural isomerism 

is illustrated by the following example. There are three distinct compounds 
with the same formula: Cr(H20)6Cl3. One of these, violet in color, reacts 

immediately with AgN03 to precipitate all chlorine as AgCl. A second, light 

green in color, also reacts with AgN03, but only two-thirds of the chlorine is 
precipitated as AgCl. The third compound, dark green, releases only one-third 

of its chlorine to be precipitated as AgCl. On this basis the formulas might be 
written 

[Cr(H20)6]Cl3 (violet), 

[CrCl(H20)5]Cl2 • H20 (light green), 

[CrCl2(H20)4]Cl • 2H20 (dark green), 

where the species within the brackets are regarded as ligands bonded to the 
central chromium atom with some permanency. This assignment is substan¬ 

tiated by the fact that exposure of these compounds to drying agents results in 
the loss of zero, one, and two moles of water, respectively. Thus these structural 

isomers differ in the composition of their first coordination sphere and have 
noticeably different properties. Other similar examples are known, for instance 

[Co(NH3)4C12]N02 and [Co(NH3)4(C1)(N02)]C1. 
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(a) (b) 

FIG. 16.4 Geometric isomers of dichlorodiammineplatinum(ll): (a) c/s isomer, (b) trans isomer. 

fig. 16.5 Geometrical isomers of octahedral Ma4b2 complexes: (a) c/s isomer, (b) trans isomer. 

NH, 

as trans 

FIG. 16.6 The geometrical isomers of dichlorotetraaminecobalt(lll) ion. 

FIG. 16.7 Schematic drawing of the geometry of the optical isomers of an octahedral complex with 
bidentate ligands. 
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Besides the structural isomers, there are geometrical isomers which have 
coordination spheres of the same composition but different geometric arrange¬ 

ment. As a simple example of geometrical isomerism, consider the occurrence 
of cis and trans isomers of dichlorodiammineplatinum (II), shown in Fig. 16.4. 

Cis and trans isomers of square planar complexes of the type Ma2b2 can occur 
because although the ligands may be equidistant from the central atom M, 

they are not all equidistant from each other. Consequently it is possible to 
distinguish between ligands that lie next to each other on an edge of the square, 

and those that lie opposite each other on the square diagonal. In tetrahedral 
complexes, all four ligands are equidistant from each other, and cis-trans 
isomerism is not possible. 

Geometrical isomerism is possible for octahedral complexes of the type 
Ma4b2, as Fig. 16.5 shows. Any two corners of an octahedron are cis to each 
other if they are linked by a single edge of the octahedron, while the trans posi¬ 

tions lie on opposite sides of the metal atom. For example, two geometrical 
isomers of the complex ion [Co(NH3)4C12] + exist: a cis isomer (violet) and a 
trans isomer (green), and they have the structures shown in Fig. 16.6. 

Another important stereochemical feature of transition-metal complexes is 
optical isomerism. A molecule that lacks a plane or point of symmetry can exist 
in two nonequivalent forms that are mirror images of each other. These two 

forms are related as the right hand is to the left and cannot be superimposed on 
each other. Figure 16.7 illustrates the geometry of the optical isomers of a 

complex ion in which the ligands are bidentate. These optical isomers are 
identical in all respects except that one isomer rotates the plane of polarized 

light to the left, while the other rotates the plane of polarization to the right. 
Optical isomerism also occurs in organic molecules, and is discussed further in 
Section 17.8. 

Nomenclature 

Many complex ions, for example the ferrocyanide ion, Fe(CN)^4, have acquired 
common names that are fairly descriptive of their composition. As more com¬ 
plicated complex ions have been synthesized, it has been necessary to adopt a 

systematic naming procedure. The following rules are sufficient to name many 

of the common complexes. 

1. Ligands are assigned names as in Table 16.12. The names of anionic ligands 
end in o, while for neutral ligands the name of the molecule is used. Excep¬ 
tions to the latter rule are water, ammonia, carbon monoxide, and nitric 

oxide, which are named as indicated in Table 16.12. 

2. In naming a complex, the ligands are given first, with the Greek prefixes 

di, tri, tetra, etc., to indicate the number of identical ligands present. 

3. The name of the central atom is given next, followed by its oxidation state 
designated by a Roman numeral enclosed in parentheses. 
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Table 16.12 Names of coordinating groups 

Ligand Name Ligand Name 

H20 aquo 0H“ hydroxo 
nh3 ammine c2o= oxalato 

0= 0X0 soj sulfato 
cr chloro CO carbonyl 
CN- cyano NO nitrosyl 

4. If the complex is a cation or neutral molecule, the name of the central atom 

is left unchanged. If the compound is a negative complex ion, the name of 

the central atom is made to end in ate. As examples we have 

[Ag(NH3)2]+ 

[Zn(NH3)4]++, 

[Co(NH3)3(N02)3], 

[PtCl6]=, 

[Fe(CN)6]-4, 

[Fe(CN)6]-3, 

diamminesilver (I) ion, 

tetraamminezinc (II) ion, 

triamminetrinitrocobalt (III), 

hexachloroplatinate (IV) ion, 

hexacyanoferrate (II) ion, 

hexacyanoferrate (III) ion. 

For complexes that have common names, it is convenient to avoid using the 

sometimes cumbersome systematic names. For the more complicated and 

obscure complexes, however, use of the systematic name is necessary. 

16.12 BONDING IN TRANSITION-METAL COMPLEXES 

Like all other compounds, transition-metal complexes owe their stability to the 
lowering of energy that occurs when electrons move in the field of more than 

one nucleus. Therefore, the theories of bonding in the transition-metal com¬ 
plexes do not differ fundamentally from the theories used to discuss other 

chemical bonds. However, the bonding in transition-metal complexes does 

involve some new features that were not emphasized in our discussions of other 

systems. First, the d-orbitals of the transition-metal atom are involved in the 

bonding to the ligands. Second, it is important to take explicit account of the 

behavior of the nonbonding electrons. Third, it is interesting to examine not 
only the lowest electronic states, but also their excited electronic states, for it 

is the existence of these states that is responsible for the light absorption and 
color of the ions. Finally, the magnetic properties of transition-metal complexes 

are very important, and should be satisfactorily explained by the bonding 

theories. There are three important approaches to the problem of bonding in 
transition-metal complexes, and we shall now discuss each briefly. 
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Crystal-Field Theory 

In the crystal-field theory, the bonding between the central metal ion and its 

ligands is assumed to be purely electrostatic, due either to the attraction 
between oppositely charged ions or between the central positive ion and the 

negative end of dipolar molecules. This is an extreme picture that is probably 

never rigorously accurate, but it does have the virtue of simplicity. Because 
crystal-field theory assumes electrostatic bonding in complexes, it does not 

pretend to explain the nature of the metal-ligand bonds. The theory does, 

however, attempt to explain the effects of the ligands on the energies of the 
d-electrons of the metal ion and in this way helps us to understand the magnetic 
properties of complexes and their absorption spectra. 

z 

Six ligands of an octahedral complex defining a FIG. 16.8 

cartesian coordinate system. 

The conclusions of crystal-field arguments depend on the spatial arrangement 

of the ligands about the central transition-metal ion. Because sixfold coordina¬ 

tion with regular octahedral geometry occurs so frequently in complex ions, let 
us begin our discussion to this case. Imagine a transition-metal ion in free space. 

In this condition, the energies of its five valence d-orbitals are the same, or as 
is often stated, the orbitals are degenerate. Now imagine six ligands placed 

symmetrically around the central ion so as to define a cartesian coordinate 
system, as shown in Fig. 16.8. As the ligands are brought close to the central 
ion, there is a general lowering of the energy of the entire system due to the 

electrostatic attraction between the metal ion and the ligands. Now the five 
d-orbitals of the metal ion are not spatially equivalent, as Fig. 16.9 shows. 

Two of them, dX2_y2 and clz2, have their greatest electron density in directions 
that lie along the cartesian coordinate axes. The other three d-orbitals, dxy, 

dxz, and dyz, have their greatest density in regions between the coordinate axes. 
The former pair of orbitals is often designated as dy- or efl-orbitals, while the 

latter three are called the dt- or ^-orbitals. As the negative ligands are brought 

near the central ion, electrons in the eff-orbitals feel a stronger electrostatic 
repulsion from the ligand than do electrons in the ^-orbitals, because the 
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FIG. 16.9 The 3c/-orbitals. (Adapted from K. B. Harvey and G. B. Porter, Physical Inorganic Chemistry. 
Reading, Mass.: Addison-Wesley, 1963.) 

efl-orbitals are more concentrated along the coordinate axes where the negative 
ligands are situated. Thus the presence of the ligands “splits” the d-orbitals 

into a higher energy pair of eff-orbitals and a lower energy triplet of ^-orbitals, 
as Fig. 16.10 shows. 

The magnitude of the crystal-field splitting of the d-orbital energies is usually 

designated by A0. The magnitude of this quantity depends, according to crystal- 

field theory, only on the metal ion-ligand distance, the mean electron-nuclear 

separation for a d-electron, and the charge or dipole moment of the ligand. 
The smaller the metal-ligand distance, the larger the average d-electron-nucleus 

separation, and the larger the charge or dipole moment of the ligand, the larger 

is the splitting A0. In general, the predicted values of Ao based on crystal-field 

theory calculations are not highly accurate and give only fair estimates of 

splitting of the d-orbital energies. 

Experimental values of A0 can be derived from the absorption spectra of com¬ 
plex ions. In the simplest cases, the absorption of light by a complex ion is 

accompanied by the excitation of an electron in one of the lower (2<rorkitals to 

an eff-orbital. The energy that corresponds to the frequency of the light most 
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Energy 3d 

The splitting of the d-orbital energies by the octahedral ligand field. FIG. 16.10 

Schematic representation of the absorption of light by [Ti(H20)6]+3, showing the excita- FIG. I6.il 

tion of an electron from a t2g- to an e„-orbital. 

strongly absorbed is equal to A. For example, the hexaaquotitanium (III) ion, 

[Ti(H20)6]+3, has an absorption band in the visible region, and the absorption 
is strongest at wavelengths of approximately 5000 A. This absorption gives the 
ion its purple color and corresponds to the excitation of the single d-electron in 

Ti+3 from a t2g- to an e0-orbital, as shown in Fig. 16.11. 

Table 16.13 Crystal-field splittings, Ao (kcal/mole) 

Metal ion 
H20 

Ligand 

nh3 CN“ 

Ti (III) 3d1 58 
V (III) 3d2 51 
Cr (III) 3d3 50 62 75 
Mn (III) 3d4 60 
Fe (III) 3d5 39 
Mn (II) 3d5 22 
Co (III) 3d6 53 65 97 
Fe (II) 3d6 30 94 
Co (II) 3d7 28 29 
Ni (II) 3d8 24 31 
Cu (II) 3d9 36 43 

Table 16.13 gives a few of the values of A0 for the various transition-metal 
ions and ligands. While the value of A0 is approximately constant for ions of a 

given charge with the same ligand, changing the ligand does change A0, and thus 
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alters the absorption spectrum associated with the metal ion. It is this change 

in the crystal-field splitting of the d-orbital energies that is responsible for the 

color change that occurs when one ligand is replaced with another. From 

measurements of the absorption spectra, it is possible to arrange the common 
ligands in the order of the value of A0 they induce in any metal ion. This spectro- 

chemical series is as follows: 

Br“ < Cl~ < F“ < OH" < C204= < H20 < NH3 < NO^ < CN“, 

where A0 increases from left to right. The order of a closely related set of ions 
like the halides can be understood, for the smaller the ion, the smaller is the 

ligand-central ion separation, and the larger is the splitting, according to the 

crystal-field theory. It is important to note, however, that the crystal-field 
theory cannot explain the order of the entire spectrochemical series, and con¬ 

sequently the electrostatic picture of the bonding in transition-metal complexes 
must be an oversimplification. 

The magnetic properties of the transition-metal complex ions can be under¬ 

stood with the aid of crystal-field theory. Compounds composed of molecules 
or ions that have unpaired electron spins tend to be drawn into a magnetic 

field. If, when the magnetic field is removed, the material retains a permanent 

magnetization, it is said to be ferromagnetic. If, however, the sample loses its 
magnetism when the field is removed, it is said to be paramagnetic. Materials 

that have no unpaired electrons tend to move out of magnetic fields and are 
designated as diamagnetic. Complex compounds of the transition-metal ions 

very often have unpaired electron spins and are therefore paramagnetic. For 

example, because the three i2ff-orbitals have the same energy in an octahedral 
complex, any central atom or ion that has three valence d-electrons will have 

one electron in each <2o-orbital, and these electrons will have the same spin, 
just as the three p-electrons in the nitrogen atom have the same spin. The 

magnetic properties of such a complex, [Cr(H20)6]+3, for example, do in fact 

indicate the presence of three unpaired electron spins. 

FIG. I6.12 Orbital occupancy scheme for a d4 complex 
ion in which the crystal field splitting A0 is 
small. ■ ■ ■ 

Energy 

If the central atom has four d-electrons, the electron configuration to be 
expected is not so obvious. After the three <2(7-orbitals are half-filled, the fourth 

electron may be accommodated in one of the higher-energy e„-orbitals, or it 
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may enter one of the <2</-orbitals at the cost of some energy associated with the 

coulomb repulsion of two electrons in the same orbital. Which of these two 
alternatives occurs depends on which is energetically the most favorable. If 

the crystal-field splitting A0 is small, then the fourth electron will be accom¬ 
modated in an eff-orbital, as shown in Fig. 16.12. If the splitting of the orbitals 

is large, however, it is energetically more favorable for the fourth electron to 
enter an already half-filled <2ff-orbital than to go into a high-energy eff-orbital. 

Ao 
Energy 

41 t ■ 

Orbital occupancy scheme for a d4 complex FIG. 16.13 

ion in which the crystal field splitting A0 is 
large. 

This situation is represented in Fig. 16.13. Thus if the splitting is small, there 

will be four unpaired electrons and if the orbital splitting is large, there will 
be only two electrons with unpaired spins. The former “high-spin” case has a 

larger paramagnetism associated with it than does the latter “low-spin” situation. 

tty ■■ 
■■ 

t t 
d5 

■ ■ 
ft t 
d? 

tty tint u H tt MU H 
Orbital occupancy for the high- and low-spin states of the d5-, dB-, d7-configurations. FIG. 16.14 

Our discussion can be extended to central ions with d5, dr>, and d7 valence- 
electron configurations. Figure 16.14 shows the orbital occupancy for the highl¬ 

and low-spin states of these ions in octahedral crystal fields. The high-spin 

states are expected in complexes in which A0 is small; that is, complexes which 
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have ligands that lie in the first part of the spectrochemical series. Low-spin 

complexes are those whose ligands fall in the latter part of the spectrochemical 

series. 
Some examples that illustrate the foregoing discussion are the following. 

The ion Fe+3 has a ^-configuration, and as the aquo-complex, exists in the 

high-spin state (t2g)3(eg)2. The crystal-field splitting induced by the cyanide 
ion is much larger than that produced by the water molecule, and it is not too 

surprising that in the ferricyanide ion, [Fe(CN)e]—3, iron is in the low-spin 

state {t2g)5. Similarly, in [CoF6]-3, cobalt (d6) is in the high-spin state 
(t2g)4(eg)2, while in [Co(NH3)6]+3, the low-spin configuration (<2e)G is found. 

Ions like Ti+3(dx), V+3(d2), and Cr+3(d3), have unique d-electron configura¬ 
tions that are unaffected by the crystal-field splitting, and thus these ions are 

always found in a high-spin state. 

z 

fig. 16.15 The structure of a tetrahedral complex and its relation to a cube centered at the nuclear 
atom. 

Recognition of the fact that the hexa-aquo complexes of Mn++ and Fe+3 exist 

in the high-spin (t2g)3 (e) ^configuration leads to an explanation of why these 

ions are only very weakly colored. Manganous ion is a very pale pink, and ferric 

ion is a very pale violet in solutions acidic enough to prevent its hydrolysis and 
polymerization. In these ions, excitation of a i2ff-electron to an %-orbital requires 

a change in electron spin (see Fig. 16.14) during the process, and this is a highly 

improbable event. Thus these ions absorb only a very small fraction of the light 

incident on them and appear to be virtually colorless. 
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Tetrahedral geometry occurs in a few transition metal complexes such as 

CoClT, MnBrT, and FeClJ-, so it is of interest to examine the d-orbital energy 
level pattern for this structure. To begin, consider Fig. 16.15, which shows that 

placing ligands at alternate corners of a cube centered on the nuclear atom 
produces a complex with tetrahedral geometry. If the coordinate axes are taken 

to be perpendicular to the faces of the cube, then it is easy to see that the d- 
orbitals divide into two groups. The dZ2- and c^-yi-orbitals point directly at the 

faces of the cube and bisect the tetrahedral angle between the ligands. The 

dxy-, dxz-, and dyx-orbitals have lobes that point directly at the edges of the cube, 
and thus are close to the ligands. Consequently, an electron in one of these latter 

three orbitals feels more repulsion from the electron clouds of the ligands than 
does an electron in the dzi- or —^-orbital. As a result, splitting of the d- 

orbitals in a tetrahedral complex is as indicated in Fig. 16.16, with the magnitude 
of the splitting At generally less than the splitting in octahedral complexes with 

the same ligands. Because the splitting parameter A( is small, there are no known 

low-spin tetrahedral complexes. The energy to be gained by moving an electron 

from the dxy~, dxz-, or d^-orbitals to either of the dx%-y- and dZ2-orbitals is 

evidently always small compared to the energy lost through electron-electron 
repulsion. 

Isolated atom 

Complex 

The splitting of the d-orbital energies by a tetrahedral ligand field. FIG. 16.16 

To find the orbital energy-splitting pattern characteristic of square-planar 

complexes it is easiest to begin by imagining an octahedral complex with the two 

ep-orbitals lying above the three ^-orbitals. Then consider the effect of gradually 

withdrawing the two ligands which are along the z-axis while diminishing the 

metal-ligand distance along the x- and y-axes. The result of this so-called 
tetragonal distortion of the octahedron is shown in Fig. 16.17. Withdrawing 

the two ligands along the z-axis diminishes ligand-electron repulsion and thus 
lowers the energy of an electron in the d^-orbital. Correspondingly, shortening 

of the metal-ligand electron-ligand repulsion, raises the energy of the dxi-vi- 
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orbital, as is indicated in Fig. 16.17. The energy of the dX|/-orbital is also raised, 
since this orbital has its greatest density in the xy-plane and experiences greater 
repulsion from the ligands in the xy-plane as they are brought closer to the metal 
atom. In contrast, the dxz- and dj^-orbitals decrease in energy, since they point 
out of the xy-plane. The square-planar complex is the limiting case of a tetragon- 
ally distorted octahedral complex, with the two ligands along the 2-axis com¬ 
pletely removed. 

Octahedral Tetragonal Square-planar 

FIG. 16.17 Correlation between the energies of d-orbitals in octahedral, tetragonal, and square-planar 
complexes. 

As Fig. 16.17 shows, a square-planar complex has two d-orbitals of low energy, 
two more of intermediate energy, and one (dX2-y2) of quite high energy. Con¬ 
sequently, square-planar complexes are most likely to be formed with d8- and 
d9-ions, since in these situations the high-energy dxz-^i-orbital is either empty or 
only half-filled, and the other four d-orbitals lie fairly low in energy. Complexes 
of the d8-ions Pt(II), Pd(II), Au(III), Rh(I), and Ir(I) are usually square- 
planar, as are most complexes of Ni(II). Complexes of the d9-ion Cu++ are 
either octahedral with substantial tetragonal distortion, or square-planar. 

Valence-Bond Theory 

In this approach, each ligand is assumed to donate a pair of electrons to the 
metal ion to form a coordinate covalent metal-ligand bond. The criterion for 
bond formation in an octahedral complex is that the metal ion have available 
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six vacant equivalent valence orbitals, so that the valence bonds can be “made ” 

from the overlap of orbitals on the metal with those on the ligands. Six equiva¬ 

lent orbitals on the metal ion can be formed as a d2sp3-hybrid set. Specifically, 

the orbitals that would be used for an ion of the first transition series are 

the two 3eg~, the 4s-, and the three 4p-orbitals. The three 3<2£fOrbitals on 

the metal ion do not participate in the bonding. Thus formation of the complex 

[Cr(NH3)6]+3 from Cr+3 and the ligands would be represented by 

t2g d2sp3 
.-*-, 

[Cr(NH,),HT|T|t tt|ti|tl|U|U|Ti 

where the configuration on the left is that of the free metal ion, and on the right 

the twelve electrons shared with the ligands are indicated. 

Application of the valence-bond theory to complexes of Co(III) and Ni(II) 

reveals some significant points. The configuration of the free Co+3 ion is 

til? |i It It ■ 
3d 4s 

To form the vacant d2sp3 hybrid orbitals, two of the d-electrons must be 

relocated, and this is accomplished by placing them in two other half-filled 

d-orbitals to give the configuration 

4s 4 p 

From this configuration, d2sp3 hybrid orbitals that accept twelve electrons 

from the ligands can be formed. The resulting complex has no unpaired electrons, 

and therefore should not be paramagnetic. Indeed, ions like [Co(NH3)6]+3 and 

[Co(CN)6]-3 have no unpaired electrons, as the theory suggests. 

The ion [CoF6]—3 is paramagnetic, however, despite being isoelectronic with 

the other complexes of Co(III). The rationalization of this observation is that 

the metal-ligand bonding in [CoF6]-3 is not covalent, but ionic, and conse¬ 

quently the cobalt ion in the complex retains the configuration it has in the 

free state with four electron spins unpaired. Thus just as crystal-field theory 

rationalizes the high- and low-spin complexes of Co(III) in terms of the mag¬ 

nitude of the splitting parameter A associated with the various ligands, valence- 

bond theory rationalizes the same phenomena by suggesting that some ligands 

are ionically bonded to the metal while others are bonded covalently. 

The sharp distinction between ionic and covalent complexes that results 

from valence-bond theory is not particularly satisfactory. For example, with 

one exception, all the octahedral complexes of Ni(II) are paramagnetic, and 

u|u|u| 
3d 

Cr+3 
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since free Ni++ has the configuration 

l|ti|ti|t |t 
3 d 4s 

this must mean that all octahedral complexes of Ni(II) are ionically bonded if 

the valence-bond theory is accepted. Various experiments make this conclu¬ 

sion seem very unlikely and force the conclusion that the simple valence-bond 

theory of metal-ligand bonding is not entirely satisfactory. 

Ligand-Field Theory 

In this approach, it is imagined that molecular orbitals are formed by the over¬ 

lap of orbitals from the ligands with the atomic orbitals of the central atom. 

These molecular orbitals may be of a bonding, antibonding, or nonbonding 

character. Depending on the nature of the metal and the ligand, the bonding 

orbitals may be of a covalent type, where the electrons are shared approximately 

equally between the metal and ligands, or they may concentrate most electron 

density on the ligands, and thereby represent ionic bonding. The nonbonding 

orbitals in octahedral complexes are simply the dxy~, dxz~, and d^-orbitals of 

the central atom. The antibonding orbitals are similar to the bonding orbitals 

except that they lie higher in energy and have nodes or regions of low electron 

density between the central atom and the ligands. 

Antibonding 
orbitals 

Energy 

fig. 16.18 Qualitative molecular-orbital energy- 
level diagram for octahedral com¬ 
plexes. 

Nonbonding 
orbitals 

^-bonding 
orbitals 
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The energy-level pattern for the molecular orbitals of an octahedral complex 

is given in Fig. 16.18. The six orbitals of lowest energy are cr-bonding orbitals, 
and are filled by six-electron pairs from the ligands. The nonbonding t2g atomic 

orbitals and the first two antibonding orbitals are fdled according to the number 

of electrons available, the energy difference between the orbitals, and the mag¬ 
nitude of the repulsion between two electrons in the same orbital. In effect, 

the ^*2 and ^*2_y2 antibonding orbitals in ligand-field theory take the place of 
the dz2 and dx2_y2 atomic orbitals used in crystal-field theory. Ligand-field 

theory differs from the valence-bond approach by recognizing the existence of 
the antibonding as well as the bonding and nonbonding orbitals. The orbital 

occupancy diagram in Fig. 16.19 shows how, by using the ligand-field energy- 

level scheme, we can explain the high-spin complexes of Ni(II) without having 

to invoke ionic bonding between the metal ion and the ligand. It is this ability 

to account for magnetic properties without forcing postulates of unreasonable 
forms for metal-ligand bonding that is one of the most satisfactory features of 

ligand-field theory. 

^ Antibonding 
^ orbitals 

Energy ■■ 
l/'*2 ]f/*2-y2 

H H H Nonbonding 
orbitals 

dxy dxz dyz 

The orbital occupancy diagram for a FIG. 16.19 
high-spin c/8-complex. 

ft H 

■ 
tt tl 

^-bonding 
orbitals 

There are a number of consequences of the splitting of the energies of the d- 

orbitals of transition metal ions by the electric field of surrounding ligands. 

Consider first the apparent ionic radii as derived from the interionic distances 
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in the metal (II) oxides MO. These compounds have the rock-salt structure, 

with each metal ion M++ surrounded by six oxide ions located at the corners 

of a regular octahedron. The variation in the apparent radii of the M++ ions 

is displayed in Fig. 16.20. If we look first at the ions Ca++(d°),Mn++(d5), and 
Zn++(d10), all of which have spherical electron distributions, we see that there is 

a general decrease in ionic radius with increasing nuclear charge. However, 
the ions Ti++ and V++ are much smaller than would be expected by interpolating 

between Ca++ and Mn++. The reason for this is quite straightforward. In 

V++, the three d-electrons occupy the <2(rorbitals which are principally directed 
between the coordinate axes where the surrounding oxide ions lie. The e0-orbitals, 

which point directly toward the oxide ions, are empty in Ti++ and V++, and 

therefore the oxide ions can reside closer to the metal ion in these compounds 

than in MnO or ZnO, where the eff-orbitals are half- and completely filled, 

respectively. 

FIG. 16.20 Variation of the radius of the doubly charged ions of the first transition series. 

A similar rationalization can be applied to behavior observed for the ions 

between Mn++ and Zn++. In Fe++, Co++, and Ni++, the eff-orbitals are no 

more than half-filled, and the radii of these ions are less than the values inter¬ 

polated from the radii of Zn++ and Mn++, Thus the behavior of the d-electrons 

in the ligand field provides a very satisfactory explanation for the observed 

variation in ionic radii. 
In Fig. 16.21 the variation of the enthalpy of hydration of the doubly charged 

ions of the first transition series is displayed. Considering only the spherical 

ions Ca++, Mn++, and Zn++, we see the expected trend of increasing hydration 

enthalpy with diminishing size and increasing nuclear charge. However, the 
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ions Ti++, V++, and Cr++ are more stable in aqueous solution than would be 

expected from interpolation between Ca++ and Mn++. This extra stability 
is a result of the fact that in Ti++ and V++, the d-electrons occupy ^-orbitals 

which are directed between, rather than at, the six nearest water molecules. In 
Cr++, there is only one electron in a relatively unstable e0-orbital. However, in 

Mn++, both the eff-orbitals are occupied, the electron distribution is spherical, 
and there is no extra ligand field stabilization energy derived from having the d- 
electrons avoid the ligand regions. 

Variation of the hydration energies of the doubly charged transition metal ions. fig. 16.21 

A similar argument applies to the variation in the hydration enthalpy observed 

between Mn++ and Zn++. In Fe++, Co++, and Ni++, the eff-orbitals are never 

more than half-filled, and there is a ligand field stabilization derived from having 
most of the electrons in <2ff-orbitals. This effect is diminished in Cu++ which has 

a d9 configuration, and is lost totally in Zn++, where all d-orbitals are occupied. 
Ligand field stabilization effects resulting from favorable occupation of d- 

orbitals are observed in many other complexes of the transition metal ions. 

Transition Metal Carbonyls 

The carbonyls are compounds of the transition metal elements with carbon 

monoxide. They are rather remarkable substances in which the metal atom 
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has a formal oxidation number of zero. It has already been mentioned that nickel 

carbonyl is formed readily by the direct reaction of carbon monoxide with metallic 

nickel at room temperature: 

Ni(s)+4CO(g) = Ni (CO) 4(g). 

Iron carbonyl also can be made this way, but a temperature of 200°C and 

100 atm of CO are required: 

Fe(s) + 5CO(g) = Fe(CO)s(g). 

In some cases, one carbonyl can be used to make another, as in 

WC16 + 3Fe(CO)5 = W(CO)6 + 3FeCl2 + 9CO, 

but more frequently, a metal halide and a reducing agent are used: 

2VC13 + 2Mg—Zn + 12CO = 2V(CO)6 + 2MgCl2 + ZnCl2. 

The carbonyls which contain one metal atom with several carbon monoxide 

molecules are usually very volatile liquids at room temperature. 

The structures of some metal carbonyls are shown in Fig. 16.22. The simplest 

description of the bonding and structure of the carbonyls of the first row of 

transition elements is that the metal atom receives a pair of electrons from each 

carbon monoxide molecule so that it attains completely filled 3d-, 4s-, and dp- 

orbitals. Thus in Ni(CO)4 there are 10 electrons from Ni and 8 from CO to give 

18 valence electrons, which corresponds to the complete valence shell in Kr. 

Similarly, Fe(CO)s and Cr(CO)e have 18 valence electrons. In Mn2(CO)io, 

each Mn is bonded to 5 CO molecules located at the corners of an octahedron, 

and the 2 Mn(CO)5 units are joined by an electron pair bond between Mn 

atoms. Thus around each Mn there are 10 electrons from the CO molecules, 

7 from the metal atom itself, and 1 from the other Mn atom, for a total of 18. 

In Co2(CO)8 there is a Co—Co electron pair bond, and in addition, 2 CO 

molecules form a pair of 3-center, 2-electron bonds between cobalt atoms. Thus 

around each Co there are 6 electrons from CO molecules directly bonded to it, 

9 electrons of its own, 1 from the other Co, plus 1 electron from each of the 2 

bridging CO molecules, or a total of 18. This simple approach does not explain 

the existence of the molecule V(CO)6, which has 17 valence electrons. 

In metal carbonyls, carbon monoxide molecules which are bonded only to 

one metal atom are oriented so that the M—C=0 structure is linear or nearly 

so. This is consistent with a metal-carbon cr-bond being formed by donation of a 

pair of (initially nonbonding) cr-electrons by CO to the metal atom. However, 

the stability of metal carbonyls and their spectral properties suggest that there 
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Structures of some transition metal carbonyls. FIG. 16.22 

is more to the bonding than just the simple M—C c-bond. The additional bond¬ 

ing can occur as indicated in Fig. 16.23. One of the 220-orbitals of the metal atom, 

usually nonbonding, does in fact overlap one of the 7r*-antibonding orbitals of 

CO in such a way that a 7r-bonding orbital can be formed between the carbon 

and metal atoms. If the metal <2ff-orbitaIs are occupied, there can be a strength¬ 

ening of the metal-ligand interaction through this so-called back-bonding. The 

presence of electrons in what is still a C—O antibonding orbital should weaken 

the bonding in the carbon monoxide ligand, and there is clear spectroscopic 

evidence that this happens. Other ligands besides CO can engage in 7r-bonding 

with metal orbitals. For example, this is probably a major reason why CN“ 

complexes of transition metal ions are particularly stable. 
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fig. 16.23 Formation of a- and rr-bonds between a transition metal atom and carbon monoxide. 

Transition Metal-Organic Compounds 

Compounds of the transition metal elements with organic molecules have been 

known since 1830. However, only in the last two decades has it been possible 

to understand the nature of these substances. Many have been found to be 

valuable catalysts or intermediates in useful synthetic processes, and con¬ 
sequently the interest in organo-metallic compounds has become particularly 

intense. 

fig. 16.24 The structure of the PtCI3C2H4 anion. 

One of the first organo-metallic substances made was a salt containing the 
anion [PtCl3C2H4]_. Its formation involves replacing one of the chloride 
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ligands in the tetrachloroplatinate anion with ethylene, C2H4: 

ptcir + C2H4 = [PtCl3C2H4]- + c r. 

The structure of this anion is shown in Fig. 16.24. The ethylene molecule has its 
axis perpendicular to the plane of the PtCl3 group, and it occupies one of the 

ligand positions associated with square-planar coordination of the platinum. 

The bonding in this and other olefin-transition metal complexes is closely 

related to the bonding in transition metal carbonyls. Figure 16.25 illustrates 

the basic mechanism of bond formation. The ethylene molecule has two electrons 

in a 7r-bonding orbital which can be donated to the metal atom. The constructive 

overlap between the positive lobe of the ethylene 7r-orbital and the positive lobe 
of a metal dsp2 hybrid produces a molecular orbital which is bonding between 

the metal and ligand. In addition, there can be constructive overlap between 

the 7r* antibonding orbital of ethylene and one of the d-orbitals such as dxz 
which points out of the coordination plane. Any electrons which occupy this 

orbital in the atom can contribute to the metal-ligand bonding, and stabilize 

the complex. 

The most stable transition metal organic compounds involve the cyclopen- 

tadiene anion, C5Hjf, which has the structure 

where there is a CH group at each apex of the regular pentagon. Thus the 

cyclopentadiene anion has six electrons in a system of delocalized 7r-orbitals, 

very much like benzene. These six electrons can be denoted to a transition metal 

ion to form stable metal-ligand bonds. 
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The first compound of this type to be recognized and its structure understood 
was ferrocene, bis- (7r-cyclopentadienyl) iron (II). As Fig. 16.26 shows, ferrocene 

consists of a sandwich of iron between two cyclopentadiene rings. The rings 

are staggered with respect to each other, with the apices of one ring directly 

below the sides of the other. However, very little energy is required to rotate 

the rings into an eclipsed position, and in some sandwich compounds this 

arrangement is the more stable. 

fig. 16.26 Sandwich structure of ferrocene, (C5H5)2 Fe. 

It is of interest to note that in ferrocene, the iron atom is surrounded by 18 

valence electrons, which corresponds to the electron configuration of krypton. 

That is, the valence shell of ferrocene contains 6 electrons from Fe++, and 12 

electrons donated by the two cyclopentadiene anions. The ion (C5H5)2Co+ 

is isoelectronic with ferrocene, and is a very stable sandwich of Co+3 between 
2 cyclopentadiene anions. Dibenzene chromium, (C6H6)2Cr is a sandwich of 

neutral chromium atom between benzene rings. It also has 18 electrons around 

the central chromium atom, but is much less stable than ferrocene. 
One of the most compelling reasons for the considerable interest of chemists 

in transition metal-organic compounds is the importance of these substances as 

catalysts. For example, a complex of rhodium (I) permits the addition of hydro¬ 
gen to unsaturated organic molecules by a mechanism which involves metal- 

organic bond formation. This catalytic compound is RhCl(PPh)3, where PPh3 

stands for triphenylphosphine, phosphorous with three phenyl (CsH6) groups 

bonded to it. The mechanism of the catalysis is as follows. Hydrogen adds 
to the complex, and occupies as separate atoms two of the coordination sites 

around the rhodium: 

RhCl(PPh)3 + H2 = RhCl (PPh) 2 (H) (H) + PPh3. 

A molecule of the olefin to be hydrogenated (for example, ethylene) then adds 

to the sixth coordination site: 

RhCl(PPh) 2(H) (H) + C2H4 = RhCl(PPh) 2(H) (H) (C2H4). 

The hydrogen atoms add to the ethylene molecule, which then separates as 
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ethane, C2H6: 

RhCl(PPh) 2(H) (H) (C2H4) = RhCl(PPh)2 + C2H6. 

The rhodium complex is then ready to add a new hydrogen molecule and begin 
another catalytic cycle. 

Transition metal compounds are also important catalysts for polymerization 
reactions. Solid titanium trichloride is used to produce high quality polyethylene 

and polypropylene. The process is initiated by a reaction which produces an 

ethyl group (C2H5) bonded to a titanium atom at the surface of the catalyst. 

We can represent this surface atom by Ti(C2H5)L4, where L represents the 

surrounding ligands. If, as the formula indicates, one of the coordination sites 

is vacant, an ethylene molecule can add to it: 

Ti(C2H5)L4 + C2H4 = Ti(C2H5)L4(C2H4). 

This facilitates addition of the C2H5 group to the C2H4, and the result is a 

longer carbon chain (C4H9) bonded to titanium, and a vacant coordination site: 

Ti(C2H5)L4(C2H4) - Ti(C4H9)L4. 

The metal atom is then ready to receive another ethylene molecule, and continue 

the carbon chain building process. 

16.13 CONCLUSION 

The transition metals constitute most of the known chemical elements and 

display an enormous range of chemical and physical properties. Some of the 
behavior of these elements can be understood through use of the general con¬ 

cepts that were applied to the representative metals. That is, along any of the 

transition series, there is a general decrease in electropositive character that is 
associated with the increase in nuclear charge and ionization energy. In their 

lower oxidation states, the transition metals form oxides and halides that are 
best described as ionic compounds. In aqueous solution, the +2 and +3 tran¬ 

sition-metal ions tend to hydrolyze and produce acidic solutions. As was true 

for the representative metals, the higher oxidation states of the transition 
elements tend to be more acidic than the lower oxidation states. There are, 

however, some properties of transition metals that are not often encountered 
among the representative metals. The transition-metal ions are often colored, 

and we have seen that this phenomenon is a consequence of the splitting of the 
energies of the d-orbitals by the ligands surrounding the ions. The transition- 

metal ions are frequently paramagnetic, and this behavior also is a reflection 

of the energy separation of the d-orbitals. Indeed, there is a variety of chemical 
phenomena that have qualitative and quantitative explanations in terms of 

crystal-field theory and its refinements, as examination of the suggested reading 
will show. 
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PROBLEMS 

16.1 The metals Cu, Ag, and Au of group IB have properties that are very different 
from those of the alkali metals of group IA. Compare the enthalpies of vaporization 
and the ionization energies of elements in each of these two groups and suggest reasons 
why the elements of group IB are much less active reducing agents than the elements 

of group IA. 

16.2 Write balanced equations to complete each of the following. 

Au + CN_(aq) + O2 —*■ Cu++(aq) + Cu + I~(aq) —* 

VO++ Zn -» Fe++(aq) + 02 -» 

Co++(aq) + NH3(aq) + 02 -» MnO“ + H+ -» 

16.3 Suggest a reason why copper is a much poorer reducing agent than its neighbors 
nickel and zinc. 

16.4 Why is the complex ion [CoFg]-3 paramagnetic, while [Co(CN)e]-3 is dia¬ 
magnetic? 

16.5 Name the following complexes. 

[Zn(NH3)4]++ Co(NH3)3C13 
[FeF6]-3 [Fe(CN)6]-3 
[Ag(CN)2)~ [Cr(H20)6]+3 

16.6 What series of steps could be used to synthesize potassium manganate and 
potassium permanganate from Mn02? 

16.7 Stainless steel is an alloy of iron with approximately 18% chromium and 10% 
nickel. Suggest a reason why this alloy is corrosion resistant. 

16.8 Give some specific examples of the influence of the lanthanide contraction on 
the properties of the transition-metal elements. 
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16.9 Consider a solution that contains 0.10 mole of Fe(NC>3)3 per liter. Assume 
that [Fe(H20e]+3 is a monobasic acid and calculate the hydrogen-ion concentration 
in this solution. Now consider the second acid dissociation of the complex and calcu¬ 
late the hydrogen-ion concentration in the solution. 

16.10 Discuss the reasons why the reduction potential for manganous ion is more 
negative than those of chromous and ferrous ions. 

16.11 In the synthesis of compounds in which metallic elements are in high oxidation 
states, alkaline conditions are usually employed. Explain why. 

16.12 For which of the following reactions is the increase in entropy the largest? 

[Cu(NH2CH2CH2NH2)2]+++ 4H20 = [Cu(H20)4]++ + 2NH2CH2CH2NH2 

[Cu(NH3)4]+++ 4H20 = [Cu(H20)4]+++ 4NH3 

This question can be answered on the basis of the number of product molecules formed. 
Given that the bond energies are the same in both complexes, which will be the more 
stable with respect to dissociation? 
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CHAPTER 17 

ORGANIC CHEMISTRY 

The element carbon is unique: in combination with about a half-dozen other 

elements, it forms well over a million known compounds and thus it has a 
chemistry which is more extensive than any other element. Since the com¬ 

pounds of carbon are involved in all life processes, it is not surprising that 

there is enormous interest in the chemistry of this element. One of the most 
intriguing problems in science is that of uncovering the relations between 
molecular structure and physiological activity. But even apart from the bio¬ 

logically important compounds and their reactions, the richness and subtlety 

of the chemistry of carbon can account for the intensity with which it is studied. 
In this chapter we can present only a brief introduction to organic chemistry. 

We shall be concerned principally with classes of organic compounds and the 

characteristic reactions of the compounds in each class. Our object is to demon¬ 

strate the basis for systematizing the subject of organic chemistry and to convey 
something of the nature of the problems that an organic chemist attempts to 

solve. First, to see how such a large number of distinct compounds can arise 
from the combination of so few elements, let us examine the molecular struc¬ 

tures of the simplest carbon compounds, the alkanes or paraffin hydrocarbons. 

17.1 THE ALKANES, OR PARAFFIN HYDROCARBONS 

As their name implies, these are compounds of carbon and hydrogen only, and 

are comparatively inert (paraffin, from the Latin, means “small affinity”). 
The alkane of simplest structure is methane, CH4. As was discussed in Section 
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11.5, there are four equivalent carbon-hydrogen bonds in this molecule, and 
the four hydrogen atoms lie at the apices of a regular tetrahedron with the 

carbon atom at the center. The equivalence of the hydrogen atoms is an im¬ 

portant structural feature of methane, and should be noted carefully, for it is 
common practice to represent methane and other organic molecules by form¬ 

ulas that disguise this property. Figure 17.1 shows three representations of 
methane. The space-filling model and the ball-and-stick drawing show how the 

atoms are actually located in space and demonstrate the equivalence of the 
four hydrogen atoms. The conventional representation of methane is typo¬ 

graphically convenient, but can be misleading. The five atoms in methane do 

not all lie in one plane, and the implication that there are two kinds of hydrogen 

atom, those that are opposite and those that are neighbors, is incorrect and 
must be ignored. 

Three representations of the methane molecule: (a) conventional; (b) ball-and-stick 
model; (c) space-filling model. 

It is the ability of one carbon atom to form strong bonds to as many as four 

other carbon atoms that is largely responsible for the enormous number of 
organic molecules. This begins to be evident as we examine the other hydro¬ 
carbons. Xext in order of complexity is ethane, C2H6. Three representations 

of its structure are given in Fig. 17.2. Once again the space-filling and ball-and- 
stick pictures show the geometric properties of the molecule, and once again 

the conventional picture must be interpreted with care. In ethane there are 
six geometrically equivalent hydrogen atoms, three bonded to each of the two 
carbon atoms that are themselves linked by an electron-pair bond. The bond 

angles in ethane are all very close to 109.5°, the tetrahedral angle. Conse¬ 
quently, the simplest description of the bonding in ethane is that each carbon 
atom forms four sps hybrid bonds, three to hydrogen atoms and one to the 
other carbon atom. 

It is sometimes profitable to regard ethane as a derivative of methane, formed 
conceptually by replacing one of the four hydrogens of methane with a CH3 
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fig. 17.2 Three representations of the ethane molecule: (a) conventional; (b) ball-and-stick model; 

(c) space-filling model. 

fragment. We might represent this concept by 

H H H H 

H—C—H + C—H -» H—C—C—H + H. 

H H H H 

A fragment of a molecule, such as CH3, is called a radical, and since CH3 is a 
fragment of methane, it is known as the methyl radical. We shall find that 

other radicals can be formed from other hydrocarbons; the general term applied 

to any fragment of an alkane is alkyl radical. 

Propane, C3H6, can be derived conceptually by replacing one of the six 

equivalent hydrogen atoms of ethane by a methyl radical 

H H H H H H 

H—C—C • • • + C—H H—C—C—C—H. 

H H H H H H 

The group CH3CH2, derived from ethane by removal of a hydrogen atom, is 

called the ethyl radical. 

The structural representations of propane shown in Fig. 17.3 demonstrate 

that the eight hydrogen atoms are not equivalent, but fall into two groups: 

the six that are bonded to the exterior carbon atoms, and the two that are 
bonded to the interior carbon atom. Consequently, as we continue our con¬ 

ceptual process of generating paraffin hydrocarbons by replacing a hydrogen 
atom on propane by a CH3 group, we find two ways of making the substitution. 

If any one of the six equivalent hydrogen atoms on the exterior carbon atoms 

is replaced by CH3, the result is the molecule called normal butane, or n-butane, 
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(a) (b) 

Two representations of the propane molecule: (a) conventional; (b) ball-and-stick model. fig. 17.3 

whose structure is represented by 

H H H H 

H—C—C—C—C—H or CH3CH2CH2CH3. 

H H H H 
n-butane 

On the other hand, replacement of either one of the two hydrogen atoms bonded 

to the internal carbon atom of propane gives the molecule known as isobutane. 

CH3 

H—C—CH3 

I 
ch3 

isobutane 

The molecules n-butane and isobutane both have the molecular formula 

C4H10) yet they are distinct compounds with different physical properties and 
slightly different chemical properties. They are examples of positional isomers; 

molecules that differ by the sequence in which their atoms are bonded to each 
other. Hydrocarbons like n-butane, in which no carbon atom is bonded to more 

than two other carbon atoms, are called straight-chain hydrocarbons. Isobutane, 
on the other hand, is an example of a branchcd-chain hydrocarbon, for one of its 

carbon atoms is bonded to three other carbon atoms. 

Table 17.1 contains the names, formulas, and physical constants of the 
paraffin hydrocarbons containing five or fewer carbon atoms. The number of 
positional isomers increases rapidly as the number of carbon atoms increases. 

There are five isomers of CgHj^ nine of C7H16, eighteen of CgH18, and seventy- 
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Table 17.1 Some saturated hydrocarbons 

Name Formula MP(°C) BP(°C) 

Methane cm -183 -162 
Ethane C2H,; -172 - 89 
Propane C3Hg -187 - 42 
n-butane C4H10 -135 0 
Isobutane (CH3)3CH -145 - 10 
n-pentane C5H12 -130 36 
Isopentane CH3CH2CH(CH3)2 -160 28 
Neopentane (CH3)4C - 20 9.5 

five of CioH22. Despite the multiplicity of compounds, all hydrocarbon mole¬ 

cules have two structural features in common: each carbon atom is bonded to 

four other atoms by four electron-pair bonds, and the angle between any two 

bonds is always close to the ideal tetrahedral angle, 109° 28'. 

There is another class of paraffin hydrocarbons that consists of molecules 
in which the carbon chain is formed into a ring. These are the cycloparaffins, 

and the first member of the scries, cyclopropane, is pictured in Fig. 17.4. The 
carbon atoms in cyclopropane are at the apices of an equilateral triangle, and 

the hydrogen atoms lie above and below the plane of the three carbon atoms. 
In the four-carbon cycloalkane, cyclobutane, the carbon-carbon bond angles 

arc nearly 90°, and the carbon skeleton forms a slightly puckered square. In 
cyclobutane and cyclopropane, then, there is considerable departure from the 

109.5° bond angles found in other saturated hydrocarbons. In cyclopentane 
and other larger cyclic hydrocarbons, the atoms in the ring are arranged so that 

all the bond angles arc near 109°. 
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Table 17.2 The simple alkyl radicals 

ch3— CH3CH2— CH3CH2CH2— CH3CHCH3 

Methyl Ethyl n-propyl Isopropyl 

CH3CH2CH2CH2— CH3CHCH2CH3 (CH3)2CHCH2— (CH.OaC- 

n-butyl sec-butyl Isobutyl terf-butyl 

Nomenclature 

The large number of organic molecules presents a formidable problem in nomen¬ 

clature. Many familiar organic molecules have “common” names, based on 
their biological origin, the whim of their discoverer, or some other historical 

accident. To back up the common nomenclature, there are systematic methods 

for naming compounds which use the distinguishing structural features of a 
molecule for identification. Some of the formal rules of nomenclature are rather 

cumbersome, but fortunately we will need only the simplest of them to deal 
with the compounds we shall discuss. 

First, the names of the straight-chain hydrocarbons are assigned as shown 
in Table 17.1. The suffix ane (from alkane) is combined with a prefix which, 

after the C4 hydrocarbons, is derived from the Greek expression for the number 

of carbon atoms in the chain. Branched hydrocarbons are regarded as alkyl 

derivatives of the straight-chain hydrocarbon; that is, as molecules obtained 
by replacing a hydrogen atom of a straight-chain hydrocarbon by an alkyl 

radial. For example, isobutane is a methyl derivative of propane, and its 
systematic name is methyl propane: 

CH3 

Cl 13—c—CHa 
I 

H 

isobutane or 
methylpropane 

To name other hydrocarbons in this way, the names of the alkyl radicals are 

needed; some of these are given in Table 17.2. 

The name of a branched hydrocarbon is assigned as follows. The longest 
straight hydrocarbon chain in the compound is found and the molecule treated 

as a derivative of this hydrocarbon. As we noted above, isobutane contains a 
chain of three carbon atoms, and is considered to be a methyl-substituted 
propane. The next step is to number the chain starting at the end of the mole- 

17.1 I THE ALKANES, OR PARAFFIN HYDROCARBONS 749 



cule which is closest to the branches. Thus we would have 

ch3 ch3 

ch3chch2ch3 ch3ch2c—ch2ch2ch3 

1234 CH3 
1 2 4 5 6 

The positions of the alkyl substituents are given by the number of the carbon 

atom to which they are attached. The names of these alkyl groups are prefixed 

to the name of the parent hydrocarbon. Thus our examples are named 

CH3 CH3 

ch3chch2ch3 ch3ch2c—ch2ch2ch3 

ch3 

2-methylbutane 3,3-dimethylhexane 

The naming of compounds more complicated than hydrocarbons requires only 

minor extensions of these rules, as we shall see in the next sections. 

17.2 FUNCTIONAL GROUPS 

The multiplicity of hydrocarbon structures suggests that the number of mole¬ 
cules that can be constructed from the combination of carbon and hydrogen 

with nitrogen, oxygen, sulfur, etc., should be virtually limitless. The prospect 
of having to master the chemistry of a significant fraction of these compounds 

would be exceedingly depressing, were it not for the fact that organic com¬ 

pounds can be grouped into a few classes, members of which have very similar 

chemistry. The basis for this enormously helpful classification is the functional 

group, a group of atoms that occurs in many molecules and which confers on 

them a characteristic chemical reactivity, regardless of the form of the carbon 
skeleton. There are a number of different functional groups, but only about a 

half dozen that are of frequent occurrence. Thus instead of having to cope 

with the chemistry of a million compounds, we need only study the chemistry 
of a half-dozen functional groups. 

Common Functional Groups 

The functional groups of most frequent appearance and greatest importance 
occur in the following classes of molecules. 

1. Alcohols contain the hydroxyl group, —OH, bonded to a hydrocarbon frame¬ 

work. The alcohols are named after the alkyl group to which the hydroxyl 

group is attached, or alternatively, the final e in the name of a hydrocarbon 
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is replaced by ol. Typical alcohols are 

H II H 

H—C—OH H—C—C—OH 

H H H 

methyl alcohol ethyl alcohol 
or methanol or ethanol 

H H H 

H—C—C—C—H 

H O H 

H 

isopropyl alcohol 
or isopropanol 

2. Acids contain the carboxyl group, 

0 

which is often represented by —COOH. As examples we have 

0 H 0 0 ( 
✓ 1 -/ \ ^ 

I—c H—C—C C—C 
\ 1 \ / \ 

0—H H 0—H H—0 ( 

formic acid acetic acid oxalic acid 

The suffix ic is used to indicate the presence of the carboxyl group, or 

alternatively, the final e in the name of a hydrocarbon is replaced by oic. 

Thus formic and acetic acids can be called methanoic and ethanoic acids 

respectively. 

3. Aldehydes and ketones contain the carbonyl group, 

\ 
0=0. 

/ 

In aldehydes, one of the two undesignated bonds is to a hydrogen atom; in 

ketones, both bonds link the carbonyl group to carbon atoms. Thus we have 

H 

\ 
C=0 

/ 
ch3 

acetaldehyde 

CH3 
\ 

c=o 
/ 

ch3 

acetone 
(a ketone) 
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4. Alkenes incorporate the carbon-carbon double bond, 

C=C 

/ \ 

and arc sometimes called olefins. A few examples are 

H CH3 II CM 2 
\ / \ / / \ 

C=C c=c CH CH2 
/ \ / \ 

H H H CH CH2 

ethylene 
or cthene 

propylene 
or propene 

\ / 
ch2 

cyclohexene 

To name an alkene, the ane ending in the name of the corresponding alkane 

is replaced with ene. Sometimes the suffix ene is added to the name of the 
alkyl radical that contains the appropriate number of carbon atoms. Thus 

the two-carbon alkene is ethylene, since the two-carbon alkyl radical is the 
ethyl radical. 

5. Ethers have an oxygen atom bonded to two carbon atoms, C—0—C, and in 

a sense are derivatives of alcohols. Two examples of ethers are 

CH3OCH3 CH3OCH2CH3. 

dimethyl ether methyl ethyl ether 

6. Esters contain the group 

0 

\ 
0—c 

and are the result of the reaction between an alcohol and an acid. Examples 
derived from acetic acid and methyl alcohol, and from formic acid and ethyl 

alcohol, respectively, are 

0 
S 

CHa—C 
\ 

0—ch3 

methyl acetate 

O 
✓ 

H—C 
\ 

0—ch2ch3 

ethyl formate 

The first part of the name of an ester is the name of the alkyl radical corre¬ 

sponding to the alcohol from which the ester is formed. The second part of 
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the name uses the suffix ate with a prefix derived from the name of the acid 
constituent of the ester. 

7. Amines contain the amino group, —NH2. These molecules can be thought 
of as derivatives of ammonia: 

CH3NH2 ch3ch2nh2. 

methylamine ethylamine 

There are other amines in which two or three alkyl groups are bonded to 
nitrogen: 

(CH3)2NH (CH3)3N. 

dimethylamine trimethylamine 

The naming of these compounds involves a straightforward combination of 
the names of the alkyl radicals with the suffix amine. 

The great simplifying feature of organic chemistry is that the majority of 
the chemical reactions involve changes of the functional group only, with no 
change in the carbon framework of the molecule. This observation is sometimes 

called the principle of skeletal integrity, since the carbon skeleton of an organic 
molecule remains unchanged as the functional groups are altered. 

There are a large number of reagents, organic and inorganic, which react 
with the various functional groups. Once again, however, there is a classifica¬ 

tion scheme that simplifies the chemistry considerably. Most reactions of the 
functional groups fall into one of the following classes. 

1. Displacement reactions. These are processes in which one functional group 
is displaced (or replaced) by another. 

2. Addition-elimination reactions. Often a functional group is modified by the 

direct addition of new atoms to it. The reverse process is also possible; a 

functional group is sometimes changed by losing or eliminating atoms. 

3. Oxidation-reduction reactions. The name speaks for itself; some functional 

groups can be oxidized, others can be reduced, and still others can undergo 
both types of reactions. 

There are other, less important, types of reactions of functional groups, and 
each of the three we have listed might be broken down into more subtle sub¬ 

divisions. Nevertheless, we have now a scheme that helps considerably to 
organize the chemistry of organic molecules. Let us now examine the reactions 

of the functional groups and look for specific examples of these types of reaction. 

17.3 REACTIONS OF ALCOHOLS 

Table 17.3 gives the names, formulas, and physical properties of a few alcohols. 

Methanol, ethanol, and the propanols are colorless nonviscous liquids completely 
miscible with water, but as the carbon chain lengthens, alcohols approach the 

behavior of hydrocarbons and the water solubility decreases. The alcohols in 
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Table 17.3 Physical properties of alcohols 

Name Formula MP(°C) BP(°C) 

Methyl alcohol 
Ethyl alcohol 
n-propyl alcohol 
Isopropyl alcohol 
n-butyl alcohol 
Isobutyl alcohol 
sec-butyl alcohol 
tert-butyl alcohol 

CH.3OH 

CH3CH2OH 

CH3CH2CH2OH 

(CH3)2CHOH 
CH3(CH2)3OH 
(CH3)2CHCH2OH 
CH3CHOHCH2CH3 

(CH3)3COH 

- 97 65 
-114 78 
-126 97 
- 89 82 
- 90 118 
-108 108 

100 
25 83 

Table 17.3 are of three different kinds, called primary, secondary, and tertiary, 

according to the number of alkyl radicals attached to the carbon atom bearing 

the —OH group. Thus we have 

RCH2OH R—CHOH 

R' 
a primary a secondary 

alcohol alcohol 

R" 

R—C—OH 

R' 
a tertiary 

alcohol 

where the symbol R is used to represent any alkyl group. 

Alcohols are named systematically as derivatives of hydrocarbons, with the 
chain numbering chosen to give the atom bearing the functional group the 
lowest number, as illustrated by 

CH3CHCH2CH3, 2-butanol; not 3-butanol, 

OH 

CH3CHCH2CHCH3, 4-methyl-2-pentanol; not 

CH3 OH 2-methyl-4-pentanol. 

The boiling points of the alcohols are higher than those of alkanes which have 

approximately the same molecular weight and number of electrons. This is a 

consequence of hydrogen bonding: the association between a hydrogen atom 
on one hydroxyl group with a pair of electrons on the hydroxyl group of another 

molecule. This hydrogen bonding suggests that alcohols can act as very weak 
acids and bases. In fact, alcohols do accept protons from the strongest acids, 
according to the reaction ROH -f H+= ROH^, but the equilibrium con¬ 

stants for such reactions are very small. The hydroxyl group is also very weakly 
acidic, as evidenced by 

ROH + Na -> RONa + £H2, ROH + NaOH -> RONa + iH20. 

754 ORGANIC CHEMISTRY | 17.3 



Compounds of the type ROXa are called alkoxides, and consist of the ions 
RO~ and Na+. The hydroxyl group bonded to an alkyl radical has only very 
limited acid-base properties: it acquires protons only from the strongest acids, 
and releases its proton to none but the strongest bases. 

Displacement Reactions 

The hydroxyl group can be displaced by a number of reagents. Typical of such 
reactions are 

HBr + CH3CH2OH -c CH3CH2Br + H20, 

ethyl bromide 

HI + CH3OH -» CH3I + H20. 

methyl iodide 

Displacement reactions have been investigated very thoroughly, and their 
reaction mechanisms are known. For example, the rate of the reaction of HBr 
with a primary alcohol like ethanol is found to be proportional to the concen¬ 
trations of H+, Br-, and the alcohol. That is, 

d[CH3CH2Br] = fcexp[H+][Br-][CH3CH2OH]. 

A mechanism consistent with this rate law is 

CH3CH2OH + H+ = CH3CH2OH£ (fast equilibrium); 

CH3CH2OH^ + Br~ CH3CH2Br + H20 (slow). 

The second step is slow and rate-determining, and since it is an elementary 
process, its rate law is 

^[gggCHjBr] = ^[Br-jfGHgCHaOHj]. (17.1) 

Since the first step in the mechanism is rapid, and the reactants and products 
are at equilibrium, [CH3CH2OH^] = X[H+][CH3CH2OH], and substitution 
of this expression in Eq. (17.1) gives the experimentally observed rate law, 
with kexp = k2K. 

Further substantiation of this mechanism comes from the observation that 
the rate of displacement of a hydroxyl group by the various halide ions depends 
on the identity of the ion. That is, for 

ROH + H+ + 

| F- 
cr 

Br¬ 

i¬ 

ll X + H20, 
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the reaction rate constants are in the order F- < Cl- < Br- < I”. The 

sensitivity of the reaction rate to the nature of the halogen shows that the 
halide ion is involved in the rate-determining step of the mechanism. 

Other types of investigations of these displacement reactions have provided 

a convincing picture of the way in which the halide ion displaces the protonated 

hydroxyl group: 

H CH3 H 

\y +/ 
Br- C—0 

'- A \ 
H H 

CH3 II 

y / 
Br • • • C • • • O 

„ A \ 
H 

transition state or 
activated complex 

Br—C H + H20. 

That is, the halide attacks the “back side” of the C—0 bond, and causes the 
molecule to invert its geometric arrangement as the H20 group leaves and the 

halide becomes attached to the carbon atom. 

The mechanism we have discussed operates for the displacement reactions 
of primary and second alcohols. Tertiary alcohols behave somewhat differ¬ 

ently. The rate of the reaction 

CH3 ch3 

CH3—C—OH + H+ + Br- -> CH3—C—Br + H20 

ch3 ch3 

ierf-butyl alcohol ier£-butyl bromide 

is proportional to the concentration of H+ and of alcohol, but does not depend 

on the concentration of the halide ion. That is 

rf[(CH3)3CBr] 
dt 

WH+][(CH3)3COH], 

Moreover, the rate of reaction does not depend on the nature of the halide ion: 

F-, Cl-, Br-, and I- all react with £er£-butyl alcohol at the same rate. Con¬ 
sequently, the mechanism of the displacement reaction of a tertiary alcohol 

must have a rate-determining step that does not involve the halide ion. A mech¬ 

anism consistent with these and other data is 

ch3 ch3 

I X I 
CH3—C—OH + H+ = CH3—C—OH+ (rapid equilibrium), 

ch3 ch3 
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+ h2o (slow), ch3 

ch3 

CH, CH, 

-C—OH+-^-> CH3—C 

\ 
ch3 ch3 

ch3 ch3 

+/ 
C + Br- - -> CH3—C—Br 
\ 

ch3 ch3 

(fast). 

The species (CH3)3C+ is called a carbonium ion. It is a stable but very reactive 

fragment and combines rapidly with the halide ion to give the final product. 
The rate of the reaction is equal to the rate of the slow step: 

iKCH^CBr] _ 4(C_H3),C+] _ 

The reaction 

[(CH3)3COH+] = K[(CH3)3COH][H+] 

also holds, so the overall rate law is 

- &iK[H+][(CH3)3COH], 

which is what is found by experiment, with 

^-exp /Ci K. 

The displacement reactions of alcohols are good examples of how the re¬ 
actions of a functional group can be influenced by the nature of the carbon 
skeleton to which it is attached. Primary, secondary, and tertiary alcohols all 

undergo the displacement reaction with halides, but the reaction mechanism 
followed by tertiary alcohols is different from that followed by primary and 

secondary alcohols. The carbon skeleton thus may influence the rate and mech¬ 
anism of a reaction of a functional group, but usually does not change its overall 
nature. 

Before concluding the discussion of displacement reactions of alcohols, we 
might remark that alcohols can be formed from alkyl halides by a displacement 
reaction. Thus the process 

CH3CH2Br + OH- -> CH3CH2OH + Br~ 

illustrates a convenient way to convert an alkyl halide to an alcohol. 
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The Elimination Reaction 

The second major type of reaction that alcohols undergo is the elimination 

reaction. Two examples are 

ch3ch2oh ch2=ch2 + h2o, 

(CH3)3COH c=c + h2o. 

H CH3 

H CH3 

/ 

We see that the elimination reaction of alcohols is a “dehydration” reaction 

that forms an alkene. The dehydration of alcohols is a convenient method of 

synthesizing alkenes, and this reaction is important both in the laboratory and 

as an industrial process. In general, tertiary alcohols are easier to dehydrate 
than secondary alcohols, which in turn dehydrate more readily than primary 

alcohols. The facility with which tertiary alcohols dehydrate is a consequence 

of the ease with which these molecules form carbonium ions. Thus the mech¬ 

anism of the dehydration of a tertiary alcohol is 

CH3 ch3 

CH3—C—OH + H2S04 = CH3—C—OHJ + HSO- 

ch3 

+ II20, 

ch3 

ch3 ch3 

+/ 
CH3—C—OH+ -+ CH3- -c 

\ 
ch3 ch3 

ch3 h CH 

+/ \ / 
CH3—C -* C=C + H+. 

\ / \ 
ch3 h ch3 

That is, if the carbonium ion does not combine with a negative ion, it may 
lose a proton, and become an alkene. Secondary and primary alcohols do not 

form carbonium ions readily, and their dehydration follows a slower, more 

complicated reaction path. 

Oxidation Reactions 

The oxidation of alcohols can be accomplished by using a variety of oxidants, 

and is an important laboratory and industrial reaction. The oxidation of a 
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secondary alcohol by dichromate ion in acidic aqueous solution is a moderately 
rapid reaction and produces a ketone as the final product. For example, 

CH3 

CH3—C—OH -SsS 

H 

isopropanol 

CH3 

\ 
c=o 

/ 
ch3 

acetone 

ch3 

CH3CH2—C—OH 

H 

CH3 

\ 
c=o 

/ 
ch3ch2 

isobutanol methyl ethyl 
ketone 

When a primary alcohol is oxidized under the same conditions, the immediate 
reaction product is an aldehyde. 

H 

CH3OH Cr2°"> ^C=0 

/ 
H 

formaldehyde 

The aldehydes are themselves susceptible to further oxidation, and must be 
distilled out of the reaction mixture as they are formed, to prevent their 
destruction. 

We see from the examples that the oxidation of an alcohol produces a car¬ 

bonyl compound: primary alcohols yield aldehydes, and secondary alcohols 
give ketones. Tertiary alcohols cannot be oxidized without destruction of their 

carbon skeleton, and these reactions will not be discussed. 

H 

CH3CH2OH -^2z_> C=0 

GIF 

17.4 THE REACTIONS OF ALKENES 

Molecules that have included in their structure the carbon-carbon double 

bond are called alkenes. These compounds are said to be unsaturated because 
one of their principal reactions is the addition of reagents to the double bond. 

In contrast, alkanes are called saturated hydrocarbons because they do not 
undergo addition reactions. A few alkenes and their physical properties are 

listed in Table 17.4. The physical properties of the alkenes resemble those of 
the corresponding saturated hydrocarbons. Alkenes and alkanes with the same 

number of carbon atoms have similar boiling and melting points, and both 

types of hydrocarbon are insoluble in water. 
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Table 17.4 Physical properties of alkenes 

Name Formula MP(°C) BP(°C) 

Ethylene ch2=ch2 -169 -102 
Propylene CH:iCH=CH2 -185 - 48 
1-butene CH2=CHCH2CH:i - 6.5 
Isobutene (CH;j)2C=CH2 -141 - 7 
c/s-2-butene CH:(CH=CHCH:j -139 1 
frans-2-butene CHaCH=CHCHa 2.5 

A discussion of the electronic nature of the carbon-carbon double bond was 

given in Section 11.7. As noted there, the double bond can be pictured as 

consisting of a cr-bond and a 7r-bond between two carbon atoms that are sp2- 

hybridized. This qualitative description, while highly approximate, is consistent 
with the geometry of the olefinic group: the doubly bonded carbon atoms and 

the four other atoms attached to them all lie in a single plane, and all bond 

angles are near 120°, as Fig. 17.5 shows. 

fig. 17.5 The structure of ethylene. 

As is also discussed in Section 11.7, the nature of the a-ir double bond leads 

to the possibility of geometrical isomers. Consequently, there are two distinct 
geometrical isomers of 2-butene: 

CHa CHa CHa H 
\ / \ / 

C=( “4 c :=c 
/ \ / \ 

H H H CHa 

m-2-butene frans-2-butene 

The isomer as-2-butene has both methyl groups on the same side of the double 
bond, while in frans-2-butene the methyl groups are on opposite sides. As 

Table 17.4 shows, the two isomers of 2-butene have nearly the same boiling 
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and melting points. In addition, the two compounds have nearly the same 

molar free energies of formation: 71.9 kcal/mole for ds-2-butene, and 70.9 

kcal/mole for trans-2-butene. Thus the trans isomer is the more stable by a 
small amount. 

Addition Reactions of Olefins 

The most important reactions of alkenes involve addition of reagents to the 

double bond. An olefin will rapidly consume bromine, as in the reactions: 

CH2 = CH2 + Br2 -> CH2CH2 

I I 
Br Br 

1, 2-dibromoethane 

CH3 H ch3 
\ / I 

C=C + Br2 -► CH3C—CH2 

/ \ II 
CH3 H Br Br 

isobutene 1, 2-dibromo-2-methylpropane 

These reactions can be carried out merely by passing the hydrocarbon through 

a solution of bromine in water at room temperature. The addition of bromine 
to the double bond is the basis for a simple test that differentiates between an 

alkene and an alkane. The alkanes, saturated hydrocarbons, do not react with 

bromine except at elevated temperatures or under the influence of intense 
illumination by visible light. Consequently, if an unknown hydrocarbon is 

treated with bromine water, and the red color of bromine disappears, the pres¬ 

ence of a double bond in the hydrocarbon is indicated. 
An alkene can be converted to an alkane by addition of hydrogen to the 

double bond. These reactions are usually carried out by using a high pressure 
of hydrogen gas in the presence of a catalyst such as finely divided platinum, 

palladium, or nickel. 

CH3CH=CH2 + II2 ch3cii2ch3 

CH 

/ \ 
CH2 CH 

I I 
ch2 ch2 

\ / 
ch2 

cyclohexene 

pt 

V 

ch2 

/ \ 
ch2 ch2 

I I 
ch2 ch2 

\ / 
ch2 

cyclohexane 
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The halogen acids also add to the double bond. Two examples are 

Br 

CH3CH=CH2 + HBr -> CH3CHCH3 

isopropyl bromide 

Cl 

(CH3)2C=CH2 + HC1 -> CH3C—ch3 

ch3 

terf-butyl chloride 

These reactions illustrate the addition of an acid to unsymmetrical molecules, 

where the two doubly bonded carbon atoms have different numbers of hydrogen 

atoms attached to them. Such reactions follow a predictable course: the hydro¬ 
gen atom of the acid adds to that carbon atom which has attached to it the 

greater number of hydrogen atoms. The acid anion adds to that carbon atom 

which has the lesser number of hydrogens. This is known as Markovnikov’s 

rule and is further illustrated by the hydration reaction 

CH3CH=CH2 + H20 -5s®2i+ CH3CHCH3 

OH 

There is considerable evidence that addition of acids to double bonds proceeds 
by a mechanism involving a carbonium ion formed by the attachment of a 

proton to the olefin, 

CH3 

+/ 
(CH3)2C=CH2 + H+ -> CH3—C 

ch3 

ch3 

I 
CH3—C + Br- -*• CH3—C—Br 

\ I 
ch3 ch3 

It is clear from this reaction that the carbon atom to which the anion becomes 
attached is the one that bears the positive charge in the carbonium ion. The 

position of the positive charge is determined by the position of attachment of 

The second step of the mechanism is 

CH3 

+/ 
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the proton. For isobutene we have the following alternatives: 

CH3 

attachment of H+ here gives CH3—C—CH3, 
a tertiary carbonium ion; + 

attachment of H+ here gives (CH3)2CHCHj, 
a primary carbonium ion. 

Now there is considerable evidence that the order of stability of carbonium 
ions is 

R R H 

R—C—R more stable than R—C—H more stable than R—C—E 
+ + + 

tertiary secondary primary 

Recall, for example, that the carbonium ion plays a role in the substitution 

and dehydration of tertiary alcohols, which is one indication of the relative 
stability of tertiary carbonium ions. With the order of carbonium ion stabil¬ 

ities in mind, a little reflection leads us to conclude that the more stable 
carbonium ion is formed if the proton attacking a double bond adds to the 

carbon atom which has the greater number of hydrogen atoms attached to it. 
This, briefly, is the rationalization of the Markovnikov rule for addition 
reactions. 

Oxidation Reactions 

Alkenes react readily with a number of oxidizing agents. A simple test for the 

presence of the olefin group is the reaction with an aqueous acidic solution of 

permanganate ion. The purple color of permanganate ion disappears as the 
olefin is oxidized. The course of such a reaction is illustrated by the following 

examples: 

ch3 ch3 ch3 

\ / \Tn07 \ 
c= =c 4 > 2 C=0 

/ \ / 
ch3 ch3 ch3 

acetone 

II H 0 
\ S \f nOT ✓ c= Q mIU/4 ^ 

2CH3C 

/ \ \ 
ch3 ch3 OH 
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That is, the olefin is cleaved into two oxidized fragments. A carbon atom with 
two alkyl groups attached is converted to the carbonyl group of a ketone, while 

a carbon atom with one attached hydrogen becomes the carboxyl group of an 

acid. We can summarize the general features of the reaction by writing 

H R" OH R" 

\ / Mn0r / / 

/ \ \ \ 
R R' OR' 

17.5 CARBONYL COMPOUNDS 

The carbonyl group occurs in aldehydes and ketones. Some of these com¬ 

pounds have considerable importance in the chemical industry; many tons of 
formaldehyde are used every year to make plastics, and large quantities of 

acetone and other ketones are consumed as paint and lacquer thinners. The 

large number of reactions that the carbonyl group can undergo also makes 

aldehydes and ketones valuable starting materials in laboratory syntheses. 

FIG. 17.6 Schematic representation of the bonding and nonbonding valence orbitals of the carbonyl 

group. 

The carbon-oxygen double bond that occurs in carbonyl compounds is inter¬ 

mediate in length and strength between the single bond in alcohols and the 

triple bond in carbon monoxide. 

I \ 
—C—OH C=0 C=0 

I / 
1.42 A 1.22 A 1.13 A 
85 kcal 170 kcal 256 kcal 

The detailed picture of the carbon-oxygen double bond is in many respects 
similar to that of the olefinic linkage. Conventionally the double bond is 

thought of as consisting of a a- and a 7r-component linking the carbon and 

oxygen atoms which are regarded as being sp2-hybridized. Thus we have the 
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situation represented in Fig. 17.6. This description, while crude, is consistent 
with the geometry of aldehydes and ketones; the carbonyl group and the two 
atoms bonded to it lie in a single plane, and the bond angles about the carbcnyl 
carbon atom are, in general, near 120°. 

Because oxygen is more electronegative than carbon, the carbonyl group is 
polar with the oxygen atom negative. The extent of this polarity is suggested 
by comparison of the dipole moments of propylene and acetaldehyde: 

CH3CH=CH2 ch3ch=o 

M = 0.35 D, y = 2.65 D. 

These molecules are isoelectronic, but the aldehyde is considerably more polar 
than the alkene. The charge distribution in the carbonyl group can be repre¬ 
sented by 

\6+ 
C=0 : 

/ - 

The existence of this polarity and the presence of the pairs of nonbonded elec¬ 

trons on the oxygen atom suggest that aldehydes and ketones should be weak 
Lewis bases. As expected, these compounds can be protonated by strong acids, 
as in the reaction 

CH, CH, 

c=o + h2so4 C=OH + HSOj. 

CH, CH, 

The name aldehyde is derived from the observation that these molecules 
can be propared by a/cohol dehydrogenation at elevated temperatures, 

CH3CH2OH 
Cu 

250° C 
* ch3cho + h2. 

Individual aldehydes are named by combining the suffix al to the name of the 

longest straight-chain alkyl group. Thus we have 

CH3 

ch3ch2ch2cho ch3chch2cho. 
4 3 2 1 

butanal 3-methyl butanal 

The numbering of the carbon chain in such molecules always begins at the 

aldehyde group. 
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The designation ketone is derived from the name of the simplest such mole¬ 

cule, acetone. One systematic way to name individual ketones is to use the 

names of the two alkyl groups attached to the carbonyl carbon as in 

CH3 

CH3CCH3 CH3CCH2CH3 ch3—c—c—h 

0 o o ch3 

acetone or 
dimethyl ketone 

methyl ethyl 
ketone 

methyl isopropyl 
ketone 

For more complicated ketones the functional groups and substituents are 

located by number, 

CH3 O 

CH3CHCH2CCH3 4-methyl-2-pentanone 
5 4 3 “21 

OH 0 

CH2CH2CCH3 4-hydroxy-2-butanone 

We see that the suffix -one indicates that the compound is a ketone, and the 

carbon chain is numbered from the end nearest the carbonyl group. 

Addition Reactions 

Additions formed the most important class of reactions of the olefinic double 

bond, and they are equally important for the carbonyl double bond. One 
reaction, characteristic only of the carbonyl group, is the bisulfite addition 

reaction, 

R R 
\ I 

C=0 + HSO3 -* R—C—OH 

/ I 
R SO3 

The bisulfite addition product is an ion that can be precipitated as a sodium 

salt; this reaction is used as a method for separating aldehydes and ketones 
from other organic substances in mixtures. After the bisulfite adducts are 

separated and crystallized, the aldehydes or ketones can be regenerated by 

treatment of the adducts with strong acid. 
Two other addition reactions useful in demonstrating the presence of carbonyl 

groups in a compound are the following. Hydroxyl amine, NH2OH, and hy- 

drazone, NH2NH2, each add to the carbonyl bond, but the initial addition 
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products lose water to give the final compounds. 

R R R 

C=0 + NH2OH R—C—OH H2°> C=NOH 

R 

R 

R 

c=o + nh2nh2 

NHOH 

R 

R—C—OH - 

NHNH2 

R 

-H,0 

an oxime 

R 

\ 
c=nnh2 

/ 
R 

a hydrazone 

These reactions are useful in identifying molecules because oximes and hydra- 
zones are often crystalline compounds with characteristic melting points. 

A very useful addition reaction of carbonyl molecules involves an organo- 

metallic compound known as a Grignard reagent. These substances are con¬ 
ventionally represented by the symbol RMgX, where R is an alkyl group, and 

X is a halogen atom. Grignard reagents are prepared by the reaction of an 
alkyl halide with metallic magnesium in an ether solvent, 

CH3CH2Br + Mg 
ether 

CH3CH2MgBr, 

RX + Mg RMgX. 

This preparation must be carried out in the absence of water; one reason is 

that Grignard reagents react with water to give a hydrocarbon 

RMgX + H20 -> RH + iMg(OH)2 + £MgX2. 

This reaction can in fact be used to prepare a hydrocarbon from an alkyl halide. 
Grignard reagents react with carbonyl compounds in the following general 

way: 
R R 

\ I 
R'MgX + C=0 -> R—C—R' 

R OMgX 

Water is then added to hydrolyze the addition product to an alcohol, 

R R 

R—C—R' + H20 -» R—C—R' + £Mg(OH)2 + £MgX2. 

I I 
OMgX OH 
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Thus the reaction of a Grignard reagent with a ketone leads to a tertiary alcohol. 

The reaction with aldehydes gives secondary alcohols, 

R R R 

^0=0 + R'MgX -* H—C—R' H—C—R' 

OMgX OH 

It is clear that the Grignard reaction provides a way of introducing any desired 

alkyl group into a molecule. Therefore the reaction is often useful in the syn¬ 

thesis of new molecules. 

Oxidation-Reduction Reactions 

Ketones are highly resistant to oxidation; they react only with the strongest 

oxidizing agents, and the result is the destruction of the carbon skeleton. Such 

reactions are seldom of value, and we will not consider them further. In con¬ 

trast, aldehydes are very easily oxidized to carboxylic acids: 

\ 
C=0 

Ct2Q7) 

0 

R—C 
\ 

0—H 

This difference in response to oxidizing agents is the basis for qualitative tests 

that distinguish between aldehydes and ketones. Aldehydes, but not ketones, 

react with the complex ion Ag(NH3)^~ to give a bright “mirror” of metallic 

silver, plated on the walls of the reaction vessel, 

RCHO + 2Ag(NH3)2 + H20 -* RCOO" + 2Ag + 3NH| + NH3. 

Other functional groups like alcohols and olefins are not oxidized in this manner, 

so the test is quite specific to aldehydes. 
Both aldehydes and ketones can be reduced to alcohols in a number of ways. 

For example, 

R R 

\ et I 
C=0 + H2-> H—C—OH, 

/ I 
R R 

R R 

C=0 
Na 

C2H5OH 

R' 

* R'—C—OH, 

H 

CH2=CH—ch2 ch3 ch2=ch—ch2 ch3 

^c=0 + H—C—OH R'—C—OH + ^0=0 
/I I / 

R' CH3 H CII3 

768 ORGANIC CHEMISTRY 17.5 



These examples show that reduction of an aldehyde yields a primary alcohol, 
while a secondary alcohol is the product of ketone reduction. The last reaction, 

catalyzed by aluminum isopropoxide, A1(0R)3, is a very specific way of reducing 

the carbonyl group without simultaneously adding hydrogen to any carbon- 

carbon double bonds. Such highly specific reactions are very useful for effecting 
desired modifications of molecules that have more than one functional group. 

17.6 SYNTHESES AND STRUCTURE DETERMINATIONS 

Having discussed only a few reactions of organic molecules, we are in a position 

to see how the business of synthesizing new molecules is carried out. Suppose 

that we wished to make 3-hexanone, and 1-propanol was our only available 

organic compound. The simplest way to formulate a scheme for the synthesis 
of a compound is to work backward from the desired molecule. For the problem 

at hand, we know that 3-hexanone can be prepared by the oxidation of 3-hexanol, 

CH3CH2CHCH2CH2CH3 CH3CH2CCH2CH2CH3. 
I II 

OH 0 

Now 3-hexanol is a secondary alcohol, and thus can be prepared by the addition 

of a Grignard reagent to an aldehyde. The reaction we need is 

H 
/ 

CH3CH2C + CH3CH2CH2MgBr -> CH3CH2CHCH2CH2CH3 

\ I 
0 OMgBr 

propanal 

ch3ch2chch2ch2ch3 CH3CH2CHCH2CH2CH3 

I I 
OMgBr OH 

To carry out the preparation of 3-hexanol, then, we must have available pro¬ 

panal and n-propyl bromide. These can be obtained from 1-propanol in the 

following manner: 
H 

ch3ch2ch2oh ch3ch2c 
\ 

o 
tip. 

CH3CH2CH2OH -» CH3CH2CH2Br 

The propyl bromide is converted to the Grignard reagent by 

CH3CH2CH2Br + Mg CH3CH2CH2MgBr. 
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Thus we have found a set of reactions that can lead to the synthesis of 3-hex- 

anone from 1-propanol. 
As a second problem, let us attempt to prepare isobutene from 1-propanol 

and methyl bromide. The final product could be obtained by dehydration of 

ferf-butyl alcohol, 
CH3 CH3 II 

CH3—C—CII3 C=C + H20. 
'I / \ 

Oil CII3 H 

The necessary alcohol can be prepared from acetone and methyl Grignard 

reagent: 

CH3MgBr + 

CH3Br + Mg —* CH3MgBr 

CII3 ch3 ch3 

\ 
c=o - -> ch3—c—ch3 —^ ch3- -c-ch3 

/ 
ch3 OMgBr OH 

While acetone is the oxidation product of isopropanol, our starting material is 

1-propanol. To obtain isopropanol, we take advantage of the Markovnikov rule: 

ch3ch2ch2oh h-30--> CH3CH=CII2 + II20 

CH3CH=CH2 + H20 -► CH3CHCII3 

OH 

As a third example, let us plan the preparation of methyl cyclopentane, 

starting with cyclopentanone. The structures of the starting material and the 
products are similar enough so that we can proceed sequentially from reactants 

II2C—ch2 H2C—CH2 H2C—CII2 
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Because we are familiar with only a few reactions, these examples of synthesis 
have been very simple, and can only give some flavor of the problems solved by 
organic chemists. As the molecules to be synthesized become more complicated, 
the subtlety and interest of the problems increase. 

Another type of problem that we can demonstrate using reactions familiar 

to us is the determination of the structure of a molecule from its chemical 
behavior. For example, there are two compounds, A and B, with the empirical 

formula C3H6. Compound A reacts readily with bromine to give a colorless 
product, but compound B does not. What are the structures of A and B? 

From the empirical formula C3H6 and the general rules of valence, we see there 
are only two possibilities, 

CH2 

/ \ 
ch3ch=ch2 h2c-ch2 

propylene cyclopropane 

Since A reacts with bromine, but B does not, compound A must be an un¬ 
saturated molecule, and is therefore propylene. 

A similar, but more challenging, problem is the following. A compound 

C4H8 reacts with bromine water and adds one mole of hydrogen per mole of 
compound upon catalytic hydrogenation. When C4H8 is treated with aqueous 
permanganate, acetone is found in the products. 

To proceed with the structure determination, we note that the reactions 

with bromine and hydrogen show that the molecule is unsaturated, and thus 
must be one of the butenes: 

CH3CH2CH=CH2, CH3CH=CHCH3, (CH3)2C=CH2. 

Of these molecules, the only one which would give acetone upon oxidation with 

permanganate is isobutene, or 2-methyl propylene, and consequently this must 
be the unknown C4H8 compound. 

17.7 AROMATIC COMPOUNDS 

In Section 11.8 we discussed the nature of the electronic structure of benzene, 
C6H6, and pointed out that this molecule offers a particularly good example of 
multicenter bonding. There is a vast number of organic molecules whose struc¬ 

tures are based on that of benzene, and these are called aromatic compounds, 

as distinguished from aliphatic compounds which are related to alkanes. The 
multicenter bonding that exists in benzene and its derivatives confers charac¬ 
teristic chemical properties on aromatic compounds which are unique and very 

interesting. Before discussing the chemistry of aromatic compounds, let us 
review and extend our discussion of the bonding in benzene. 

X-ray crystallography and spectroscopic studies show that benzene is a 
planar molecule with the form of a regular hexagon. All C—C bonds are iden¬ 

tical, and all bond angles are 120°. There is no single valence formula made up 
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FIG. 17.7 Representation of benzene as a resonance hybrid of two extreme structures. 

of electron-pair bonds localized between pairs of atoms that is consistent with 

these geometric data. Consequently it is conventional to represent benzene as 

a resonance hybrid of two extreme structures as shown in Fig. 17.7. As noted 

in Section 11.8, this representation is to be interpreted to mean that the six 
7r-electrons are not localized between pairs of carbon atoms, but can each 

visit all six atoms in the ring. Thus benzene exhibits multicenter 7r-bonding. 

Another notation sometimes used to represent the multicenter 7r-bonding and 

complete equivalence of the C—C bonds is 

equivalent to 

where we have followed the usual convention of omitting the hydrogen and the 

carbon atoms. 
We have called attention to the fact that each type of chemical bond has a 

characteristic length which is nearly independent of the molecule in which the 

bond occurs. With this in mind we can compare the C—C bond length found in 

benzene with that in ethane and ethylene: 

H,C—CH; 

T.54 A 

H2C==CH2 

T.33 A 

The C—C bond in benzene is shorter than a single bond but longer than a 

double bond. This is consistent with the idea that the six 7r-electrons of benzene 

are distributed among six C—C bond regions and suggests that we might think 
of the C—C bond in benzene as neither a single nor a double bond, but as a 

1^ bond. 
We can pursue the relation between resonance and bond lengths a bit further 

by examining the resonance structures of naphthalene, CioHg. The important 

resonance structures are those in which all electrons are paired, and there are 
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Table 17.5 Bond lengths in naphthalene 

Bond 
Order 
Length (A) 

9—10 

li 
1.393 

1—2 2—3 1—9 
H If li 

1.365 1.404 1.425 

bonds only between neighboring atoms. For naphthalene there are only three 
such structures: 

We can see that in two of these three structures the bond between carbon 

atoms 1 and 2 is double. Thus we can assign this bond a bond order of If, and 
expect it to be longer than the double bond of ethylene (bond order 2), but 

shorter than the bond in benzene (order If). Table 17.5 gives the bond order 

and bond length for the various bonds in naphthalene. It is clear that there 
is a definite correlation between the bond lengths and the bond orders assigned 

from the resonance structures. Thus resonance structures are of use in under¬ 
standing the geometries of the aromatic compounds. 

Let us now examine the thermochemical evidence that concerns the bonding 

in benzene. As Table 17.6 shows, the heat evolved when olefins of various 
structures are hydrogenated is nearly constant at 28.6 kcal/mole of double 

bonds. This fact is consistent with the approximate constancy of bond energies. 

In the hydrogenation process the H—H and C=C bonds are destroyed and 
replaced with two C—H bonds and one C—C bond. If these bond energies are 

nearly constant, the AH of hydrogenation per double bond should be nearly 

constant, as is observed. This reasoning 

suggests that if the bonds in benzene 
were in fact three ordinary double bonds, 

AH for the reaction shown at the right 

+ 3H5 

Table 17.6 Enthalpy of hydrogenation 
of olefins, AH hydro* (kcal/mole) 

Name AH 

Ethylene -32.8 
1-butene -30.3 
c/s-2-butene -28.6 
trans-2-butene -27.6 
Isobutene -28.4 
2-methyl-l-butene -28.5 
Cyclohexene -28.6 
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should be approximately 3 X (—28.5) = —85.5 kcal/mole of benzene. The 
experimental value for AH is in fact only —49.8 kcal, considerably less than 

expected. This means that benzene is more stable, or lower in energy, than it 

would be if the bonding consisted of three conventional double bonds. 
There have been many attempts to use quantum mechanics qualitatively to 

explain the peculiar stability of the multicenter bonding in benzene, but the 
problem is complicated enough that no universally accepted explanation has been 

found. One quite logical and straightforward suggestion is that the multicenter 

bonding diminishes electron repulsion by permitting the 7r-electrons to be far 

from each other, but still be in regions between two nuclei. A structure that 

represents this situation is 

where electrons of one spin are indicated by crosses, and those of opposite spin 

by circles. The fact that the electrons are not grouped as pairs, but still are in 
regions near and between nuclei leads to the extra stability of this situation. 

Whatever the source of the extra stability, however, the empirical observation 
that multicenter bonding leads to energy lowering is very useful. This observa¬ 

tion is sometimes stated by saying that resonance between conventional struc¬ 

tures leads to a decrease in the energy of a molecule. This language can be 
misleading, for it tends to suggest quite incorrectly that the resonance struc¬ 

tures exist and the molecule oscillates between them. The real point is that the 

structure that actually exists has lower energy than any of the individual 
resonance structures we can draw using conventional localized electron-pair 

bonds. 
Further evidence for the unique nature and considerable stability of benzene 

comes from its chemical behavior. Although benzene is unsaturated, it does 

not usually undergo addition reactions, which are characteristic of the alkenes 

we have studied. Instead, the characteristic reaction of benzene is substitution, 

or displacement of a hydrogen atom, as evidenced by 

Br 

+ HBr 

X02 

+ h20 

+ HC1 
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In these reactions, substitution, not addition or oxidation, occurs. There are 

many other examples that might be added. The point is that reagents that 

ordinarily add to or oxidize the double bond in alkenes leave the multicenter 

7r-bond in benzene untouched and instead displace one of the hydrogen atoms 
attached to the benzene ring. 

The Mechanism of Aromatic Substitution 

The nitration of benzene and other substitution reactions of aromatic com¬ 

pounds have been carefully studied, and a rather detailed picture of the reaction 

mechanism has been generated. The nitration of benzene proceeds readily if a 
mixture of concentrated nitric and sulfuric acids is employed 

NO, 

[ 1 
hno3 ) 

H2S04 l\ D + h2o 

nitrobenzene 

Freezing-point depression measurements show that for each mole of nitric acid 

dissolved in sulfuric acid, four moles of particles are formed. This observation 
can be explained by postulating that the reaction 

2H2S04 + HN03 -> H30+ + 2HSOI + NO2 

occurs when nitric acid dissolves in sulfuric acid. The existence of the nitronium 

ion, XO^, in mixtures of nitric and sulfuric acids has been confirmed by spec¬ 
troscopic studies, and the nitronium ion is believed to be the reagent responsible 

for the nitration of aromatic compounds. The first step of the nitration reaction 

is the attack of the nitronium ion on the 7T-electrons of the benzene ring. 

H 

+ NO \ 
N02 

H + H 

H<. ~n< no2 NO 

The fact that three resonance structures can be drawn for the intermediate 
addition product shows that multicenter 7r-bonding between five of the carbon 

atoms still exists in the intermediate molecule. The loss of a proton to some 

proton acceptor, for example HSOF, leads to the restoration of the original 

7r-bonding system. 
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The important idea illustrated by the nitration mechanism is that attack 

on the benzene ring is generally accomplished by an electron-deficient species 

such as a positive ion, or the positive end of a polar molecule. Thus the mech¬ 
anism of the catalyzed bromination of benzene is the following: 

Br 8~ 8+ 

FeBr3 + Br2 —> Br—Fe—Br • • • Br 

Br 

+ + FeBr4 

When benzene derivatives undergo further substitution, a “directing effect” 

on the position of the new substituent is observed. Consider the following: 

The first isomer, ortho-dinitrobenzene, is formed in small amounts, while the 

most abundant product is meta-dinitrobenzene; para-dinitrobenzene is formed 

only in trace amounts. This pattern is quite general: whenever nitrobenzene 

undergoes further substitution by any reagent, the meta isomer is produced in 

greatest abundance. 
To explain the directing effect of a nitro group on further substitution, we 

note first that the nitrogen atom in the nitro group has a formal charge of +1. 

;o ''o';- 6' 
•* 4- * *■+•*• 

N N 

<-> o 
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With this in mind, consider the electronic nature of the intermediate formed 
when NO^ attacks nitrobenzene at the para position. 

no2 

r-o 0 
\+^ 

N 

A A 
+ NO t — <—> 

/\ 
L H no2 

The resonance structures suggest that the electronic nature of the para inter¬ 

mediate is such that an electron deficiency exists on the carbon atom to which 
the already electron-deficient nitrogen atom is attached. Such extreme local 

electron deficiency is not energetically favorable; thus the energy of the para- 

substituted intermediate is relatively high. This means that the activation 
energy of the para-substitution reaction is relatively large, and therefore the 
rate of this reaction should be small, and the yield of para-dinitrobenzene 

relatively unimportant. A similar argument can be constructed for the inter¬ 

mediate formed by the ortho attack of NO^ on nitrobenzene, as the reader 
can verify by writing the resonance structures of the intermediate. 

Attack at the meta position leads to an intermediate with somewhat more 

favorable electronic properties. 

In the resonance structures of this intermediate, the positive charge never 
occurs on the carbon atom to which the original nitro group is attached. Con¬ 
sequently, the extreme local electron deficiency encountered in ortho and para 

substitution is avoided, the meta intermediate is relatively more stable, and 
the rate of formation of the meta isomer is greater than that of the ortho and 

para isomers. 
Quite the opposite pattern of substitution is observed when anisole is nitrated. 

OCH3 

anisole 

OCH 

+ 

trace 

OCH3 

A 

no2 

most 
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In this case the ortho and para isomers are favored, and the meta isomer appears 

only in very small amounts. The explanation makes use of the idea that the 
OCH3 group of anisole can participate in the multicenter bonding of the benzene 

ring by donating electrons to it. 

: 0—CH3 +0—CH3 +0—CH3 +OCH3 

The resonance structures suggest that the electron density is increased, par¬ 

ticularly at the positions ortho and para to the anisole group. Now consider 

the resonance structures of the intermediate formed by para attack of NO^ 

on anisole. 

+OCH3 

Note that the last resonance structure shows that in the para intermediate, 

the OCH3 group can participate in multicenter bonding and donate electrons 

to the benzene ring. A similar conclusion can be reached concerning the ortho- 

substituted intermediate. In both cases the OCH3 group relieves the electron 

deficiency in the ring brought about by the attack of the nitronium ion. The 

meta intermediate does not have this property. 

That is, the OCH3 group cannot operate so as to remove positive charge from 
the ring. Because of this limitation, the energy of the meta intermediate is 

relatively high, and the rate of formation of the meta-substituted intermediate 

is relatively small. 
The examples we have discussed illustrate a generalization that has been 

very useful in explaining the nature of the substitution reactions of aromatic 

molecules. Groups like —N02 which are electronegative or which tend to draw 
electrons from the benzene ring have a meta-directing effect. Groups like 
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•—OCH3 that can act as a source of electrons at the ortho and para positions 
exert an ortho-para directing effect. With this rule it is possible to predict the 
course of a variety of aromatic-substitution reactions. 

17.8 ISOMERISM 

In our discussion of organic chemistry we have encountered three types of 
isomeric molecules. First, there are functional isomers: molecules with the 

same atoms but with different arrangements of them so as to give different 
functional groups. As a simple example we have C2H60: 

H H 

H—C—0—C—H 

H H 
dimethyl ether 

H H 

H—C—C—0—H 

H H 
ethyl alcohol 

A second type of isomerism occurs in -positional isomers: molecules that have 

the same functional groups placed in different positions on the carbon skeleton. 
For example, 

CH3CH2CH2CCH3 CH3CH2CCH2CH3 

0 0 

Br 

As 

Br 

The third type of isomerism with which we are familiar is geometrical isomerism: 
geometrical isomers differ with respect to the location of groups attached to a 

pair of doubly bonded carbon atoms. The following are geometrical isomers. 

cfs-stilbene trans-stilbene 
mp 1°C mp 124°C 

There is a fourth important type of isomerism which can arise if a molecule 

has no plane or point of symmetry. The isomeric molecules in this case are 
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related as the right hand is to the left: they are mirror images of each other 
but cannot be superimposed. Lactic acid is an example: 

COOH COOH 

The carboxyl group and the central carbon atom lie in the plane of the paper, 
while the CH3 and OH group project in front of the paper and the hydrogen 
atom behind. The two molecules shown are mirror images, but if we imagine 
an attempt to superimpose the two three-dimensional structures, we realize 
that it must fail. If the central carbon atoms, the COOH groups, and the H 
atoms are superimposed, the CH3 group of one molecule is coincident with the 
OH group of the other, and no amount of twisting can change this. Two mole¬ 
cules related in this way are called enantiomorphs (Greek enantios, opposite; 
morph, form). Two enantiomorphs have identical physical properties except 
in one respect. Both isomers rotate the plane that contains the electric vector 
of polarized light, but one isomer rotates the plane in a clockwise direction, the 
other in a counterclockwise direction. Compounds that rotate the plane of 
polarized light are said to be optically active, and consequently enantiomorphs 
are also called optical isomers. 

The requirement for optical isomerism is molecular asymmetry, and this can 
occur in several ways. Molecules such as lactic acid that have four different 
groups attached to a single carbon atom have neither a point nor a plane of 
symmetry, and can exhibit optical isomerism. Also, if a molecule has a coiled 
or helical structure, there are two ways in which the helix can exist—one 
having the sense of a right-handed screw thread, the other wound in the sense 
of a left-handed screw. These two forms of the same helix rotate the plane of 
polarized light in opposite directions and are optical isomers. 

Is it possible to determine the absolute configuration of enantiomorphs; 
that is, to be able to tell which of the two structures belongs to the isomer that 
rotates the plane of polarization clockwise? This is a very difficult problem, 
but it was solved in 1951 by an x-ray crystal-structure determination. In this 
experiment, the optical isomer of glyceraldehyde that rotates the plane of 
polarization in a clockwise (positive) direction was found to have the structure 

CHO 

CH2OH 

d- (+) -glyceraldehyde 
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In the name of this compound the (+) refers to the direction in which the 
plane of polarized light is rotated, and the d designates the structure in which 

the H and OH is in front, and the CHO and CH2OH behind the plane of the 

paper. Once the absolute configuration of D-(+)-glyceraldehyde had been 
determined, it was possible to assign configurations to molecules that could be 

made from it. For example, D-(+)-glyceraldehyde can be converted without 
disturbing the bonds at the asymmetric carbon atom to the lactic-acid isomer that 
rotates polarized light in a negative sense. 

CHO COOH 

H 
several steps 

OH 

CH2OH ch3 

d-(—)-lactic acid 

Thus the absolute configurations of the lactic-acid isomers are known. 

The compounds in living organisms are for the most part optically active. 
As an example, we have the amino acids whose general formula is 

R 

NH2CHCOOH 

Proteins are giant molecules consisting of many amino acids linked together. 
The amino acids have an asymmetric carbon atom, and thus can exist in two 
enantiomorphic forms. 

COOH COOH 

R R 

D-amino acid L-amino acid 

The amino acids recovered from the hydrolysis of proteins are all L-amino 
acids. The reason for this specificity is not known, but it has important con¬ 

sequences. The various metabolic processes in the body are sensitive to the 
configurations of the molecules ingested as foods and drugs. Despite the simi¬ 
larity of optical isomers, the natural processes of the body consume one isomer 
and not the other. Apparently the reason for this is that the protein enzymes 

that catalyze the metabolic reactions are made from molecules with asym¬ 
metric carbon atoms, and as a result can only associate with, and catalyze the 
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reactions of, molecules that have very specific geometric properties. There is 

much to be learned about this problem, and this accounts for a very active 
interest in the geometric properties of biologically important molecules. 

17.9 INDUSTRIAL ORGANIC CHEMISTRY 

One of the major technical developments of the 20th century is the use of organic 

chemicals to manufacture on a massive scale products which contribute to the 

comfort and variety of life. These important industrial organic processes range 

in chemical sophistication all the way from the controlled pyrolysis of crude 

petroleum to make low molecular weight hydrocarbons, to the subtle multistep 

syntheses of pharmaceutical agents. The products of industrial synthetic 
organic chemistry have had profound effects on the lifestyle in developed 

nations, and consequently it is appropriate to explore some of the processes used 

to manufacture these substances. 
First, it is important to understand that a powerful and ubiquitous practical 

influence in all of industrual chemistry is the ultimate cost of the product. As a 

result, many industrial processes are carried out using reagents and reaction 

conditions which would not be used at all in a chemical laboratory. For example, 

expensive oxidizing agents such as permanganate and chromate ions, which are 

commonly used in laboratory syntheses, are never used in the manufacture of 

chemicals like acetic acid and acetone, whose annual production is measured in 

billions of pounds. Instead, cheap oxidants like oxygen and nitric acid are used. 

In general, processes are sought in which the desired chemical is produced 

continuously, rather than in batches, and can be readily separated from by¬ 
products with a minimum number of time and energy consuming purification 

steps. The possible utilization of by-products is also a very important considera¬ 
tion in the selection of an industrial synthetic process. It is clear that when a 

chemical is manufactured in amounts of 109 pounds yearly, a saving of only a 

fraction of a cent a pound can be economically significant. 

Raw Materials—Coal and Oil 

The important bulk organic chemicals are for the most part those which can be 

obtained from the inexpensive, readily available raw materials coal and crude oil. 
Let us examine the origin, nature, and uses of these important forms of fossil 
carbon. 

Geological evidence indicates that coal had its origin in tree ferns and other 

vegetation growing in fresh water swamp areas approximately 300 million years 

ago. The action of the waters covered the dead plant material with sediment 

and allowed it to decompose in the absence of air. The pressure and increased 

temperature arising from the weight and insulation of the layers of sediment led 
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to the conversion of the dead vegetation to coal. In this conversion, cellulose 

and lignin, the carbohydrate components of wood, lost oxygen and were con¬ 

verted to hydrocarbon substances. Thus, while wood has a composition by weight 

of 50 percent carbon, 6 percent hydrogen, and 43 percent oxygen, bituminous 

coal has SO percent carbon, 6 percent hydrogen, and only 10 percent oxygen. 

All coals contain small but noticeable amounts of sulfur and nitrogen, and trace 
quantities of as many as 30 other elements. 

The chemical structure of coal is exceedingly complex. However, the basic 

units are benzene rings that are fused together in the following manner: 

These fused aromatic systems are linked together by aliphatic hydrocarbon 

chains and also have hydrocarbon chain appendages which incorporate oxygen, 

nitrogen, and sulfur atoms. The number of rings in the aromatic clusters tends 

to be greater in anthracite than in the softer bituminous coals. 

Given the complex molecular structure of coal, it is not surprising that it can 

be used to produce valuable industrial chemicals. Simple pyrolysis of bituminous 

coal at 1100°C yields a mixture of carbon monoxide and methane gases which 
can be used as fuel. In addition, there are produced quantities of methanol, 

ammonia, urea, and nitric acid which can be used in various industrial syntheses. 

Coal tar, the highest boiling fraction from the pyrolysis of coal, contains a variety 

of aromatic compounds, some of quite complicated structure. The solid carbon 

residue, or coke, is a valuable reducing agent in metallurgical processes. Pyrolysis 
of coal in the presence of hydrogen gas produces even greater amounts of simple 

and complex aromatic hydrocarbons, aliphatic hydrocarbons, and smaller 
amounts of coke. Even though important chemicals can be derived from coal, 

there has been little effort made to develop this type of use. Until 1974, the 
very low cost of petroleum made it the most attractive source of industrial 

organic chemicals, and the principal use for coal has been as a fuel. 

Crude oil and natural gas are the other major sources of reduced fossil carbon. 
Natural gas is an almost pure hydrocarbon mixture, and it consists mostly 

of methane and ethane, with smaller amounts of propane and butane. The 
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fact that its sulfur content is low makes natural gas a particularly attractive 
nonpolluting fuel. Crude oil also consists mostly of hydrocarbons, but it includes 
varying amounts of sulfur and oxygen containing compounds. Like coal, oil 

has a biological origin, and is usually found in areas which were marine sedimen¬ 

tary basins. Apparently, when marine plankton are precipitated and protected 

by sediment from contact with oxygen, they slowly decompose at moderate 

temperatures and pressures to yield a liquid hydrocarbon product. 

Crude petroleum can be separated by distillation into several fractions. So- 

called petroleum ether (which contains little if any ether functional groups) 

boils from 20-70°C, and includes C5 and C6 hydrocarbons. The higher boiling 

fractions include ligroin, C6-C7 (70-100°C); straight gasoline, C6-C12 (85- 

200°C); kerosene, C12-Ci4 (200-275°C); heating oils, C,5-Ci8 (275°C); and 

the highest boiling fraction yields lubricating oils, paraffin wax, asphalt, and tar. 

Included in most of these fractions are alkanes, cycloalkanes, and aromatics in 

varying amounts depending on the source of the crude oil. Because there is in 

crude oil a variety of chemicals which have very similar physical properties, 

it is usually not economical to separate any one compound, particularly if it has 

more than four carbon atoms in it. Instead, in petroleum chemistry the emphasis 

is placed on finding reactions which convert natural mixtures of hydrocarbons to 

more desirable mixtures, or to the low molecular weight hydrocarbons (C2-C4) 

which can be separated readily. As we shall see, these latter compounds are the 
starting materials in a great many industrial syntheses. 

Because of the availability of crude oil and the ease with w'hich it can be 

refined and transported, petroleum has become the single most important energy 

source in the United States and certain other highly industrialized nations. 

However, the known world resources of petroleum are limited, and in view of the 

value of oil as a source of industrial organic chemicals, its indiscriminant use as a 

fuel is a great mistake. 

Hydrocarbons 

In order to convert abundant high molecular weight hydrocarbons to the more 

valuable light alkanes and olefins, the higher boiling petroleum fractions are 

“cracked,” or subjected to temperatures of 700-900°C. In many cracking 

processes, catalytic agents, such as the transition metal oxides CrC>3, Mn203, 

and Fe2C>3 supported on alumina, are used to promote the formation of par¬ 

ticularly desirable hydrocarbon products. The result of cracking reactions is a 

mixture consisting mostly of C2, C3, and C4 olefins along with methane and 

hydrogen. The individual components can be separated readily. Some of the 
major uses for these C2-C4 olefins are indicated below. 

Acetylene is one of the most important light hydrocarbons in industry. It 

can be hydrated to give acetaldehyde which, in turn, can be oxidized to acetic 
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acid, a reagent important in the manufacture of acetate polymers: 

HC=CH + H20 -> CH3CHO CH3COOH. 

Also, a large number of acids can be added to acetylene to produce the vinyl 
monomers used to make a variety of polymers: 

HC^CH + HC1 —» H2C=CHC1, vinyl chloride; 

+ HCN —> H2C=CHCN, acrylonitrile; 

+ CH3COOH —* H2C=CHOOCH3, vinyl acetate; 

+ CO + CH3OH Nl(CO)4> H2C=C(CH3)COOCH3, 
methyl methacrylate. 

Addition of chloride to acetylene gives tetrachloroethane, a starting material 
for the production of cleaning solvents. 

Ethylene is also a very important cracking product, and has a large number 

of uses. It can be polymerized directly to polyethylene or hydrated to give 
ethanol or ethylene glycol: 

H2C=CH2 + H20 -> CH3CH2OH 

HOC1 -> C1CH2CH20H hc°3- > HOCH2CH2OH. 

Ethylene glycol is used as an antifreeze and cooling agent in engine radiators, 

and is one of the components in condensation polymers such as Dacron. Like 

ethylene, propylene can be polymerized directly or hydrated to give isopropanol: 

CH3CH=CH2 + H20 -> CH3HOHCH3. 

The oxidation of isopropanol is the principal way in which acetone is 

manufactured 

CH3CHOHCH3 ^ (CH3)2C=0 + H2. 

The mixture of butenes collected from the cracking process can be isomerized 

with acid catalysts to isobutene: 

CH2 = CHCH2CH3 + H+ -» CH3C+HCH2CH3 <- H+ + CH3CH=CH—CH3 

i 
(CH3)2CHCH^-^ (CH3)2C=CH2 + H+. 

Isobutene is the monomer used to make butyl rubber. In addition, isobutane 

and isobutene can be combined to produce isooctane, an important constituent 

of high-performance gasoline: 

(CH3)2C=CH2 + (CH3)3CH (CH3)2CHCH2C(CH3)3. 
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Synthetic Polymers 

By linking together low-molecular-weight organic compounds (monomers), it 

is possible to produce polymeric substances of very high molecular weight which 

have mechanical and chemical properties suitable for the manufacture of fibers, 

films, protective coatings, elastomers, tubing, containers, and insulating 

materials. Consequently, polymer manufacture is a very important component 
of the chemical industry. Through the understanding of the relationship 

between molecular structure and macroscopic properties, it has been possible to 

design synthetic polymers appropriate for many different types of application. 

There are two major types of polymerization process in use in the chemical 

industry, addition reactions and condensation reactions. Addition polymeriza¬ 

tion almost always involves monomers with one or more carbon-carbon double 

bonds, such as ethylene, propylene, isobutene, and the various vinyl monomers. 

Addition polymerization frequently is initiated by free radicals formed by heat 

or irradiation, and it proceeds by the following mechanism: 

Initiation: 

I —> 2R-, R- + CH2=CHC1 -> RCH2CHC1. 

Propagation: 

RCH2CHC1 + CH2=CHC1 -> RCH2CHC1CH2CHC1. 

Termination: 

R(CH2CHC1),„CH2CHC1 + R(CH2CHC1)„CH2CHC1 —* R(CH2CHCl)TO+n+2R 

R(CH2CHC1)toCH2CHC1 + R(CH2CHCl)nCH2CHCl -» 
R(CH2CHCl)mCH==CHCl + R(CH2CHC1)„CH2CH2C1 

R(CH2CHCl)mCH2CHCl + RH -> R(CH2CHCl)mCH2CH2Cl + R*. 

The possible chain termination reactions are a combination of two chains, 

disproportionation to an alkane and olefin by hydrogen atom transfer, and 

abstraction of a hydrogen atom from a saturated molecule. Careful control of 

the polymerization conditions must be maintained in order to produce a polymer 

of desirable molecular weight and mechanical properties. 
Addition polymerization can also be carried out using cationic initiators. 

This is the most common way to polymerize isobutene to butyl rubber: 

AlCls + H20 -> AICI3OH- + H+, 

H+ + (CH3)2C=CH2 -> (CH3)3C+, 

(CH3)3C++ CH2=C(CH3)2 -> (CH3)3CCH2C+(CH3)2. 
$ 

Addition of monomers to the chain continues until terminated by a reaction 

with an anion. Transition metal compounds, such as TiCl3, which form complexes 

with olefins also are used to catalyze addition polymerization. The polymers 
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produced in this manner have very regular geometric structures and tend to be 

more crystalline and higher melting than the same polymers produced by free 
radical reactions. 

By proper selection of monomer, combination of two or more monomers 
(co-polymerization), and control of the molecular weight of the polymer, it is 

possible to create by addition polymerization substances which serve a great 

variety of purposes. Some addition polymers such as polyethylene, polypropy¬ 
lene, and polyvinyl chloride have common or commercial names which reveal 

their chemical composition. Other polymers for which the connection between 

the commercial name and molecular structure is less obvious or nonexistent 

include Teflon (C2F4), Lucite (CH2=C(CH3)COOCH3), and Orion or Acrilan 
(CH2=CHCN). 

In condensation polymerization reactions, parts of the monomer units are 
eliminated and the polymer has a composition which is different from that of 

the monomers used to make it. The simplest example is the combination of 
bifunctional acids and alcohols to make polyesters, with the elimination of water. 

In practice, it proves to be more advantageous to make polyesters by reacting 

a bifunctional acid which has already been esterified with methanol. The 

reaction then proceeds by displacement of the methanol. For example, consider 

the reaction of ethylene glycol and dimenthyl terephthalate: 

Polymerization continues in a similar manner with the methanol being distilled 

from the reaction mixture as it is formed. The resulting polymer can be formed 

into a fiber known as Dacron, or a very strong film called Mylar. 

Another important condensation polymerization is involved in the formation 

of nylon. The starting materials are adipic acid and hexamethylenediamine, 

and the reaction proceeds to form a polyamide: 

«HOOC(CH.)4COOH + nH2N(CH2)6NH2 

'HO OH 
II 

■N—C(CH2)4C—N(CH2)6^ + 2nH,0. 

Because of the formation of hydrogen bonds between chains, nylon tends to be 

crystalline, has a high melting point, and considerable tensile strength. 
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17.10 CONCLUSION 

Organic chemistry is a vast but highly organized subject. Many reactions of 

organic compounds leave the carbon skeletons of the molecules largely un¬ 
altered and involve only the small number of atoms in a functional group. 

Each functional group has a set of characteristic reactions whose nature is only 

slightly dependent on the identity of the carbon skeleton to which the group is 
attached. Consequently, organic compounds can be classified and their reactions 
discussed in terms of functional groups. In this chapter we have discussed only 

a few of the more important reactions of the common functional groups. It 
should be clear from this introduction, however, that an extensive study of the 

detailed reactions of organic compounds is necessary if we are to understand 
the behavior of complex biological systems. 
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PROBLEMS 

17.1 Write the structural formulas of the following compounds: (a) 2, 2-dimethyl- 
butane; (b) 3-ethyl-2, 3, 4, 4-tetramethylheptane; (c) 2, 2, 4, 4-tetramethylpentane; 
(d) 4-methyl-3-hexanol; (e) 4, 4-dimethyl-2-pentanol; (f) 2, 3-dimethylbutanal; 
(g) methyl isopropyl ketone. 

17.2 How would you accomplish the following conversions? (a) Acetaldehyde to 
2-hexanol; (b) diisopropyl ketone to 2, 3, 4-trimethyl-3-pentanol; (c) tert-butyl bromide 
to 2, 2-dimethyl propanol. 

17.3 Give a procedure by which 3-ethyl-2-pentene can be synthesized from ethanol 
and inorganic reagents. 

17.4 Show how methyl ethyl ketone can be synthesized from ethanol and inorganic 
reagents. 

17.5 Write the structural formulas of the hydration products of the following olefins: 
(a) propylene; (b) 2-methyl-2-pentene; (c) 1-methyl cyclohexene. 

17.6 Give the name of the compound formed by the addition of 1IC1 to (a) isobutene; 
(b) 3-methyl-2-pentene. 
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17.7 Show how to prepare 1, 2-dibromo-2-methyl propane from isopropyl alcohol and 

methyl bromide. 

17.8 What are the products when the following hydrocarbons are oxidized with 

acidic permanganate solutions? (a) 2-butene; (b) 3, 4-dimethyl-3-hexene; (c) 2- 

methyl-2-butene. 

17.9 Draw the structure of the isomer of trinitrobenzene that would be easiest to 

synthesize from benzene, nitric acid and sulfuric acid. 
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CHAPTER 18 

BIO CHEMIS TR Y 

This topic includes all molecular phenomena associated with life processes, and 

is, therefore, a subject of enormous breadth, complexity, and challenge. Con¬ 

sequently, biochemistry is presently one of the most interesting and active 
areas of chemical research. In this chapter we shall find that the principles of 

stoichiometry, equilibrium, oxidation-reduction, chemical kinetics, and molec¬ 

ular structure discussed in earlier chapters are relevant to biochemical problems. 
In the last two decades in particular, application of chemical and physical 

techniques and principles to biological problems has produced an almost in¬ 

estimable increase in our understanding of life processes. 

18.1 THE CELL 

Although we are principally concerned with the molecular phenomena associated 

with the life process, a brief discussion of the structure of the biological cell is in 

order. The cell is the smallest unit capable of effecting and regulating metabo¬ 
lism, energy conversion and storage, and molecular synthesis. In order to 

understand how these chemical processes are related, we must have some famili¬ 
arity with cell structure and composition. Some of the chemical terms we shall 

use to describe the cell composition may not be familiar, but all are discussed 

in more detail subsequently in this chapter. 
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Cells occur in a variety of sizes and shapes, but the one shown in Fig. 18.1 
displays the general features relevant to our discussion. This cell is approxi¬ 

mately spherical, with a radius of about 2 X 10-3 cm. The gross volume of the 

cell is therefore approximately 3 X 10-8 cm3. The actual cellular surface area 
is greater than that of a sphere of the same radius, because the cell membrane 

contains numerous folds and irregularities. Since delivery of nutrients and 
removal of waste products occur largely by diffusional transport through the 

cellular membrane, the surface-to-volume ratio of the cell is important. Should 
the radius of the cell become too large, and the surface-to-volume ratio too 

small, transport to and from the cell may not properly match the rate of chem¬ 
ical processes within the cell. 

Ribosomes on the 
endoplasmic reticulum 

Lysosome 

Nuclear 
Mitochondrion 

Cell 
membrane 

A schematic representation of a generalized animal cell. FIG. 18.1 

The cell is approximately 80 percent water, by weight. The nonaqueous 

substances generally average 14 percent protein, 2 percent lipids or fatty 
materials, 1 percent materials related to starch, 2 percent ribonucleic acid, and 

1 percent deoxyribonucleic acid. These percentages vary according to cell 
function, and in addition to the major substances mentioned, there are minor 

amounts of physiologically important constituents like sodium ion (~0.02 M) 

and potassium ion (~0.1 M). 

A membrane approximately 100 A thick surrounds the cell. In animal cells, 
this membrane has a “sandwich” structure consisting of a lipid layer between 
two layers of protein which are each approximately 25 A thick. The membrane 

is flexible and readily permeable to small molecules. 
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There are a number of substructures within the cell. The nucleus is sepa¬ 

rated from the main aqueous body or cytoplasm by a double-layered, slightly 
porous protein membrane. The nucleus serves as the site for storage and trans¬ 

mission of hereditary characteristics. This genetic control is accomplished by 
deoxyribonucleic acid (DNA) molecules, whose general structure we will study 

in Section 18.6. 
Animal cells contain mitochondria, small rod-shaped particles concerned with 

chemical degradation of fats, part of the carbohydrate metabolism, and produc¬ 

tion of the energy-rich compound adenosine triphosphate (ATP). 
The lysosomes are intracellular particles somewhat smaller than the mito¬ 

chondria. They contain enzymes that catalyze the degradation of various 
complex molecules in the cell. The controlled use of these enzymes permits the 

cell to digest large molecules and membrane material. 
The cell contains a highly folded, maze-like membrane called the endoplasmic 

reticulum. In certain areas of this membrane there are attached granular par¬ 

ticles of about 300 A diameter called ribosomes. The ribosomes are made up of 

lipid, protein, and ribonucleic acid (RNA), and are of extreme interest, since 

they are the sites at which protein synthesis occurs. 
We see that within the cell there are regions which are associated with quite 

different types of metabolic, synthetic, and transport processes. The operation 

of the cell involves concerted, coupled action by these components, each of 
which is itself a highly complex chemical system. The aim of biochemistry is 

to achieve an understanding of the operation of these systems by studying the 

structure and chemistry of lipids, polysaccharides, proteins, nucleic acids, and 

other cell constituents. 

18.2 BIOCHEMICAL ENERGETICS 

From our sketch of cell structure and function we can see that the energy¬ 
releasing metabolic processes occur at sites which are removed from the places 

where the often energy-consuming synthetic reactions go on. Moreover, much 

of the food metabolism occurs at a slower rate and at a different time from the 
energy-consuming muscle action. If the energy released by metabolism is not 

to be lost as heat, it must be stored as internal energy of molecules which can 

easily be transported to the appropriate places and used at the proper time and 
rate. The molecule of central importance in this energy storage and transport 

is adenosine triphosphate, or ATP. Its structure, shown in Fig. 18.2, should 
be examined carefully. It consists of a polyphosphate chain attached by an 

ester linkage to the sugar ribose. The nitrogen-containing base adenine is 
attached to the ribose fragment at another position. This base-sugar-phosphate 

structure is important not only because it occurs in ATP, but because it is the 

fundamental unit in nucleic acids, and in a number of other molecules involved 

in metabolism and synthesis. 
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The structure of adenosine triphosphate (ATP). FIG. 18.2 

In the course of oxidative metabolism, ATP is formed from adenosine 
diphosphate (ADP) and inorganic phosphate ions: 

Food metabolism 

ADP + phosphate- - ATP 

Thus the energy for the ADP-to-ATP conversion comes from the oxidative 

metabolism of foods. This “stored” energy can be recovered when needed by 
the hydrolysis of ATP: 

ATP H20 —» ADP + phosphate, AG° = —8 kcal, 

or by other reactions in which a phosphate group is transferred from ATP to 

another molecule. Because free energy decreases upon conversion of ATP to 
ADP or to adenosine monophosphate (AMP), the phosphorus-oxygen bonds 

in these molecules are often referred to as “energy-rich” or “high-energy” bonds. 

This terminology, in common use in the biochemical literature, may be some¬ 
what confusing, since a biochemist’s “high-energy bond” is, in fact, a weak bond, 

and not one with a high bond-dissociation energy. 
There is one other property of ATP which is important to its biochemical 

function. Although ATP is thermodynamically unstable with respect to hy¬ 
drolysis, this reaction is very slow. Consequently, ATP is kinetically stable, 

and its energy-releasing reactions occur only when the appropriate enzyme 
catalyst is provided. This is the means by which the energy-release processes 

are controlled. 
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As a simple example of how the energy stored in ATP can be used, consider 

the following. The AG° of the esterification reaction 

0 

RCOOH + R'OH -► RC—OR' + H20, A<?° = +2 kcal 

is positive, and consequently the ester synthesis does not proceed to completion. 
A more complete conversion can be obtained by coupling the esterification to 

the hydrolysis of ATP. The coupling can occur by the following two-step 

process: 

O 0 
II II 

RCOOH + ATP -» RC—O—POH + ADP, AG° £* —3 kcal, 

OH 

0 0 0 

RC—0—P—OH + R'OH -> RC—OR' + H3P04, AG° —3 kcal. 

OH 

The overall reaction 

RCOOH + R'OH + ATP -> RCOOR' + H3P04 + ADP, AG° ^ —6 kcal 

has a negative free-energy change, and proceeds largely to completion. Thus, 
ATP formed by an exothermic metabolic reaction can be used subsequently to 

carry out a necessarj" synthetic or degradative reaction whose energetics may 
be quite unfavorable. The general phenomenon of the coupling of endo- and 

exoenergetic reactions is extremely important in biochemical systems, as the 

following discussion will demonstrate. 

Oxidation-Reduction Reactions 

In the cell, oxidation of foodstuffs releases energy which is used subsequently 
for macromolecular synthesis, transport of matter, and muscle action. The 

complete oxidation of a carbohydrate food like glucose releases an enormous 

amount of energy: 

C6H12Oo + 602 -* GH20 + 6C02, AH = -686 kcal. 

In biochemical systems, oxidations of complex molecules do not take place in 

a single step. In contrast, they occur by a series of a dozen or more reactions, 
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which successively break down the original molecule into smaller, more highly 
oxidized species, and eventually produce carbon dioxide and water. The energy 

released in at least some of these individual metabolic steps must be used 
directly or indirectly to convert ADP to ATP. 

Even the individual steps in the metabolic sequence do not directly involve 
molecular oxygen. Oxygen is Such a powerful oxidizing agent that the energy 
released in even the partial oxidation of an organic substrate molecule is so 

large that it could not be used or stored efficiently. For example, the direct 

oxidation of malic acid to oxaloacetic acid would release 46 kcal of free energy: 

COOH COOH 

HCOH + ^02 -» c=o 

ch2 ch2 

COOH COOH 

Malic Oxaloacetic 
acid acid 

H20, AG0 = —46 kcal. 

The large driving force of this reaction would be largely wasted if it were to 
occur directly. Instead, in the mitochondria of the cell, a much weaker oxidant, 

nicotinamide adenine dinucleotide (NAD+), carries out the oxidation of the 
substrate : 

COOH COOH 

HCOH + NAD+ -> C=0 + NADH + H+. 

CH2 ch2 
I I 

COOH COOH 

Because NAD + is not a particularly strong oxidant, its reduced form NADH 

can be oxidized by a slightly stronger oxidant found in the cell, flavin adenine 

dinucleotide (FAD). Concurrently, ADP and inorganic phosphate (designated 
by Pj) is converted to ATP: 

NADH + ADP + Pi + H+ + FAD -> NAD+ + ATP + FADH2. 

In effect, the driving force derived from the NADH oxidation and FAD reduc¬ 
tion is used to form energy-rich ATP. 

The reduced form FADH2 is itself oxidized by an oxidant stronger than FAD. 

The sequence of oxidation-reduction reactions continues for five more steps, 
and in each successive step, a stronger oxidant is used. Molecular oxygen 

appears as the oxidant only in the last of these steps. 
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The total sequence of oxidation-reduction reactions which couple the oxida¬ 
tion of a foodstuff substrate to the reduction of molecular oxygen is shown in 

Fig. 18.3. Four of the oxidant-reductant pairs are cytochromes, in which ferric 

or ferrous ion is complexed in a porphyrin ring and is bound to a protein, as 
shown in Fig. 18.4. Differences in the structure of the porphyrin ring and the 
protein account for the differing oxidative power of the cytochromes. 

Figure 18.3 shows that three of the sequential oxidation-reduction reactions 
involve the conversion of ADP and inorganic phosphate to ATP. Thus, by this 

sequence of coupled oxidation-reduction reactions, the energy released by the 

oxidation of the carbohydrate substrate can be stored in a usable form as ATP. 

0 

~hi. st‘diric 
'thr( 

'eoni Oft. 

Part of the structure of cytochrome c, showing the iron atom complex in the porphyrin fig. 18.4 

ring system which is in turn attached to a polypeptide chain. 

The intermediates NAD+, FAD, etc., are left unchanged, and the net reaction 
is schematically 

Substrate H2 + 3ADP + 3Pi + 5O2 —> Substrate + 3ATP + H20. 

In subsequent discussions of metabolic processes, we shall frequently encounter 
oxidations by NAD+. It is important to realize that these can lead, by the 

steps of Fig. 18.3, to reduction of oxygen and production of ATP. 
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18.3 LIPIDS 

Lipid is a name applied to the cellular components which are water-insoluble, 
but which can be extracted with organic solvents like ether, benzene, and 

chloroform; consequently, this classification includes a large number of mole¬ 

cules whose structures and functions are at best distantly related. A major 

part of a lipid extract, however, consists of substances which yield, upon hy¬ 
drolysis, long-chain aliphatic acids called fatty acids. We shall restrict our 

discussion of lipids to these substances. This group is further classified as 

follows: 

1. Simple lipids. This group includes fats, which are esters of fatty acids and 
glycerol, CH2OHCHOHCH2OH, and waxes, in which fatty acids are esteri- 

fied with alcohols of high molecular weight. 

2. Compound lipids. This includes molecules in which glycerol is esterified with 
fatty acids and phosphoric acid, and in addition, fatty-acid esters of sugar 

molecules. 

Fatty acids are carboxylic acids, RCOOH, of high molecular weight, in which 

the alkyl group R may be saturated, unsaturated, cyclic, or branched-chain. 

Acids in which R is an unbranched open chain are by far the most common. 
In virtually all the naturally occurring acids, there is an even number of carbon 

atoms. The formulas, common names, and occurrence of some of the fatty acids 

are given in Table 18.1. The most abundant saturated acid in animal fats is 
palmitic (Ci6), with stearic (Ci8) second in importance. Oleic (Ci8) and pal- 

mitoleic (Ci6) are the two most frequently occurring unsaturated acids. 

The most abundant unsaturated fatty acids have the formula 

RCH=CH (CH2) 7COOH, 

where seven carbon atoms separate the carboxylic acid and ethylenic functional 

groups. The R group itself may be unsaturated. The presence of double bonds 
introduces the possibility of cis-trans isomerism. The cis configuration is the 

one found in virtually all the naturally occurring acids. 

Table 18.1 Some common fatty acids 

Common Name Systematic Name Formula Source 

Butyric Butanoic C3H7COOH Butter 

Caprylic Octanoic C7H15COOH Coconut oil 
Palmitic Hexadecanoic C15H31COOH Palm oil 
Stearic Octadecanoic C17H35COOH Mutton fat 
Palmitoleic 9-Hexadecenoic C15H29COOH Butter 

Oleic 9-Octadecenoic C17H33COOH Olive oil 
Linoleic 9, 12-Octadecadienoic C17H31COOH Soybean oil 

Linolenic 9, 12, 15-Octadecatrienoic C17H29COOH Linseed oil 

798 BIOCHEMISTRY 18.3 



Simple Lipids 

Nearly 10 percent of the body weight of a mammal may be in the form of fats, 
or triglyceryl esters of the fatty acids. The general formula for these com¬ 
pounds is 

CH2-CH-CHo 

0 0 0 

c=o c=o c=o 

R R' R" 

o 
II 

The three R—C— groups, which represent the fatty-acid residues, may be the 
same or different. Triglycerides of saturated acids tend to have higher melting 
temperatures than those of unsaturated acids. Animal fats are relatively rich 

in saturated triglycerides, and this is the reason they are solids at room tem¬ 
perature. Vegetable oils like corn and safflower oil have a greater percentage of 

unsaturated triglycerides, and consequently are liquids at room temperature. 

Frequently these liquid vegetable oils are hydrogenated in order to produce a 
more saturated solid fat for table use. 

Waxes are also esters of fatty acids, but the alcohol is a long-chain (~C30) 
aliphatic primary or secondary monoalcohol. As an example, we have beeswax, 
which is largely an ester of palmitic acid with myricyl alcohol, CH3(CH2) 29OH: 

CH3(CH2)14C—OH(CH2)29CH3. 

o 

Lipid Function 

As was mentioned in Section 18.1, lipids occur in the cell membrane, sand¬ 

wiched between two layers of protein. The lipid layer exerts some selectivity 
and control over the transport of substances to and from the cell. Molecules 

which dissolve readily in organic solvents readily pass through the lipid layer 
of the membrane. Molecules which are only water-soluble cannot easily diffuse 

through the lipid layer, and must enter and leave the cell either in close associa¬ 
tion with lipid-soluble substances, or through pores in the membrane which 

themselves exert some selectivity on the size and charge of the molecules that 
can pass. 

Lipids are the principal constituents of the protective tissue which insulates 

warm-blooded animals against a low-temperature environment. In plants, 

waxes serve to protect surfaces of leaves and stems against water, and attack 
by insects and bacteria. 

The main function of fats is to serve as the major and most efficient reposi¬ 

tory of energy. Complete combustion of 1 gram of fat produces approximately 
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9 kcal, which is considerably more than 5.6 kcal/gm obtained from protein, or 
4.2 kcal/gm produced by carbohydrates. The high heat of combustion of fats 

is a consequence of their being nearly entirely hydrocarbon, whereas in proteins 

and particularly in carbohydrates, the hydrocarbon skeleton is already partially 

oxidized. 
The first step in the metabolism of fats is the hydrolysis (in the intestine) 

of triglycerides to glycerol and fatty acids. The reaction 

O 

CH2—0—C—R 

o ch2oh 

CH—O—C—R' + 3H20 —» CHOH + Fatty acids 

O CH2OH 
|| 

CH2—0—C—R" 
Glycerine 

is catalyzed by water-soluble enzymes called lypases or esterases. The water- 

insoluble lipids are emulsified by bile acids, and the hydrolysis catalyzed by 

the water-soluble enzyme occurs at the interface of the lipid drop and the 
aqueous digestive fluid. The hydrolysis products then are carried to the cells, 

where they undergo oxidative metabolism. The glycerol enters the carbohydrate- 

metabolism scheme which we shall study in Section 18.4. The acids, which are 

the major energy source, are oxidized by a stepwise process, the details of which 

we shall now discuss. 

Fatty Acid Oxidation 

In the first stage of utilization of fatty acids, these molecules are systematically 
and repeatedly shortened by two carbon atoms at a time by the series of re¬ 

actions indicated schematically in Fig. 18.5. A key substance in this cyclic 
degradation scheme is called Coenzyme A (CoA or SCoA), a molecule whose 

structure is given in Fig. 18.6. Note that part of this molecule is made up of 

the adenine, ribose sugar, and polyphosphate groups that occur in ADP, NAD, 
and FAD. For the present purposes, however, the important functional group 

on CoA is the sulfhydryl or thio-alcohol group SH. In the first step of fatty-acid 

degradation, a thioester, the sulfur analog of an ordinary ester, is formed between 

CoA and the fatty acid. This reaction is coupled to and driven by an ATP-to- 

AMP conversion. 
In the second step of the degradation, the acid residue in the thioester is 

oxidized or dehydrogenated by FAD at the positions immediately adjacent to 

the carbonyl group. The FADH2 produced by this dehydrogenation can be 
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The sequence of steps by which fatty acids are shortened by two carbon units. The car- fig. 18.5 

boxyl and a-carbon atoms are removed as an acetyl-SCoA molecule which undergoes sub¬ 
sequent oxidation. The fatty-acid residue reenters the degradative cycle. 

oxidized by oxygen through the cytochrome series with concomitant produc¬ 
tion of ATP. In step three, the ethylenic bond is hydrated catalytically to an 

alcohol which is then oxidized in the fourth step to a ketone by NAD+. In the 
fifth step, this ketone is enzymatically cleaved at the indicated bond, with the 

introduction of another molecule of SCoA. We have at this point two thioesters. 

One, acetyl CoA, or 

CH3C—SCoA, 

contains the acetyl group, 
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which came from the first two carbon atoms of the original fatty acid. The 

other thioester, 

O 

R'C—SCoA, 

contains the original fatty-acid chain shortened by two carbon atoms. This 

thioester is ready to begin the degradation cycle again, and does so repeatedly. 
In each passage through the cycle, the acid chain is reduced in length by two 

carbon atoms, and each time one molecule of acetyl CoA is formed. 

HS- -CH2CH2 

NH 

I 
C=0 

I 
ch2 0 CHa O o 

CH2—N—C—CH—C—0—P—O—P—0—CH 
H 

OH CH, OH OH 

FIG. 18.6 The structure of coenzyme A. Note the SH group 
which is the point of attachment to the R—CO— 
function of acids. 

The acetyl CoA units from acid degradation are subsequently oxidized to 

C02 in the Krebs citric-acid cycle, and it is in these latter steps that most of 
the energy associated with fat metabolism is released, or stored as ATP. The 

Krebs cycle is also responsible for the oxidation of acetyl CoA produced from 
the degradation of carbohydrates, and will be discussed in detail in Section 18.4. 

It has been calculated that through degradation and Krebs oxidation, one mole 

of a Cie fatty acid leads to the production of 130 moles of ATP. This stored 
energy corresponds to a stored energy of about 45 percent of the entire energy 

of combustion of a Ci6 acid; the rest is dissipated as heat. 

18.4 CARBOHYDRATES 

Carbohydrates occupy a most important position in the chemistry of life pro¬ 

cesses. They are formed in plants by photosynthesis, and thus are the major 
product of processes by which inorganic molecules and energy from the sun are 

incorporated into living things. The carbohydrate cellulose, which is a very 
high molecular-weight polymer of glucose sugar units, is a major structural 
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component of plants. In animals, carbohydrate metabolism is a very important 
source of energy. Nucleic acids, which control the replication processes within 

the cells, are polymers in which the repeating unit contains a sugar molecule, 
and are consequently closely related to the carbohydrates. 

Carbohydrates are polyhydroxyaldehydes or ketones of the empirical formula 
C„H2nO„. The simplest such molecules are called monosaccharides, and if n 

is 5 to 8, these substances have a sweet taste. Molecules in which two to ten 

monosaccharide units are linked are called oligosaccharides (Greek oligas, few), 
and the term polysaccharide is applied to polymeric molecules which may con¬ 
tain several thousand monosaccharide units. 

Monosaccharides 

The most important monosaccharides are the five- and six-carbon sugar mole¬ 

cules called pentoses and hexoses, respectively. There are a number of ways in 

which the structures of these molecules can be displayed. The five-carbon 

sugars D-ribose and D-2-deoxyribose, which are found in nucleic acids, are shown 

below as they occur in the form of five-membered rings. 

5 5 

D-ribose D-2-deoxyribose 

In this formula, a carbon atom is understood to be at each apex of the ring, 
except where an oxygen atom is indicated. It is important to note the spacial 

relationships of the OH groups that are revealed by these formulas. The five- 

membered ring is planar, and in both molecules, all OH groups bonded to ring 
carbon atoms lie below the plane of the ring, while the CH2OH group lies 

above this plane. 
A free sugar exists as an equilibrium mixture of ring and open-chain forms. 

Thus D-glucose, the repeating unit in starch, can exist in either of the following 

two forms: 

H- 

CHO 
I 

-C—OH 

HO—C—H 

H—C- 

H—C- 

-OH 

-OH 

CH,OH 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

D-glucose 
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In the open-chain form, the functional group on the first carbon is an aldehyde. 

When glucose assumes the ring form, the hydroxyl of the 5-carbon adds to the 

aldehyde carbon, completes the ring, and converts the aldehyde oxygen to an 
OH group. The orientation of the OH group at the 1-carbon in the ring form 

is very important. The configuration shown above, where the OH at the 

1-carbon and at the 4-carbon are on the same side of the ring, is called a-glucose. 

The molecule which has these two OH groups on opposite sides of the ring is 
called /3-glucose. The two forms can interconvert through ring opening to the 

aldehyde structure, followed by ring closure: 

HOCH2 

OH 

a-glucose 

CHO 
I 

H—C—OH 
I 

HO—C—H 
I 

H—C—OH 
I 

H—C—OH 
I 
ch2oh 

-glucose 

Starch, a polysaccharide which is readily digestible by humans, is a polymer of 

a-glucose, whereas cellulose, which cannot be digested by humans, is a polymer 

of /3-glucose. 

Polysaccharides 

Three of the most important polysaccharides are starch, cellulose, and glycogen. 

Starch is a foodstuff produced in plants, cellulose is the structural material of 

plants, and glycogen is the form in which glucose is stored in animal cells. All 

of these substances are polymers of glucose, and differ from each other in molec¬ 

ular weight, the nature of the linkage between glucose molecules, and the degree 

of polymer chain branching. 
Cellulose is a long-chain polymer of about 3000-4000 glucose units. Cotton 

is approximately 90 percent cellulose. The strong fibrous nature of this and 
other such plant material is a consequence of the long-chain structure of the 

cellulose molecule. 
Figure 18.7 shows part of the cellulose structure. We see that adjacent 

glucose units are linked by an oxygen bridge between carbons 1 and 4. This 

bridge is called a glycosidic linkage. We see also that in each case, the 1-carbon 
has the /3-configuration, and consequently cellulose is said to have a /3-glycosidic 

linkage. Even though the enzymes in the human body can cleave an a-glyco- 

sidic linkage, they cannot cleave the /3-glycosidic bonds in cellulose; conse¬ 

quently, humans cannot digest cellulose. Some bacteria found in the intestines 
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of herbivorous animals do possess the enzymes necessary to break down cellulose 
to glucose, and consequently these animals can use cellulose as a food. 

As Fig. 18.8 shows, in the starch molecule the glucose units are joined by an 
a-glycosidic linkage between the 1- and 4-carbon atoms of successive rings. 
The hydrolysis of the a-glycosidic linkage is catalyzed by enzymes secreted by 
the human salivary and pancreatic glands, and consequently starch can be 
used as a food. 

6 

Part of the cellulose chain. Note the/3-glycosidic link between carbons 1 and 4 of adjacent fig. 18.7 

rings. 

6 6 

Part of the chain structure of starch. Note the a-glycosidic link between carbons 1 and 4. fig. 18.8 
At other places in the chain these are 1-6 glycosidic bonds. 

Two kinds of starch molecules occur in nature. About 10 to 20 percent con¬ 
sists of long unbranched-chain molecules, and is called amylose. The other 
component, named amylopectin, is a highly branched polymer in which most 
monomers are joined by 1,4 linkages, with chain branching occurring through 
1,6 linkages, as Fig. 18.9 shows. The linear potymer amylose is soluble in hot 
water, whereas amylopectin is not. Both forms represent plant-energy storage 
which can be used directly by humans. 

Glycogen is the counterpart in animal tissue to the amylopectin of plants. 
Like amylopectin, glycogen is a polymer of glucose with 1,4-a-glycosidic link¬ 
ages, and considerable chain branching through 1,6 linkages. The molecular 
weight of glycogen ranges from 2 X 105 to 108. While all animal tissue contains 
glycogen, the liver is the principal site in which it is stored. 
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Carbohydrate Metabolism 

The necessary first step in the utilization of polysaccharides by animals is the 

enzymatic hydrolysis of starch or glycogen to free glucose sugar molecules. The 

glucose molecules are then broken down and oxidized in two major stages. In 
the Embden-Meyerhof glycolytic pathway, glucose is converted by a series of 

steps to two molecules of pyruvic acid, CH3COCOOH. This decomposition is 

accomplished anaerobically, that is, without oxygen. The pyruvic acid then 

enters the Krebs citric-acid cycle, which has as its ultimate products C02, 
H20, and ATP. The oxidants which participate directly in the Krebs cycle are 

themselves oxidized by a chain of redox couples which has molecular oxygen as 

its ultimate oxidant. 
The major features of the Embden-Meyerhof glycolytic pathway are given 

in Fig. 18.10. Glucose is converted to a phosphate ester by ATP, isomerized 

enzymatically to a five-membered ring, and then another phosphate group is 
added by ATP. The resulting diphosphate is broken into two three-carbon 

fragments which are both converted to 1,3-diphosphoglyceric acid. This mole¬ 

cule then loses one phosphate group, and restores one mole of ADP to ATP. 
After an isomerization and dehydration, the last phosphate group is eliminated, 

and another molecule of ATP formed; the product pyruvic acid is then ready 

to proceed to the Krebs oxidative cycle. If no oxygen is available, as might be 

the case following brief but violent muscle action, pyruvic acid is reduced to 
lactic acid by NADH. When oxygen becomes available, this lactic acid is 

reoxidized to pyruvic acid, and then enters the Krebs oxidative cycle. 
There are, in the Embden-Meyerhof pathway, two oxidation-reduction 

reactions. In step 5, NAD+ is the oxidant, and NADH is produced. If lactic 
acid is formed from pyruvic acid in the last step, however, an equivalent amount 

of NADH is consumed. Hence, if lactic acid is formed, there is no net oxidation 

or reduction associated with glycolysis. There is, nevertheless, a net production 

of ATP. A total of two moles of ATP per mole of glucose are consumed by 
steps 1 and 3, but in steps 6 and 9, two moles of ATP per mole of three-carbon 

fragment, or four moles of ATP per mole of glucose are produced. Thus the 
decomposition of glucose to pyruvic acid is accompanied by formation of energy- 

rich ATP. 
The Krebs citric-acid cycle is sketched in Fig. 18.11. This cycle converts 

the products of glycolysis to carbon dioxide and water, and is also the pathway 

by which fragments from fatty acids are oxidized. It is, therefore, of central 

importance in the metabolic scheme. 
Pyruvic acid enters the Krebs cycle by losing C02 and being converted to 

an acetyl group CH3CO attached to the sulfur of Coenzyme A. The oxidation 

required in this step is effected by NAD+, which, as we have discussed, is 

reoxidized and leads to production of three molecules of ATP. The acetyl CoA, 
which is also the product of fatty-acid breakdown, then transfers its acetyl 

group to oxaloacetic acid to form citric acid. Then follow dehydration and 

808 BIOCHEMISTRY | 18.4 



E
m

b
d

en
-M

ey
er

h
o

f 
P

at
h
w

ay
 

F
IG

. 
1

8
.1

1
 

T
h
e 

K
re

b
s 

ci
tr

ic
 a

ci
d
 c

y
cl

e.
 

T
h

e 
en

zy
m

es
 w

h
ic

h
 c

at
al

y
ze

 t
h

e
se

 r
ea

ct
io

n
s 

a
re
 i

n 
th

e
 c

el
l 

m
it

o
ch

o
n
d
ri

a.
 



hydration reactions which convert citric acid to isocitric acid. An oxidation by 

NADP+, a phosphate ester of NAD+, liberates C02, leads to the eventual 

production of 3 ATP, and forms a-ketoglutaric acid. Another oxidation, this 

time by NAD+ aided by CoA and other agents, liberates another C02 molecule, 
and produces succinic acid. At this stage, the two-carbon fragment which 

entered the cycle as an acetyl group has been oxidized to C02, and the remain¬ 
ing steps of the cycle serve to restore the oxaloacetic acid with which the cycle 

began. The succinic acid is dehydrogenated to fumaric acid. Addition of water 

gives malic acid, and oxidation of this molecule by NAD+ finally produces 

oxaloacetic acid, which is then available to begin the cycle again. 

For every acetyl group that enters the Krebs cycle, 12 molecules of ATP are 
produced. In addition, three molecules of ATP and one molecule of C02 are 

formed in converting the pyruvic acid from glycolysis to the acetyl CoA that 

enters the cycle. Consequently the overall carbohydrate oxidation reaction can 

be written 

C3H4O3 + |02 + 15ADP + I5H3PO4 -» 3C02 + 2H20 + 15ATP-H20. 

The oxygen enters the reaction indirectly through the oxidants NAD+, NADP+, 

and FAD. 

18.5 PROTEINS 

We have already pointed out that proteins constitute most of the nonaqueous 

component of the cell. Even considering this abundance, the variety of func¬ 

tions performed by proteins is extremely impressive. Enzyme molecules which 
are such specific catalysts for so many synthetic and degradative reactions of 

the life cycle are proteins, as are many of the regulatory hormones. Proteins 
are components of the peri- and intra-cellular membranes, serve as antibodies 

to foreign antigens, perform the oxygen-carrying function in the blood, and 

constitute some of the chromosomal material. Thus the form, regulation, and 

reproduction of living things are dominated by the proteins. 

Amino Acids 

Proteins are polymers of a-amino acids. As we found in Chapter 17, the a-amino 

acids have the general structure 

H 

R—C—COOH, 

nh2 

in wdiich the amino group and the radical R are attached to the first (a) carbon 

atom removed from the carboxylic acid group. There are 20 amino acids which 

occur in protein molecules, and the individual properties of these acids are 
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dictated by the nature of the R group. The unique features of the different 

proteins are a consequence of the total number, variety, and sequence of the 

amino acids which occur in the polymer chain, and as well, of the spacial con¬ 
figuration of the chain itself. 

The structural formulas, common names, and three-letter abbreviations for 

the 20 amino acids are given in Fig. 18.12. We see that the acids can be con¬ 

sidered to be derivatives of glycine, NH2CH2COOH, in which various R groups 
have been substituted for one of the a-hydrogen atoms. In a number of the 

acids, the R group is entirely an aliphatic or, in one case, aromatic hydrocarbon. 

In the other acids, the R radical contains a potentially reactive functional group. 
Serine, threonine and tyrosine have an OH group which can esterify with organic 

acids or with phosphoric acid. Glutamic and aspartic acids have a second acid 

functional group, while lysine and arginine have a second amino group. The 
highly reactive SH or sulfhydryl function in cysteine is very significant, since 

two of these can form a disulfide bond —S—S—, and thereby link together two 

protein chains. As was mentioned in Chapter 17, all of the amino acids except 
glycine have four different substituents on the a-carbon atom, and conse¬ 

quently are optically active. Of the two possible arrangements of atoms at the 

asymmetric center, only the L-structure has been found in natural proteins. 

Amino acids are linked together to form proteins by the peptide bond. This 
linkage can be pictured as the result of the condensation of the carboxyl group 

of one acid with the amino group of another, accompanied by the elimination 

of water. 

H O 0 O 

H—N—C—C—|OH + H|— N—C—C—OH 

HR NR' 

Amino acid Amino acid 

H 0 H 0 
I II I II 

H2N—C—C—N—C—OH + H20 
I I 
R R' 

Dipeptide 

It is the link between the carbonyl carbon and the amino nitrogen that is called 

the peptide bond. 
Continuation of the condensation process to link together many amino acids 

produces a polypeptide. The repeating unit in the polypeptide chain 

H O 

I II 
—N—C—C— 

I I 
H R 

is referred to as an amino acid residue, since it contains what is left of the amino 

acid after the elements of water are eliminated. Usually molecular chains of 70 

or fewer amino acids are referred to as polypeptides, while larger naturally- 

occurring molecules are called proteins. 

18.5 PROTEINS 811 



Side-Chain (R-Group) 
Characteristic Chemical structure Amino acid Symbol 

Aliphatic, nonpolar 

Alcoholic, aliphatic and aromatic 

Aromatic 

H O 
I S 

H- ' (■ 
I \ 
nh2 oh 

Glycine Gly 

NH2 OH 

Alanine 

Valine 

Leucine 

Isoleucine 

Serine 

Threonine 

Ala 

Val 

Leu 

lieu 

Ser 

Thr 

Tyrosine 

Tryptophan 

Tyr 

Phenylalanine Phe 

Try 

FIG. 18.12 The common amino acids, their structures, and their symbols. 



Side-Chain (R-Group) 
Characteristic 

Carboxylic (acidic) 

Amine bases (basic) 

Sulfur-containing 

Amides 

Imino 

Chemical structure Amino acid Symbol 

0 H 0 

\ 1 / 
c—ch2- —C—C Aspartic Asp 

/ 1 \ 
HO nh2 oh 

NH2 OH 

NH2—CH2—CH2—CH2—CH 

NH2—C—NH—CH 2—CH 2—CH2I -C—C 

NH nh2 oh 

H O 

HS—CH, -C—C 
/■ 

nh2 

H 
1 

ch3—s —ch2—ch2- 
1 

-c—c 
1 
nh2 

0 H 
\ 1 

c—ch2- -c—c 
/ 1 

nh2 nh2 

-i 

\ 
c 

c 

ch2—ch2 0 

i 1 y CH2 CH—C 
\ / \ 

N OH 
I 

H 

Glutamic 

Lysine 

Arginine 

Histidine 

Cysteine 

Methionine 

Asparagine 

Glutamine 

Proline 

Glu 

Lys 

Arg 

His 

Cys 

Met 

Asp 

Gin 

Pro 
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Protein Structure 

There are four levels at which the structure of proteins can be described. The 

primary structural feature is the amino-acid sequence. The secondary structure 
refers to the spacial configuration of the amino-acid chain; frequently this is a 

helical structure. The tertiary structure is a description of how the helix is 

folded and bent. Finally, the quarternary structure arises from the association 
of individual proteins to form distinct complex super molecules. Each of these 

features can be very important to the biological function of the protein. To 

establish the complete structure of a protein at all four levels is an enormously 
difficult problem, and the techniques used to learn about each structural level 

differ very greatly. 
The first step toward establishing the primary structure of a protein or poly¬ 

peptide is to obtain an analysis of the amino acids present in a pure sample. 

The preparation of the purified protein may in itself be a difficult task. An 
approximate molecular weight for the protein can be obtained by several 

physicochemical methods which include measurement of the rate of sedimenta¬ 
tion in a centrifuge, osmotic-pressure determinations, and light-scattering 

studies. Then weak-acid hydrolysis may be used to cleave the peptide bonds 
and produce free amino acids, which can then be identified and analyzed quan¬ 

titatively. With the quantitative amino-acid composition known, one has an 

empirical formula for the protein. 
At this point, however, the primary-structure determination has just begun. 

The number of different sequences of acids that is possible for even a very 
small molecule is very great. If we were dealing with a molecule in which there 

were only ten amino acids, all different, there would be 10! or 3,628,800 possible 
sequences. While there are some polypeptides of biological importance with 

only nine different amino acid residues, the relatively small insulin molecule of 

molecular weight 5733 has 51 acid residues, and the muscle protein myoglobin 
contains 153 residues. Other proteins have molecular weights up to the order 

of 7 X 106, and the number of possible acid sequences in such molecules is 

difficult to imagine. 
A number of chemical techniques have been used to determine the amino- 

acid sequence in several polypeptides and proteins. One of the important 
reagents used is dinitrofluorobenzene. This molecule attaches itself to the free 

amino group at the end of a polypeptide: 

H H o R" o 

02N—/)— F + H—N—C—C—[peptide]—N—C—C—OH —> HF + 02N 
\ / I || 

H H O R" O 
/=\ I I 1} I II 

-N—C—C—[peptide]—N—C—C—OH 

N02 
R H H R H H 

N-terininal 
acid 

C-terminal 
acid 

If the resulting adduct is hydrolyzed, the peptide bonds break, but the dinitro- 
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benzene remains attached to the amino group of the N-terminal acid. This 
acid can be separated and identified by chemical analysis. 

It is also possible to establish the identity of the acid at the carboxyl end of 
the polypeptide chain quite simply. The enzyme carboxypeptidase removes 
the C-terminal amino acid from a protein along with only very much smaller 

amounts of the other acids. This separated acid is then easily identified. If the 

enzyme is left in contact with the peptide, and the identities of the liberated 

amino acids are studied as a function of time, the sequence of several of the 
residues near the end of the chain may be determined. 

The determination of the acid sequence of the protein hormone insulin 

exemplifies some of the other features of this general problem. Treatment of 
insulin with dinitrofluorobenzene followed by hydrolysis showed that there 

were two different dinitrobenzene derivatives formed. This indicated that there 
are two N-terminal acids, and therefore, two parallel polypeptide chains in the 

molecule. These so-called A and B polypeptide chains were separated by oxidiz¬ 
ing the disulfide (—S—S—) links between them to —S03H groups. The two 

chains were isolated, and then partially hydrolyzed to intermediate-sized pep¬ 

tides containing two to five amino-acid residues. These peptides were separated, 

and their amino-acid sequences determined by the difluorobenzene method. 
The sequence determination was completed in the following manner. The 

acid hydrolysis cleaves the protein chain randomly into small groups of acid 

residues. However, if one finds that there are present the three-acid sequences 

Gly-Ser-His, Ser-His-Leu, and His-Leu-Val, 

the overlapping suggests that there is a five-acid sequence 

Gly-Ser-His-Leu-Val. 

Evidence which corroborates and extends this order is found in the sequences 
of the four- and five-acid fragments. By making use of such overlapping short 

sequences, the sequence of the entire chain can be deduced. 
The complete primary structure of beef insulin, determined in this way by 

F. Sanger in 1953, is given in Fig. 18.13. We see that the A and B chains are 
held together in two places by disulfide links between cysteine residues in the 

separate chains. In addition, there is a disulfide link between two acids in the 
A chain. Although these acids may seem to be separated, the coiling of the pep¬ 

tide chain in fact allows them to be close enough to form the disulfide bond. 
The acid sequence has been determined for insulin taken from swine, sheep, 

and whales. The molecules from the four sources are identical except for the 

three amino acids in positions 8, 9, and 10 of the A chain. Evidently this 
variation is the chemical basis for some of the antigenic differences between 
insulin from different animal sources, which had been observed well before the 

molecular structures were determined. 
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The complete amino-acid sequences are known for a small but growing 

number of proteins, including ribonuclease, myoglobin, and hemoglobin. Ribo- 
nuclease is an enzyme consisting of one chain of 124 acid residues. Myoglobin 

is a protein found in muscle tissue, and has 153 acid residues. Human hemo¬ 

globin contains two identical a-chains (141 residues) and /3-chains (146 residues). 

The determination of each of these primary structures was a long and difficult 

job and is only the first step in finding an explanation of their biological function 
in terms of their molecular structure. 

A Chain 

Secondary Protein Structure 

Figure 18.14 shows part of a polypeptide chain in a fully extended conformation. 

This conformation, known as the /3-form, is only one of many which are con¬ 

sistent with the C—C and C—N bond distances and angles, since it is possible 
to fold the chain back on itself by rotating two segments about a C—C or C—N 

bond. The fully extended /3-form of the polypeptide chain is thought to occur 

in the insoluble, fibrous proteins like /3-keratin, a major component of hair 
and nail. 

It is thought that in most proteins the polypeptide chain is largely in the 

form of the a-helix structure proposed by Pauling and Corey in 1951. These 

workers examined theoretically the properties of several conformations of the 
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protein chain, and selected the a-helix as the one which would have the lowest 

energy, and still be consistent with the known bond angles and lengths in the 

amino-acid residues. Figure 18.15 shows two representations of the a-helix. 

The stability of this structure is derived from the fact that it allows the maxi¬ 
mum possible number of hydrogen bonds to be formed between the amino 

hydrogen on one acid and the carbonyl oxygen of a residue in the subsequent 
turn of the helix. 

18.14 18.15 FIG. 18.14 

Part of a polypeptide chain in the ex¬ 
tended, or /3-conformation. [Reprinted 
by permission from the Royal Society 
and from Dr. Linus Pauling, Proc. Roy. 
Soc. B141, 10 (1953).] 

The right-handed a-helix structure of a fig. 18.15 

polypeptide chain. The dashed lines 
represent hydrogen bonds. [Reprinted 
by permission from The Royal Society 
and from Dr. Linus Pauling, Proc. Roy. 
Soc. B141, 10 (1953).] 
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The deduction of the a-helix structure is a good example of how detailed 
knowledge of the structure of small molecules can facilitate prediction of the 

structures of complicated molecules. The fundamental dimensions of the pep¬ 

tide group as measured by x-ray investigations of small peptides is shown in 

Fig. 18.16. The C—C bond and the C—N bond which involves the a-carbon 
have lengths of 1.53 and 1.47 A respectively, which are normal distances for 

single bonds between these atoms. However, the length between the nitrogen 
and the carbon atom of the carbonyl group is 1.32 A, quite a bit smaller than 

the 1.47 A expected for a C—N single bond. This shortening suggests that the 

peptide link has partial double-bond character, which corresponds to the follow¬ 

ing resonance description: 

o o- 

c <-» c 

As a result, the peptide group has a planar conformation. That is, all bonds 
involving the amino nitrogen and the carbonyl carbon lie in the same plane. 

In postulating possible structures for proteins, Pauling and Corey ruled out any 

conformation which seriously violated this constraint. 

FIG. 18.16 The fundamental dimensions of 
the peptide group. 

Close inspection of the a-helix shows that each peptide group is in a plane 

essentially tangent to a cylinder coaxial to the helix. Each peptide group is 
connected by a hydrogen bond to the third peptide group along the chain in 

either direction. Except near the ends of the helix, every carbonyl oxygen and 
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amino nitrogen is involved in hydrogen bonding. The helix itself is coiled very 
tightly, with no room in the center for any occluded molecules. The sense of 

the helices so far found in proteins is that of a right-handed screw. 

Tertiary Protein Structure 

If the entire polypeptide chain were in the form of the a-helix, the molecules 
would have the shape of long, relatively narrow rigid rods. A number of physico¬ 

chemical techniques show, however, that many proteins are globular and nearly 

round, and that others are much shorter and thicker than their chain length 
and the pure helical structure would imply. Thus there must be folding of the 

a-helix in most proteins, and perhaps little or no a-helix in others. X-ray 
crystal studies of a number of proteins are beginning to make these tertiary 

structural features clear. 
Figure 18.17 shows a schematic representation of the myoglobin molecule 

which was derived from x-ray studies. The tube represents the space occupied 

N terminus 

The secondary and tertiary structure of the myoglobin molecule. Note that the helical TIG. 18.17 

conformation of the peptide chain is lost at the bends in the molecule. Note also the 
porphyrin-ring structure attached to the chain near residue 40. 
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by the chain which we see is folded into a complicated form. There are regions 
in which the tube is relatively straight for 30 to 40 A, and in these regions the 

chain has the a-helix conformation. At the regions in and around the bends in 

the tube, which constitute about 30 percent of the peptide, the chain is in some 

nonhelical form. Hemoglobin also has chains that are folded into a similarly 

complicated shape. The relation between the tertiary structural features and 
biological function of the protein is a completely unsolved problem. 

FIG. 18.18 The general structure of a DNA or RNA molecule. 

Phosphate 

Phosphate 

18.6 THE NUCLEIC ACIDS 

Biologists have long known that genetic information is carried by structures 

called chromosomes which are located in the nucleus of the cell, and whose 

subunits are the genes. It has been only relatively recently, however, that bio¬ 

chemists have been able to make substantial progress in elucidating the molec¬ 

ular structure of the chromosomal material. It is known that genes are made 

820 BIOCHEMISTRY 18.6 



up of the macromolecule deoxyribonucleic acid (DNA), and that this molecule 

carries the information needed to direct protein synthesis, and preserves and 
transmits this information during cell division. Another related type of mole¬ 

cule, ribonucleic acid, is present throughout the cell, and is even more directly 

involved in protein synthesis. Before considering these molecules in detail, let 
us examine some general features of their structure. 

Nucleic acids are polymers in which the repeating units are sugar molecules 

linked by phosphate bridges. This general structure is indicated in Fig. 18.18. 
In ribonucleic acid the sugar is ribose, and in deoxyribonucleic acid the sugar 
is deoxyribose. The structures of these two sugar molecules are 

Ribose Deoxyribose 

We can see that these structures differ only in that deoxyribose has two hydro¬ 

gens attached to the 2'-carbon, whereas ribose has both H and OH at this 

position. The numbers designating the carbon atoms in these sugar molecules 

are usually primed to distinguish them from the numbers used to locate atoms 
in the organic bases which also occur in DNA and RNA. 

nh2 0 nh2 
| 

0 
II 

hn"c^ch N^V\ HN""C^C-" \ 
1 

N^C^CH 
i ii ch CH 1 II o=a .cn 

rC 
H 

1 II 
0=C CH 

N 
H 

H 

h^-c^c. / 
N 
H 

Adenine Guanine Cytosine Uracil 

(a) (b) 

O 

HN^ ^C—CH3 
I » 

o=a ch 

H 

Thymine 

The structures of the (a) purine and (b) pyrimidine bases that occur in DNA and RNA. fig. 18.19 

Attached to each sugar unit in DNA and RNA is an organic base of the type 

designated purine or pyrimidine. The structures of these bases are given in 

Fig. 18.19. The base uracil occurs predominantly in RNA, whereas the closely 
related thymine is found in DNA. Cytosine is present in both nucleic acids. 

The two purine bases, adenine and guanine, occur in both DNA and RNA. 
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Adenine Thymine 

FIG. 18.20 

Ribose 

Adenosine Thymidine 

The structures of the nucleosides adenosine and thymidine. 

The way in which the purine and pyrimidine bases are attached to ribose 

and deoxyribose is shown in Fig. 18.20. Such a combination of a sugar and a 
purine or pyrimidine base is called a nucleoside. In the pyrimidine nucleosides 

the sugar and base are joined by a /3-glycosidic link from the l'-carbon of the 

pentose to the 1-nitrogen of the pyrimidine base, as is shown for thymidine in 

Fig. 18.20. In the purine nucleosides, the l'-carbon of the sugar is connected 

through the /3-glycosidic link to the 9-nitrogen of the purine base, as for example, 

in the molecule adenosine. 

The combination 
Base-Sugar-Phosphate 

is called a nucleotide, and is just a phosphate ester of a nucleoside. The structural 

formulas of two nucleotides are given in Fig. 18.21. The phosphate groups in 

FIG. 18.21 

O 

HN C—CH3 

Adenosine-5'-Phosphate Thymidine - 5'-Phosphate 

The nucleotides, or phosphate esters of adenosine and thymidine. 
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these molecules are, as shown, attached to the S'-carbon of the sugar ring, but 

the 3'-carbon of both sugars or the 2'-carbon of ribose are also possible points 
of attachment. Nucleic acids are polynucleotides, in which the phosphate groups 

link the 5'-carbon of one sugar with the 3'-carbon of the next. A partial struc¬ 
ture of the polynucleotide chain in DNA is shown in Fig. 18.22. 

Guanine (G) 

Thymine (T) 

Part of the polynucleotide chain of a DNA molecule. FIG. 18.22 

The Structure of DNA 

In 1953, J. D. Watson and F. H. C. Crick proposed that DNA had a structure 

in which two parallel polynucleotide strands were wound into a double helix, a 
conformation which would be stabilized by numerous hydrogen bonds between 

bases attached to the two strands. In part, this proposal was based on x-ray 
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studies of DNA by M. H. F. Wilkins and R. Franklin which were consistent 

with a helical conformation, but in large measure it was suggested by observa¬ 

tions of the frequency of occurrence of the purine and pyrimidine bases. 
Prior to 1953, studies of the base composition of DNA showed that whatever 

the frequency of the individual bases, the molar ratio of adenine to thymine 

was unity, and the same was true for the molar ratio of guanine to cytosine. 

This observation made it appear that the DNA structure was one in wThich 

adenine was specifically paired with thymine, and guanine was specifically 

paired with cytosine. 

fig. 18.23 Structure and critical dimensions of the base pairs thymine-adenine and cytosine-guanine. 

A study of the molecular models fof these base pairs finally suggested why 

this pairing occurs, and what its consequences might be. Figure 18.23 shows the 

basis of the explanation. The structures of thymine and adenine are comple¬ 
mentary in that they can be fitted together in the same plane so that two hydro¬ 

gen bonds can be formed between them. At the same time, the atoms by which 

the bases are attached to their sugar molecules, the 1-nitrogen of thymine and 
the 9-nitrogen of adenine, are at opposite ends of the molecular complex. The 

same situation holds for cytosine and guanine, except that the base association 

in this case is accompanied by formation of three hydrogen bonds. A very sig¬ 
nificant point is that the “end-to-end” distances given in Fig. 18.23 are nearly 

the same for the A-T and G-C pairs. 
These considerations led to the proposal that DNA consists of two parallel 

helical polynucleotide chains that are held together by hydrogen bonds between 

purine bases of one chain and pyrimidine bases of the other, and vice versa. 

The schematic structure of the DNA double helix is shown in Fig. 18.24. Each 
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Hydrogen 

Oxygen 

Carbon in 

phosphate-ester chain 

Guanine 

Cytosine 

The double-helix structure of DNA. Hydrogen bonds between the base pairs adenine- fig. 18.24 

thymine and guanine-cytosine hold the sugar-phosphate strands together. [Reprinted by 
permission from American Cancer Society and Dr. L. D. Hamilton, Brookhaven National 
Laboratory; Ca, A Bulletin of Cancer Progress, 5, 163 (1955). Upper portion of drawing 
simplified for clarity.] 
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strand of the double helix consists of a sugar-phosphate “backbone” with bases 

extending inward toward the axis of the helix. The bases lie in planes that are 
approximately perpendicular to the helix axis, and planes of successive base 

pairs are separated by 3.4 A. A complete turn of the helix occurs every 34 A. 

The sizes of DNA molecules vary depending on the type of cell from which 

they are taken. One fairly well characterized sample had a molecular weight 

of about 1.4 X 108, and thus involved approximately 400,000 nucleotides. 
Autoradiographs of DNA from the bacterium escherichia coli show molecules 

about 0.4 mm long, which would have a molecular weight of about 109. 

The Structure of RNA 

While ribonucleic acid is a polynucleotide like DNA, the size and structure of 

naturally occurring RNA show much greater variation. RNA occurs frequently 

as a single strand which may be coiled, but not in any simple, easily charac¬ 

terized manner. The molar ratios of the base pairs do not show the regularity 

displayed by DNA. 
There are at least three distinct forms of RNA which have different roles in 

protein synthesis. These three molecular species are known as transfer or 

soluble RNA, messenger RNA, and ribosomal RNA, and they differ considerably 

in molecular weight and base composition. 
Transfer RNA is the smallest known type of ribonucleic acid, and usually 

consists of 70 to 80 nucleotides with a molecular weight of about 25,000. The 

biological role of transfer RNA is to pick up individual amino acids and carry 

them to the sites of protein synthesis. Since each amino acid is recognized 
and carried by only one type of transfer RNA, there are at least 20 distinct 

transfer RNA molecules. The sequence of the 77 nucleotides in the RNA 

molecule responsible for the transfer of alanine was first determined in 1965 by 

R. W. Holley. 
All transfer RNA molecules contain as terminal segments the three nucleo¬ 

tides containing the bases cytosine, cytosine, and adenine in that order. On 

the terminal ribose the 2' and 3' hydroxyl groups are free. The amino acid to 
be transferred by the RNA becomes attached by forming an ester linkage at 

either of these two hydroxyl groups in a reaction driven by ATP, and catalyzed 

by an enzyme. It is the specificity of the enzyme that assures that the proper 

amino acid becomes attached to the appropriate transfer RNA molecule. In 
the subsequent steps of protein synthesis, the amino acid is recognized by the 

f-RNA molecule to which it is attached. 
Messenger or template RNA is the most recently discovered form of ribo¬ 

nucleic acid. Its biological function is to carry the genetic information con¬ 

tained in one portion of one strand of a DNA molecule in the nucleus to the 
ribosomes, which are the site of protein synthesis. The transcription of the 
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information on the DNA molecule to messenger RNA evidently involves a 
partial uncoiling of the DNA helix, and then specific base pairing between the 

DNA and the nucleotides of the messenger RNA as the RNA is synthesized. 

Ribosomal RNA has the highest molecular weight (about 1.2 X 106) of the 
cellular ribonucleic acids. It is concentrated in the ribosomes of the cell, where 

it participates in protein synthesis in some manner which is obscure at the 
present time. 

18.7 BIOLOGICAL FUNCTIONS OF THE NUCLEIC ACIDS 

The DNA molecule has two major functions: it contains the information neces¬ 
sary to replicate and synthesize new DNA for the chromosomes of daughter 

cells, and it stores and supplies the information necessary for protein synthesis. 
This information is contained in DNA as a genetic code expressed by the 

sequence of the bases adenine, quanine, cytosine, and thymine. Since DNA 

directs the synthesis of the enzymes which in turn catalyze the cell reactions, 
it is of central importance in physiological chemistry. 

Replication of DNA 

The double helical structure of DNA suggests the way in which this molecule 

may replicate. Because of the specific base pairing of adenine with thymine 
and guanine with cytosine, the two strands of the helix are complementary, and 

a particular base sequence in one strand implies a specific sequence in the other. 
In replication, the two polynucleotide chains may unwrap, either partially or 

fully, and act as templates upon which free deoxyribonucleotides can be de¬ 

posited and linked in a complementary pattern. The result is two DNA mole¬ 
cules identical to the first. This process is indicated schematically in Fig. 18.25 

on page 782. 

Experiments in which bacteria have been allowed to replicate in a medium 
containing nitrogenous compounds entirely labeled with the isotope N15 have 

shown that the DNA in the first-generation daughter cells is 50 percent labelled 
with N15. This suggests that in the daughter cells, the DNA had one helical 

strand from the parent cell which contained only N14, and one newly synthe¬ 
sized strand which had only N1 ^labelled bases. When these daughter cells 

were transferred to an all-N14 medium and allowed to replicate, their first 

generation had some DNA which contained entirely N14, and some which had 

equal amounts of N14 and N15. The pure-N14 DNA evidently came from the 
N14 strand in the parent serving as the template for synthesis of a new strand 

containing only N14-labelled bases, while the N14-N15 DNA came from com¬ 
bination of the N15 strand with new N14 nucleotides. These results are con¬ 

sistent with the DNA replication mechanism outlined above. 
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FIG. 18.25 A schematic representation of the DNA replication process. In step (a), the double- 
stranded helix separates. In step (b), free nucleotides complementary to those in the 
DNA strand are delivered and selected by base pairing, and then linked in (c) to give a 
completed DNA molecule. A, T, G, and C stand for adenine, thymine, guanine, and cytosine 
respectively, the sugar-phosphate chain by S — P — S . 

Nucleic Acids and Protein Synthesis 

As we have already remarked, the DNA in the cell nucleus contains in its base 

sequence the information necessary to direct specific protein synthesis. The 

sites of protein synthesis are the ribosomes, which are located on the endo¬ 

plasmic reticulum. The genetic information is carried from the nuclear DNA 

to the ribosomes by messenger RNA. In addition, transfer RNA delivers the 

amino acids for protein synthesis to the ribosomes, and serves as the label by 

which each acid is recognized. 
The relation between the molecules and processes involved in protein syn¬ 

thesis is indicated schematically in Fig. 18.26. In the cell nucleus the DNA 
serves as a template upon which ribonucleotides are deposited and messenger 

RNA synthesized. The base sequence in the m-RNA is complementary to the 

sequence in the part of the DNA template used. 
As the transcription of the DNA code to m-RNA goes on in the nucleus, in 

the body of the cell specific enzymes attach amino acids to transfer RNA. The 

m-RNA and <-RNA move to the ribosomes where they interact. The m-RNA 
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The general scheme for information transfer and protein synthesis. FIG. 18.26 

selects the certain i-RNA and its amino acid by a base-pairing mechanism 

between the two molecules. Another selected f-RNA and its acid complexes on 
the m-RNA adjacent to the first acid, and a peptide bond is formed. The first 

f-RNA then leaves, freed of its acid. The process continues as the specific 

f-RNA and its acid appropriate for the third position in the peptide chain 

arrives, is recognized by base-pairing, and complexes with m-RNA. Acids con¬ 
tinue to be added in this manner until a base sequence in the m-RNA is en¬ 

countered that causes the synthesis to stop. It is known that polypeptide 

growth starts from the amino or nitrogen end of the peptide chain, with succes¬ 
sive acids being added to the carboxyl end. In at least some cells, the growth of 

a chain is always triggered by a molecule of the amino acid methionine which 

has had a formyl group HCO— attached to the amino nitrogen. This formyl 

group blocks growth of the peptide chain at the nitrogen end, but allows sub¬ 

sequent acids to be added to the carboxyl end of the molecule. 

The Genetic Code 

We have seen that there are only four different kinds of bases in DNA mole¬ 

cules, and that the sequence of these bases must be able to determine uniquely 
the sequence of 20 amino acids in a protein chain. Since there are fewer types 

of bases than amino acids, it must be that various groupings of bases constitute 
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genetic code words for the different acids. The code word in DNA which corre¬ 
sponds to a specific acid must consist of more than a base pair, since there are 
from four bases only 42 or 16 distinct types of pairs. This is not enough words to 
specify the 20 amino acids separately. The words of the code could consist of 
base triplets, since there are 43 or 64 distinct combinations possible, more than 
enough to specify 20 amino acids. 

The actual code words that correspond to each of the 20 amino acids have 
been discovered by feeding synthetic RNA of known base composition to cells, 
and detecting the new polypeptides formed as a result. For example, in an 
early experiment a synthetic RNA containing only the base uracil (“poly U”) 
was used, and a small amount of a polypeptide which contained only the amino 
acid phenylalanine was found. This suggested that the RNA base code word 
for phenylalanine is the sequence of three uracils, UUU. Similar experiments 
with other synthetic RNA’s led to the discovery of the triplets for the other 
acids. 

In other, separate work, it was discovered that trinucleotides of only three 
uracil bases (UUU) or three adenine bases (AAA) or three cytosines (CCC) 
were able to cause the binding of the transfer RNA of respectively phenyl¬ 
alanine, lysine, and proline to the ribosomal sites where polypeptide synthesis 
occurs. In contrast, the dinucleotide UU showed very little such activity. This 
observation constitutes a quite direct demonstration that the genetic code is 
indeed made up of triplets of bases. 

18.8 CONCLUSION 

From this brief introduction to biochemistry we can see that the beginnings 
of an understanding of the life process in terms of molecular properties and 
structure are well established. As this understanding deepens and becomes 
more complete, it may become possible to treat disease and aging as chemical 
problems, and to perform specific chemical alterations and construction of 
genes. The construction of specifically designed organisms is an inevitable 
result of this work. The area of biochemistry introduces, therefore, not only 
problems of immense scientific challenge, but opens up possibilities which have 
moral and humanistic implications that exceed any yet encountered by mankind. 
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PROBLEMS 

18.1 For the following classes of molecules give a brief description of the chemical 

composition, molecular structure and conformation, and the principal biochemical 

role: 

a) lipids; b) proteins; c) carbohydrates; 

d) nucleotides; e) enzymes; f) cytochromes. 

18.2 Briefly describe the principal function of each of the following animal cell com¬ 

ponents: 

a) lysosomes; b) mitrochondria; c) nucleus; 

d) ribosomes; e) membrane. 

18.3 Explain the significance of the following: 

a) the Krebs or citric acid cycle; 

b) the Embden-Meyerhof glycolytic pathway; 

c) coupled reactions in biochemistry; 

d) purine-pyrimidine base pairing in DNA and RNA; 

e) the base sequence in nucleic acids; 

f) polyphosphate groups; 

g) ATP. 

18.4 List the four principal types of nucleic acids, and describe briefly their structure 

and function. 

18.5 For each of the following molecules, 

function: 

a) bile acids; b) Coenzyme A; c) 

e) glucose; f) triglycerides; g) 

describe briefly a principal biological 

NAD; d) glycogen; 

the porphyrin ring structure. 
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CHAPTER 19 

THE NUCLEUS 

Even though the nuclei retain their identities in chemical processes, and even 

though nuclear properties other than charge influence chemical behavior only in 

indirect and subtle ways, the nature of the nucleus is an important subject to 

chemists. The abundance of the elements and their origin is a problem in nuclear 

structure and reactivity. The synthesis of new elements not found in nature 

has been carried out primarily by chemists. The use of both radioactive and 

stable isotopes has aided in the determination of the mechanisms of chemical 

reactions and complex biochemical processes. Many of the problems that are 

associated with the use of nuclear reactions as sources of energy are chemical in 

nature. Thus there are ample reasons for all chemists to be familiar with nuclear 

properties and phenomena. In this chapter we shall examine the aspects of 

the nucleus that are of most importance in chemistry. 

19.1 THE NATURE OF THE NUCLEUS 

To begin, let us review some definitions and notation. Nuclei are composed of 

protons and neutrons, and thus these particles are often referred to as nucleons. 

The description of a particular nucleus is given in terms of its charge Z and its 

mass number A, which is the sum of its neutrons and protons. To represent a 

nucleus, the chemical symbol is written with a subscript equal to Z and a 
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superscript equal to A. Thus 

Hie o17 n18 

represent three isotopes of oxygen: nuclei with the same charge but different 

mass numbers. 

Now we can discuss the general properties of the nucleus—its size, mass, 

shape, and the type of forces that hold it together. 

The first indication of the size of the nucleus was the Rutherford a-particle 

scattering experiment, which we discussed in Section 10.2. The qualitative 

result of Rutherford’s experiment is that a-particles can approach to within 

10-12 cm of the center of an atom and still be scattered away by a force given 

by Coulomb’s law. If, however, the energy of the bombarding a-particles is 

increased sufficiently, the intensity pattern of the scattered a-particles changes 

in a way which indicates that Coulomb’s law of repulsion fails when a-particles 

come very close to the atomic center. The scattering pattern and other data 

indicate that the potential energy of an a-particle as a function of the distance 

from the atomic center can be represented as in Fig. 19.1. As the a-particle 

approaches the nucleus, there is an initial repulsive Coulomb force that causes 

the potential energy to rise until the a-particle is close enough to feel the very 

strong attractive nuclear forces. At this distance, which we might take as the 

nuclear radius, the potential energy drops abruptly. The increase in potential 

energy that an a-particle experiences as it enters or leaves the nucleus is often 

called the Coulomb barrier. 

Potential energy 

The potential energy of ana-particle 
as a function of its distance from the 
center of a nucleus. 

Because a neutron is uncharged, it experiences no Coulomb repulsion when 

it approaches a nucleus. Instead, the potential energy of a neutron remains 

essentially constant until it falls abruptly at a distance somewhat less than 

Nuclear Size 

FIG. 19.1 
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10-12cm from the atomic center. This behavior is represented in Fig. 19.2. 

As far as a neutron is concerned, the nucleus is a potential energy “well” with 

rather steep sides. Because the neutron experiences an abrupt change in poten¬ 

tial energy at the nuclear surface, the pattern of neutrons scattered by nuclei 

can be used to determine the size of the nucleus. A large number of nuclear 

radii have been determined by neutron scattering, and the results can be sum¬ 

marized by the following equation: 

R = R0A1/3, 

R0 = 1.33 X 10~13 cm. 
(19.1) 

In Eq. (19.1), R is the nuclear radius, A is the mass number, and R0 is a con¬ 

stant common to all nuclei. 

We can draw an interesting conclusion from the dependence of the nuclear 

radius on the mass number. The nuclear volume V should be proportional to 

R3 or, according to Eq. (19.1), to A : 

V « R3 a A. 

Thus the nuclear volume is directly proportional to the total number of neutrons 

and protons in the nucleus. This fact suggests that protons and neutrons pack 

together somewhat like hard spheres and make the total nuclear volume equal 

to the sum of the volumes of individual protons and neutrons. We shall en¬ 

counter other evidence that is consistent with this simple picture, but it should 

not be overinterpreted. The nucleons in the nucleus are not stationary, stacked 

like oranges, but they contribute to the nuclear volume as though they were. 

Nuclear Shape 

A perfectly spherical nucleus exerts an electrical force on the atomic electrons 

that is given exactly by the Coulomb law expression. However, if the protons 

in the nucleus are not grouped in a spherical shape, the nucleus is said to have 

an electric quadrupole moment, and the surrounding electrons feel, in addition 
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to the Coulomb attraction, a small electric quadrupole force. While the effects 

of the nuclear quadrupole are small, they can be detected, and a measure of the 

quadrupole moment and the shape of the nucleus obtained. Several nuclei have 

zero quadrupole moment and thus are spherical: jH, 80, 2oCa, 28Ni, 50Sn, and 

82Pb arc a few examples. Nuclei which have atomic numbers close to one of 

those in the preceding list are either spherical or very nearly so, while the 

majority of other nuclei are slightly prolate spheroids (football shaped). The 

departure from spherical shape is never very extreme: the ratio of the semi¬ 

major axis to the semiminor axis is generally less than 1.2. 

Nuclear Masses 

The unit of nuclear mass is the atomic mass unit, or amu, which is defined to 

be exactly of the mass of a 6C12 atom. On this scale, a neutron has a mass 

of 1.0086G544, while the mass of a hydrogen atom (proton plus electron) is 

1.00782522. In a discussion of nuclei we might expect to be concerned primarily 

with nuclear masses, but it is the masses of atoms (nucleus and electrons) that 

are determined experimentally and tabulated. This does not introduce any 

serious complications, as we shall see subsequently. 

Because both the neutron and the hydrogen atom have a mass of nearly 

1 amu, the masses of the various isotopes of atoms are all near integral values. 

In fact, the observation of integral masses was the basis for the original sug¬ 

gestion that nuclei are made up of neutrons and protons. A careful comparison 

of the mass of any atom with the sum of the masses of its constituent hydrogen 

atoms and neutrons reveals an interesting mass deficiency. Consider, for ex¬ 

ample, the atom 801C, which has a mass of 15.994915 amu. In contrast, the 

mass of eight neutrons and eight hydrogen atoms together is 16.131925 amu. 

Therefore, 80'° is lighter than we might expect by (16.131925 — 15.994915) 

amu or 0.137010 amu. By the mass-energy equivalence expressed by the 

Einstein relation 

(19.2) 

the mass deficiency of the oxygen atom can be attributed to the energy evolved 

or lost by the system when eight neutrons, protons, and electrons are formed 

into an 8010 atom. In Eq. (19.2), c is the velocity of light; if it is expressed 

in centimeters/second, and the mass m in grams, the units of energy E are ergs. 

Thus 1 gram-mass is equivalent to about 9 X 1020 ergs, or 2.1 X 1010 keal. 

Another mass-energy equivalence that is used more commoidy is the following: 

1 amu is equivalent to 931.4 million electron-volts energy (931.4 Mev). The 

energy released when one oxygen atom is formed from its neutrons, protons, 

and electrons is, therefore, 0.137010 X 931.4 or 127.G Mev per atom. To appre¬ 

ciate how large an amount of energy this is, compare it to the 5.2-ev energy 

released when two oxygen atoms form a strong chemical bond with each other. 

In general, the energies associated with nuclear processes are roughly a million 

or more times as great as the energies involved in chemical phenomena. 
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Nuclear Forces 

By comparing the measured mass of an atom with the sums of the masses of 

its constituent neutrons, protons and electrons, we can calculate the total 

energy Eb which binds the nucleus together. More instructive than the total 

binding energy, however, is the binding energy per nucleon, Eb/A, which is 
plotted in Fig. 19.3 as a function of mass number. After an abrupt rise among 

the lightest nuclei, the binding energy per nuclear particle changes only slightly 

and has a value of approximately 8 Mev per nucleon. The nuclei of maximum 

stability have mass numbers of about GO or charges of about 25. Because of 

the maximum in the binding energy per particle that occurs near mass GO, the 

fission of a very heavy nucleus to a pair of nuclei of approximate mass 60 is a 

process that releases energy. Similarly, the fusion of two of the lightest nuclei 

is also accompanied by release of energy. 
Because there are only slight variations in the binding energies per nucleon 

for elements of mass number greater than 20, we can say that, to a first ap¬ 
proximation, 

Ei, 
= constant 

A 

or 
Eb = constant X A. 

That is, the total binding energy of a nucleus is approximately proportional 

to the number of nucleons. This observation suggests that the forces that 

bind the nucleons together are of short range; that is, one nucleon exerts attrac¬ 

tive forces only on its nearest neighbors. If the nuclear forces were of long 

range, each of A nucleons would be attracted to A — 1 others, and the total 

nuclear binding energy would be proportional to A (A — 1), instead of to A. 

Besides being of short range, the attractive forces between nucleons are in¬ 
dependent of charge. There is, however, a Coulomb repulsion between protons, 

so the net binding energy of two protons is less than that of two neutrons. 
When a correction is made for the Coulomb repulsions between protons, the 

attractive nuclear binding energy is found to be 14.1 Mev per particle; it is the 

Coulomb repulsion between protons that reduces this to the net value of 8 Mev 

per particle we discussed earlier. 
Now let us suppose that in the nucleus, the neutrons and protons interact as 

though they were close-packed spheres, each having 12 nearest neighbors. 

This would mean that there exists Ef, or G, nucleon bonds or attractions per 

particle, since two particles are required to make one bond. Thus we might 

interpret the binding energy of 14.1 Mev per particle to mean that the energy 

of attraction between a single pair of nucleons is 14.1/G or 2.3 Mev. There is 
one nucleus, ill", in which there is only one nucleon-nucleon attraction, and 

the binding energy is in fact 2.2 Mev. Thus the crude idea that nucleons inter¬ 

act oidy with their 12 nearest neighbors seems to be substantiated, at least 

approximately. 
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Binding energy per nucleon as a function of mass number for some stable nuclei. fig. 19.3 

While they tell us nothing about the origin of nuclear forces, the foregoing 

observations do suggest the qualitative nature of the nucleon-nucleon inter¬ 
action, and how it affects the stability of the nucleus. In 1935 Von Weizsacker 

devised a semiempirical expression for the nuclear binding energy which is 

based largely on the qualitative picture we have outlined. The total nuclear 

binding energy is given, to a good approximation, by 

Eb = 14.1 A - 13A2/3 - (19.3) 

The first term on the right-hand side expresses the fact that the attractive 

binding energy is 14.1 Mev per particle. Nucleons at the nuclear surface do not 
have their full complement of 12 nearest neighbors, however, and therefore do 

not contribute a full 14.1 Mev to the nuclear binding energy. The number of 

surface nucleons is proportional to the surface area, which in turn varies as the 

nuclear radius squared, or as A2/'3. Consequently, the term —13A2 5 appears 
in the binding energy equation; it is negative to represent the loss of binding 

energy due to surface effects. Finally, there is the Coulomb repulsion between 

protons, which also constitutes an energy loss, and its effect is represented by 

the term —0.G Z2/A1/3. Coulomb repulsion increases as the square of the 
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number of protons, and the energy loss is inversely proportional to the nuclear 

radius, or to A 113. 
While Eq. (19.3) shows how some of the gross nuclear properties affect the 

binding energy, it does not, by any means, provide a complete picture of nuclear 

binding. Other more subtle effects are important. For example, nuclei with 

even numbers of neutrons and even numbers of protons seem to be particularly 

stable. Table 19.1 shows the distribution of stable nuclei. 

Table 19.1 Frequency of occurrence of stable nuclear types 

A 

Even 

Odd 

N Z Number of 

Even Even 166 

Odd Odd 8 

Even Odd 57 

Odd Even 53 

There are only eight stable nuclei which have an odd number of both neutrons 

and protons, and most stable nuclei are of the even-even type. These observa¬ 

tions suggest that there is a separate pairing of neutrons and of protons that 

affects nuclear stability. There is an even more specific effect having to do with 

numbers of protons and neutrons. Nuclei which have the “magic” neutron or 
proton numbers 2, 8, 20, 28, 50, 82, 126 are particularly stable and abundant 

in nature. The existence of these magic numbers suggested a “shell model” of 

the nucleus: an energy-level scheme somewhat analogous to the orbital energy- 

level scheme used for atomic electrons, and this idea has led to successful 

predictions of a number of nuclear properties. 

19.2 RADIOACTIVITY 

We have already mentioned one form of natural radioactivity, the spontaneous 

fission of a very heavy nucleus into two more stable fragments of mass number 

near 60. Spontaneous fission is rather uncommon, and most spontaneously 

radioactive nuclei decay by emitting either an a-particle, a positive or negative 

d-particle, a 7-ray, or by capturing an orbital electron. Some simple rules for 
predicting the occurrence and nature of radioactivity can be generated by 

reference to Fig. 19.4. By plotting the charge Z as a function of the number of 

neutrons N for all the nonradioactive nuclei, we find that the stable nuclei fall 

in a well-defined belt. For nuclei lighter than 2oCa40, most stable nuclei have 
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equal numbers of neutrons and protons. Among the heavier elements, the most 

stable nuclei contain more neutrons than protons. It appears that the cause of 

this behavior is the excessive Coulomb repulsion that occurs in nuclei of high 

charge, and this can be diminished somewhat by increasing the neutron number 
and increasing nuclear size. 

The number of protons as a function of the number of neutrons for the stable nuclei. FIG. 19.4 

Beta-Decay Processes 

Nuclei that lie outside of the belt of stability are radioactive and decay in a 
manner that forms a nucleus which lies in the stable region. Nuclei that lie to 

the right of the stability belt in Fig. 19.4 are neutron rich and achieve stability 

by emitting negative /3-particles, or electrons. This process can be pictured as 

a transformation of a neutron in the nucleus to a proton and an electron which 
is emitted. The nucleus that results has one more proton and one less neutron 

than its parent and lies closer to the belt of stability. In contrast, nuclei which 

lie to the left of the stable region in Fig. 19.4 must diminish their positive charge 

to achieve stability. Two processes are possible: the first is the capture of an 
orbital electron (/C-capture) followed by conversion of a proton to a neutron; 
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the second possibility is the emission from the nucleus of a positron, or positive 

electron, which results in the conversion of a nuclear proton to a neutron. As 

examples of the foregoing processes we have: 

5C 10 
iC 

11 

positron emission 

iC 12 iC 13 

stable 

p<l 4 *C 15 

negative /3-emission 

8014 8015 

electron capture 

8o1G 8o17 8o18 

stable 

80 19 

negative 
/3-emission 

A spontaneous /3-decay process releases energy, and although the nucleus 

does not undergo a change in mass number, there is a decrease in its mass. As 

an illustration, consider 
C114 v14 1 flO 

6^ —> 7-' I —1P • 

To calculate the energy released in this process, we have only to compare the 

mass of a 6C14 atom with the mass of a 8N14 atom, because in the decay, a carbon 

atom with six orbital electrons is converted to a nitrogen ion with six orbital 

electrons and a /3-particle. The total mass of these products is, therefore, equal 

to the mass of a 7N14 atom. The mass of 7N14 is 14.00307.4 amu and that of 

6C14 is 14.003242. The mass difference, 1.08 X 10-4 amu, corresponds to 

0.155 Mev, the total energy released in the /3-decay process. 
Calculation of the energetics of a positron-decay process requires some care. 

We can write the decay of 6Cn as 

6Cn -> 5Bn + +1/3°. 

nucleus + nucleus + G electrons 

6 electrons + positron 

Thus the total mass of the products is equal to the mass of a 5B11 atom, plus 

the mass of the extra orbital electron not used by boron, plus the mass of the 
positron. The energy equivalent to the electron or positron mass is 0.511 Mev, 

so the energy of the positron-emission process is 

(mass 6Cn — mass 5BU) X 931 — 2 X 0.511 Mev, 

or 
(11.011443 - 11.009305) (931) - 1.022 = 0.15G Mev. 

Because a positron decay produces two “extra” particles equivalent to 1.022-Mev 

energy, the energy released by positron emission is less than the atomic-mass 
differences. Unless the atomic-mass difference exceeds 1.022/931 or 1.098 X 10-3 

amu, spontaneous positron emission is not possible. 
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After an orbital electron-capture process such as 

i 5 electron 
sU - 

capture 
7n 15 

1 

the correct number of electrons is associated with the newly formed nucleus, so 

the energy evolved can be calculated directly from the atomic masses. For the 

example at hand, we have 15.003072 for the mass of 8015, and 15.000108 for 
the mass of 7N15. Consequently, the energy released is 2.76 Mev. 

Energy 

Energy diagram for a-particle emission. Level A-A represents the energy of the a-particle fig. 19.5 

in the nucleus. Level B represents the kinetic energy the a-particle would have if it passed 
over the Coulomb barrier. Level C represents the kinetic energy of an a-particle that has 
tunneled through the Coulomb barrier. 

Alpha-Decay Processes 

With few exceptions decay by a-particle emission occurs only among elements 

with mass numbers greater than 200. A typical example of a-decay is 

92U238 -» 90Th234 + 2He4. 

We see that the nuclear mass number decreases by four, and the nuclear charge 

by two units in this process. A particularly intriguing feature of a-decay is the 

observation that the energies of the emitted a-particles all lie between 3 and 9 
Mev. The reason this is interesting can be understood with the help of Fig. 

19.5, which shows the potential energy of interaction between an a-particle and 

a nucleus. Apparently, in order to be emitted, an a-particle in the nucleus 
should have enough energy to surmount the Coulomb potential-energy barrier, 

and after the a-particle has left the nucleus, the Coulomb repulsion should 

accelerate it to a kinetic energy equal to the barrier height, which is 20 Mev or 
more. This amount of energy is much greater than the largest value observed 

experimentally. This discrepancy can be removed if the behavior of the a-par- 
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tide is described in terms of quantum mechanics. From this point of view, 

there is a finite probability that the a-particle will escape from the nucleus, 
even though it has insufficient energy to “pass over” the potential-energy 

barrier. In effect, the a-particle behaves as though it can “tunnel” through the 

barrier at an energy level below its maximum and thus acquire an energy which 

is less than 20 Mcv as it departs from the nucleus. The mathematical analysis 
of this “tunneling” phenomenon leads to the prediction that the narrower the 

potential-energy barrier, the more probable and frequent is the emission of the 

a-particle. Because the width of the nuclear barrier decreases as energy in¬ 
creases, we can expect that those nuclei which undergo a-decay most frequently 

also emit the most energetic a-particles. This correlation between emission 

frequency and energy is observed experimentally. 

Gamma-Decay Processes 

Frequently the daughter nucleus formed by a- or /3-decay of its parent is pro¬ 

duced in an excited state. The newly formed nucleus releases this excitation 
energy by emitting a 7-ray; that is, electromagnetic radiation of extremely short 

wavelength. A nucleus can have only discrete energies which are determined 

by its structure. Therefore, it can only emit 7-rays that have energies equal to 

the difference in the energy of two nuclear levels. Consequently, an excited 

nucleus has a discrete emission spectrum of 7-rays, just as an atom has a char¬ 

acteristic emission spectrum of visible and ultraviolet radiation. By determining 
the energies of emitted 7-rays, the energy-level pattern of a nucleus can be 

deduced, at least in part. For example, consider the data summarized in Fig. 

19.G. The nucleus 92U238 emits a-particles which have energies of either 4.18 

Mev or 4.13 Mev. When a 4.13-Mev a-particle is emitted, the daughter nucleus, 

90Th234, is left in an excited state which has an energy (4.18 — 4.13) or O.Oo 
Mev greater than the state reached when a 4.18-Mev a-particle is emitted. 

Consequently, it might be expected that the excited nucleus should emit a 

0.05-Mev 7-ray, and this is indeed found experimentally. In other decay pro- 

fig. 19.6 The decay scheme of 92U238 to fl0Th234; 
a-particles of 4.18 and 4.13 Mev and a 
7-ray of 0.05 Mev are observed. 
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cesses, several excited states of the daughter nucleus arc formed, and a number 

of 7-rays of different energies are emitted. In such cases, complete analysis of 
the energies of the emitted particles and 7-rays allows the nuclear chemist to 
construct a detailed energy-level pattern for the daughter nucleus. 

Interaction of Radiation with Matter 

The a-, 0-, and 7-particles emitted in nuclear decay processes are highly 

energetic species which can cause substantial chemical alterations in the matter 

with which they interact. All three types of radiation cause the electronic 

excitation and ionization of atoms and molecules. The electrons produced by 
these primary ionization processes, in general, have high kinetic energy and can 
themselves cause further ionization and excitation. 

The electronic excitation of a molecule may lead to its dissociation into atoms 

or free radicals, or may cause it to react directly with other molecules. The 

atomic and molecular ions produced by radiation are also usually very reactive, 

and this may have important chemical consequences. For example, irradiation 
of a mixture of H2 and D2, a very simple chemical system, induces a number of 

chemical reactions which lead to the formation of HD. Some of the more 
important reactions are 

II2 a —> II2 -j- oc -f- e (fast), 

e -f- H2 —► H.2~ *f- 2e , 

II2+ + D2 -* H2D+ + D, 

H2D+ + H2 + HD, 

H2D+ + e“(slow) —> HD + H. 

In more complex chemical systems, the variety of ions, excited molecules, 
atoms, and free radicals which are produced by the primary nuclear radiation 

and secondary electrons can be much greater, and the resulting chemical 

changes more complicated. Biochemical systems, with their very complex and 

often delicate molecules, are particularly susceptible to deleterious alteration 
by radiation. 

The human body is fairly well protected from the effects of certain types of 

radiation, so long as the radiation sources are not ingested and incorporated in 
vital organs. Even the most energetic a-particles can travel only a very short 

distance in condensed matter before they lose their initial kinetic energy and 

become converted to harmless helium atoms. Thus a-particles are stopped 
without effect by the outermost layer of the skin. However, if an a-particle 

emitter like Pu239 is ingested, it tends to concentrate in the bones where its 
a-emission can interfere with the red blood cell production. Consequently, 

plutonium is one of the most deadly poisons known, and has a maximum tolerated 

dose of only 0.7 microgram. 
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In a similar manner, the skin can protect the human body from the more 

serious effects of /3-particles of moderate energy. However, severe burns can 
result from exposure to intense external /3-radiation, and ingestion of /3-emitters 

such as Sr90 and H3 can be very serious. The skin does not provide protection 

from x-rays, Y-rays, and neutrons, which do penetrate the body, and can induce 

changes in internal organs. 
It is clear that some measure of the amount of radioactivity in a given chemical 

system is needed. Since the emission of an a-, /3-, or Y-particle corresponds to 

the alteration or “decay” of a nucleus, the activity of a source can be expressed 

in terms of the number of decays which occur per unit time. The standard unit 

of radioactivity is the curie, which corresponds to 3.70 X 1010 disintegrations 

per second. The natural radiation in 1 cm3 of air is about 10_1° microcurie 

(mostly radon), while milk contains approximately 5 X 10-8 microcuries of 

K40 in 1 cm3. The human body has a total activity of about 0.1 microcurie, 

due to ingestion of naturally occurring K40 and C14. In contrast, the total 

activity in the projected large breeder nuclear reactors would be approximately 

1010 curies. 
While the curie is the unit of nuclear radioactivity, other units are used to 

measure the amount of radiation necessary to produce a given effect in matter. 

The first of these units is the roentgen, which is defined as the quantity of x-rays 

or Y-radiation which produces in 1 cm3 of air positive ions of total charge equal 

to one electrostatic unit. This corresponds to the creation of 2.1 X 109 singly 

charged ions, since the fundamental electronic charge is 4.8 X 10_1° esu. A 
luminous dial watch produces approximately 30 milliroentgens (mr) per year, 

while a dental or chest x-ray involves 5000 mr of radiation. The roentgen is 

applied only to x- and Y-radiation. To measure the effect of all types of radiation, 

the rad unit is used. One rad is defined as the amount of radiation which will 

deposit 100 ergs of energy in each gram of material. The energy deposited in 

1 gm of water or tissue by 1 roentgen is approximately 90 ergs. Thus 1 roentegen 

is equivalent to a radiation dose of 0.9 rad in body tissue. 
A dose of several hundred rad over the entire human body results in death 

within a few weeks. For doses of 100 rads, the immediate death rate is effectively 

zero, but such heavy exposures may have delayed (~20 years) consequences, 
such as leukemia, cancer, and a general acceleration of the aging process. It is 

very difficult to define the maximum dose of radiation which can be tolerated 

without a substantial chance of long term damage. It has never been established 

that doses of less than 50 rads actually do lead to cancer in humans, but this may 

only be a consequence of the limited number of cases of this type that have been 

studied. By extrapolating the effects of high dosages down to lower dose rates, 
the International Commission on Radiological Protection has established 

maximum permissible doses (MPD) of radiation for the limited group of people 

who work with radioactive material. Currently, the MPD is 5 rads per year. 

However, for the population as a whole, it is recommended that exposure be 

limited to less than 0.2 rad per year. Nuclear reactors used for energy sources 

must be designed to be consistent with this exposure limitation. 
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19.3 NUCLEAR REACTIONS 

In 1919, Rutherford achieved the first artificial transmutation of an element 

by bombarding a sample of nitrogen with a-particles from a radium source. 
The reaction was 

7N14 + 2He4 - 8017 + 1H1, 

and Rutherford was able to detect the emitted protons. Because a-particles 

available from naturally radioactive sources have a limited range of energies, 
they can induce relatively few nuclear reactions. The development of particle 

accelerators like the cyclotron and its various modifications has made it possible 
to produce relatively intense beams of energetic particles, and a very large 

number of nuclear reactions have been studied. One of the best known achieve¬ 
ments in this area has been the synthesis of the trans-uranium elements. Here 

are four such nuclear reactions which illustrate the use of four different bombard¬ 
ing particles: 

92U238 + XH2 -+ 93Np238 + 20n\ 

92U238 + 2He4 —■» 94Pu239 + Son1, 

92U238 + 6C12 -> 98Cf240 + don1, 

92U238 + 7N14 -> 99Es247 + 50U1. 

The compound nucleus formed by the combination of the target and bombard¬ 
ing nuclei is energy-rich, and this results in the ejection of one or more neutrons. 

Heavy nuclei formed by bombardment with 2He4, 6C12, or 7N14 followed by 

neutron emission have a deficiency of neutrons, and therefore subsequently 
undergo electron-capture or positron-emission processes. 

The quantities of material that can be transmuted by charged-particle bom¬ 
bardment is always severely limited by the intensity of the particle beam and 

sometimes by the amount of target material. The first synthesis of 10iMd25G 
was achieved by bombarding 109 atoms of 99Es253 with a-particles, and only 

13 atoms of i0iMd25r’ were detected in the products. To synthesize radioactive 

isotopes in quantity, neutron-capture reactions are useful, for high fluxes of 
neutrons exist in nuclear reactors. For example, tritium, jH3, can be produced 

by two neutron reactions: 

5B10 + on1 -> 1H3 + 22He4, 

3Li° + on1 -» 1H3 + 2Hc4. 

The nucleus 27Co60, whose decay product emits 7-rays useful in cancer therapy, 

is also a product of a neutron-capture reaction, 

27Co59 + onl —* 27CoG0. 

The most famous of nuclear reactions is the fission of 92U235, induced by 

neutron capture. There are no unique products of this reaction; the fission 

produces fragments whose mass numbers range from approximately 70 to 160. 
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One fission process for 92U235 is 

92U235 + onl 3sSr90 + 54Xe143 + Son1. 

Approximately 50 other modes of fission occur, and varying amounts of energy 

and different numbers of emitted neutrons are associated with each process. 

On the average, however, approximately 200 Mev of energy and 2.5 neutrons 

are released in the fission of 92U235. The intense radioactivity pf the fission 

products makes their chemical identification difficult. Nevertheless, these data 
have been obtained and are displayed in Fig. 19.7 by plotting the logarithm 

of the percentage yield as a function of the mass number. The two maxima of 

the yield curve show that the majority of the fissions occur asymmetrically to 

yield two fragments of rather different mass numbers. 

Energy from Nuclear Reactions 

Because more than one neutron is emitted per fission process on the average, 

it is possible for the fission of U235 to be self-maintaining. If neutrons are not 

lost in other ways, the fission of one nucleus can induce the fission of two or three 

others, and so on. When carried out in a controlled manner in a nuclear reactor, 

this chain fission process is a valuable energy source, for the 200 Mev per fission 

process amounts to 5 X 109 kcal/mole of U235. As of 1972, there were 30 
nuclear power plants in the United States, and these generated 4 percent of 

the nation’s electrical power. However, another 130 nuclear power plants were 

either under construction or licensed by the Atomic Energy Commission. 

In a conventional nuclear reactor used for power generation, the fuel is 

uranium oxides which have been enriched to contain approximately 3 percent 
U235. The enrichment is necessary, since the natural abundance of the fission¬ 

able U325 is only 0.7 percent of the heavier U238, which is not fissionable. The 
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uranium oxides are hermetically sealed in tubes of a zirconium alloy, and as¬ 

semblies of these tubes are mounted within a heavy-walled steel vessel, as shown 

in Fig. 19.8. Water at a pressure of 150 atm is used to remove the heat generated 
in the fuel rods, and transfer it to a steam generator. The water also serves to 

moderate the energy of the fast neutrons emitted by the fission process, and 

convert them to slow neutrons which are more effective in inducing fission of 
jj235 

Schematic diagram of a pressurized water nuclear reactor. FIG. 19.8 

In the steam generator, heat is transferred from the pressurized water to a 
secondary water system which operates at 50 atm. Because of the lower pressure 

in the secondary system, the water in it is converted to steam at approximately 

260°C, and this steam is used to drive a turbine-electric generator combination. 

The effluent from the turbine is condensed and pumped back to the steam 
generator. 

Application of the second law of thermodynamics shows that the maximum 
efficiency r? with which the heat delivered to the steam generator can be con¬ 

verted to useful work is given by 

Th - Tc 

where T* is the absolute temperature of the steam generator, and Tc is the 
temperature of the condenser. Taking Th and Tc as 530°K and 330°K, re¬ 

spectively, we find that v is 0.38. Because of inevitable friction and heat losses, 
the actual operating efficiency is only about 32 percent. Power plants which 
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burn oil or coal generate steam at approximately S00°K, and therefore have 
significantly higher efficiencies than conventional pressurized water nuclear 

power plants. Significant increases in the thermal efficiency of pressurized water 

reactors are not foreseeable, since the necessary increase in temperature would 

require the primary water system to be pressurized at impractical levels to 
prevent boiling. 

Besides its low thermal efficiency, the pressurized water reactor has the dis¬ 
advantage that it consumes U235, an isotope which has a rather small terrestrial 

abundance. The estimated reserves of U235 are small enough so that this 

resource might be exhausted in 30 years if as much as 50 percent of the nation’s 
electricity were generated by pressurized water reactors. Consequently, so-called 

fast breeder reactors, which generate more fissionable material than they con¬ 
sume, are under development as power sources. 

The fast breeder reactor is fueled with a mixture of plutonium and the 

abundant U238. When Pu239 absorbs a fast neutron, it undergoes fission, and 

produces a pair of lighter nuclei and, on the average, 2.5 fast neutrons. The 

fission chain reaction is maintained if one of these neutrons is absorbed by 

another Pu239 nucleus. If another of these fast neutrons is absorbed by a U238 

nucleus, it induces a sequence of transformations which result in the production 

of a Pu239 nucleus. That is, the sequence 

92U238 + on1 -> 92U239, 

92U239 93Np239 + .jd0, 

93Np239 94Pu239 + _!d0 

exactly replaces the plutonium consumed in the first fission reaction. Since two 

or more neutrons are produced in each fission, the reactor can produce more 

Pu239 than it consumes. Reactors currently under development are expected 

to operate so as to double the amount of their fissionable material in periods of 

5 to 20 years. 

Since it is not necessary to moderate the energy of the neutrons in a breeder 

reactor, water is not used as a coolant and heat transfer agent. Instead, either 

helium gas or liquid sodium is used for this prupose. Since liquid sodium boils at 

880°C, the reactor can be operated at a high temperature, and steam generated 

at approximately 800°K. Therefore, the fast breeder reactor cooled by liquid 

sodium has a thermal efficiency which is comparable to that of the best con¬ 

ventionally fueled steam power plants. Based on considerations of fuel avail¬ 
ability and efficiency alone, breeder reactors could, if necessary, supply electric 

power at present consumption rates for tens of thousands of years. 

There are very substantial problems associated with the use of breeder 

reactors. The amount of plutonium in the reactor at any time may be approx¬ 

imately 106 gm, and since the maximum dose of plutonium tolerated by the 
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human body is less than 1CH1’ gm, it is extremely important to construct a 

reactor in such a way that the fuel and other radioactive materials will be 
contained even in the event of a serious accident. In addition, the recovery of 

the plutonium formed in the breeding process necessitates periodic removal of 
the fuel rods and transport to a processing plant where the plutonium can be 

separated from highly radioactive fission products. Finally, there is the necessity 
of safely disposing or storing these radioactive waste products until their activity 

has diminished to a safe level. Since the storage periods required may be of the 
order of one thousand years, this problem is extremely formidable. 

Because of the problem of the safe disposal of radioactive waste products 

associated with nuclear fission reactors, there is considerable interest in develop¬ 
ing methods of using nuclear fusion as an energy source. As Fig. 19.3 shows, 

the binding energy per nucleon in light nuclei such as 1H2, 1H3, 3Li6, and 3Li7 

is rather small. However, there is a general increase in the binding energy per 

nucleon as the mass number of the nucleus increases. Thus we can expect that 

the fusion of two of these light nuclei to form a heavier nucleus will be accom¬ 

panied by release of energy. As important examples, we have the fusion reactions 
of the “heavy” hydrogen isotopes, deuterium (1H2) and tritium (1H3): 

1H2 -)- jH“ —■> 2He3 -)- qU1 -f- 3.27 Mev 

-* 1H3 + 1H1 + 4.03 Mev, 

xH2 + xH3 -> 2He4 + on1 + 17.6 Mev. 

While the energy released in each of these fusion reactions is much smaller than 

the average of 200 Mev released by the fission of U235 and Pu239, the abundance 
of deuterium is so great that controlled fusion could supply the energy needs of 
the Earth for many millions of years. 

In order for two deuterium nuclei to fuse into a heavier nucleus, they must 

collide with sufficient kinetic energy to pass over or tunnel through the potential 

energy barrier imposed by their mutual Coulomb repulsion. The practical 

consequence of this requirement is that if fusion is to occur in a homogeneous 

hot gas of deuterons, the effective temperature of the gas must be approximately 
108oK. This corresponds to an average energy of about 10-2 Mev for the 

deuterium nuclei. Such very high temperatures are reached in stars where 

fusion reactions of light nuclei are the source of the radiated energy, and in 
nuclear fission explosions used to trigger nuclear fusion bombs. However, 

attaining these temperatures in a controlled manner which would permit 
conversion of the energy from fusion reactions into useful work has proved to be 

an exceedingly difficult problem. 

Since a gas at 108oIv is totally ionized to electrons and nuclei, it can be 

confined by strong magnetic fields which prevent charged particles from moving 

perpendicular to the magnetic field direction. In addition, the actual generation 
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of these confining magnetic fields can be used to heat a partially ionized gas up 

to the ignition temperature for fusion. In this manner, ignition of the reaction 

jH2 + XH3 -* 2He4 + on1 + 17.6 Mev 

has been achieved in a number of laboratories since 1963. However, interactions 

between the ionized gas (the plasma) and the confining magnetic fields have 

produced plasma instabilities which have limited the length of time and the 

density of the ionized gas that can be contained. It is generally believed that in 

order to be able to extract useful energy from a thermonuclear plasma, the 

product of the ion density (in ions/cm3) and confinement time (in sec) must 

exceed 1014 ion sec/cm3. As of 1973, values of 6 X 1011 ion sec/cm3 (3 X 1013 

ions/cm3, 2 X 10-2 sec confinement) had been achieved, and devices intended 

to reach the critical value of 1014 ion sec/cm3 were under construction. 

Even when useful ion temperatures, densities, and confinement times are 

achieved, there will remain the problem of converting the fusion energy into 

useful work. Since the energy from the most easily ignited fusion reaction 

XH2 + xH3 2He4 + on1 + 17.6 Mev 

appears principally as kinetic energy of the neutron, one proposal is to surround 

the fusion reactor with molten lithium. In this lithium blanket the reactions 

3Li7 + on1 (fast) —► 3Li6 + 20^, 

3Li6 + on1 —» 2He4 + iH3 + 4.8 Mev 

would occur, with the energy evolved producing a temperature increase in the 

molten lithium. The heated lithium would be used to generate steam, and the 

tritium would be extracted and used as fusion fuel. Such a mode of operation 

would consume lithium, but the supply of this element is sufficient to meet the 

energy needs for as much as a million years. It has also been proposed to convert 
the kinetic energy of the proton released in the reaction 

iH2 + jH2 jH3 + jH1 + 4.3 Mev 

directly to electrical energy. If this could be achieved, greater efficiency of 

energy conversion would be realized. In addition, it would not be necessary to 

generate tritium fuel from lithium, and thus the energy supply would be deter¬ 
mined by the virtually infinite amount of deuterium in sea water. 

In addition to the enormous energy resources that could be made available 

by controlled nuclear fusion, there are other attractive features of this process. 
No long-lived radioactive materials are produced in quantity, so the problem of 

waste disposal is virtually nonexistent. The tritium which would be produced 

in the lithium blanket would eventually be consumed, and the amount present 
in the reactor at any time would be very much smaller than the amount of 

radioactive materials in a fission reactor. A fusion reactor would be intrinsically 
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much safer than fission reactors, since there would be no danger of nuclear 

explosions, and in the event of failure of any component, the fusion reaction 
could be terminated essentially instantaneously. 

Stellar Nuclear Reactions 

The proton is the most abundant nucleus in the Universe, and is the principal 

constituent of the visible stars. Stars are formed by the gravitational collapse 
of enormous clouds of gaseous hydrogen atoms and other matter. If enough 

mass is involved, the energy released by the collapse is large enough to initiate 

nuclear reactions. After nuclear reactions start to occur, they produce enough 

energy to raise the internal temperature and pressure sufficiently to counteract 

the gravitational forces and stop the star from contracting. Then there follows 

a long period in which nuclear reactions convert the hydrogen in the star to 

heavier elements. The analysis of this element-building process in stars is of 

considerable interest, since it may reveal clues to the origin and early evolution 
of the Universe. 

The first step in the stellar conversion of hydrogen to heavier elements is 
postulated to be 

1H1 + iH1 -> XH2 + +1/3°. 

Although this reaction has never been detected in the laboratory, there are 

indirect experiments which indicate that it can occur. The second step is the 
reaction of a deuteron with a proton to form 2He3: 

jH2 + iH1 -> 2He3 + 7. 

Two 2He3 nuclei can make 2He4 by the process 

2He3 + 2He3 -> 2He4 + 2{H}. 

If we combine these three reactions in a way which eliminates intermediate 

nuclei (multiply the first and second by two, then add), we get 

^H1 -» 2He4 + 2+1/3° + 26.7 Mev. 

Thus the net result is the conversion of four protons into an a-particle, two 

positrons, and a considerable amount of energy. This set of reactions is the 

principal source of energy in stars of approximately the same mass as the sun. 

In older and more massive stars, considerable amounts of helium nuclei 

accumulate, and in the hot, dense interior regions, the reaction 

32He4 ->• 6C12 + 7 

is the most probable way in which carbon nuclei are formed. Once present, the 

carbon nuclei can serve as catalysts for the conversion of protons to a-particles. 
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The sequence of reactions which accomplishes this is 

n 12 
6^ + iH1-* 7N13 + 7 

rN13 -> 6C13 + +i0° 

6C13 + 1H1 —> 7n14 + 7 

7N14 4- 1H1 —> 8015 + 7 

8o15^ 7n15 + +10° 

7n15 + 6C12 4 2He4 

dxH1 -» 2He4 + 2+i(8 

The net result is the same as the three-step conversion of protons to a-particles 

discussed previously. However, the individual steps of the carbon-catalyzed 

process have high reaction rates, and the overall sequence is responsible for most 

of the transformation of hydrogen in stars which are much more massive than 

the sun. 
The relative abundances of most of the elements in the solar system can be 

determined from observations of the light emitted by the sun and examination of 

meteorites. These elemental abundance data are an important clue to the reac¬ 

tions which occur in stars and which may have occurred as the Universe orig¬ 

inated. In Fig. 19.9, the relative numbers of atoms of the elements in the solar 

system are displayed as a function of atomic number. There are several striking 

facts revealed by this graph. Hydrogen is more abundant than all other elements 

put together, with helium second. The next three elements, lithium, beryllium, 

and boron have very small abundances, while some of the other light elements 

like carbon, nitrogen, oxygen, and neon are very prominent. There is a general 

decrease in the abundances as the atomic number increases, but the element 

iron interrupts this trend with a particularly high abundance. Finally, the 
elements of even atomic number are present in greater amounts than those of 

odd atomic number. 
Some of these observations can be explained by using the simplest concepts 

of nuclear stability and reactions. As we have discussed, protons are converted 

to helium nuclei in the hot dense regions of a star. Since 2He4 is a very stable 

nucleus with both the neutron and proton number at the “magic” value of two, 

it does not react with either protons or neutrons to form stable heavier nuclei. 

The reaction 

2He3 + 2He4 —* 4Be7 4 7 

does occur, but in a star the Be7 can be rapidly destroyed by 

4Be7 + jH1 —» 5B8 4- 7, 

5B8 —* 22He4 4- +ij3°> 

since the B8 nucleus is unstable. The only way to synthesize elements heavier 
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Atomic number 

Relative numbers of atoms in the solar system as a function of atomic number. Note the fig. 19.9 

gaps that occur at 43Tc and 61Pm which are not found in Nature. 

than 2He4 appears to be by the previously mentioned reaction, 

followed by 

32He4 —> eC12 + 7, 

6C12+ 2He4—> 8016. 

Thus the reason for the large amounts of C12 and O'8 in the sun is clear: these 
elements are formed directly from the abundant 2He4. The elements lithium, 

beryllium, and boron are of low abundance because they cannot be formed by 
direct reactions from lighter nuclei. The origin of these elements is evidently 

the fragmentation of heavier nuclei as a result of violent collisions with cosmic 
ray particles. 

The temperature and density of the sun are not great enough to promote 
the production of elements much heavier than carbon. The fact that these 
elements are present suggests that they may have been produced in the violent 
nuclear processes which occurred at the origin of the Universe, or that they are 

the result of the processing of hydrogen by much more massive stars which have 
since disappeared. In these massive stars, the temperatures are high enough 
so that carbon “burning” reactions can occur and produce elements of high 
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atomic number. The important processes are 

6C12 + 6C12 -> 10Ne20 + 2He4 + 4.6 Mev 

-»■ uNa23 + 1H1 + 2.24 Mev. 

As massive stars evolve, their temperatures rise so high that oxygen burning 

occurs and a variety of nuclei appear: 

8016 + 8016 -> i4Si28 + 2He4 + 9.6 Mev 

-> i5P31 + iH1 + 7.7 Mev 

—> i8S31 d- 1*5 Mev. 

Still heavier nuclei are formed by fusion of 2He4 with abundant species like Si28. 

By such fusion reactions, elements up to Fe56 can be built from lighter nuclei. 
The binding energy per nucleon reaches a maximum at Fe56, and fusion reactions 

with this nucleus will absorb, rather than release, energy. Moreover, the Coulomb 

repulsion which inhibits nuclear fusion increases as the atomic number increases, 

and synthesis of elements of high atomic number by this process would require 

temperatures in excess of those attained in stars. Some other mechanism must 

be responsible for formation of elements heavier than Fej0. 
The primary reaction leading to synthesis of the heavy elements is the 

absorption of one or more neutrons, followed by emission of a /3-particle. Signify¬ 

ing a nucleus of mass A and charge Z by (A, Z), the process may be written as 

(A, Z) + Son1 -> (A + 3, Z) -> (A + 3, Z + 1) + -id0- 

In the dense, neutron-rich stellar medium, the heavier elements are built up by a 

series of such steps. The nuclei with neutron numbers near the magic values of 

50, 82, or 126 are particularly abundant because their greater stability tends to 

lower the rate at which they are destroyed. Similarly, nuclei with even numbers 

of protons are more stable to /3-emission processes than those with Md atomic 

numbers and are found in greater abundance. 
The final stage in the evolution of many massive stars is a violent explosion 

during which some of the less-stable nuclei may be produced. These explosions 

also disperse the stellar matter, which eventually may condense with large 

amounts of hydrogen to form a new star. Thus the heavier elements formed in 

massive stars can appear in smaller stars where the temperatures and density 

are insufficient to synthesize them from hydrogen. 

19.4 RADIOACTIVE DECAY RATES 

The spontaneous decay of radioactive nuclei is a first-order process; the number 

of disintegrations per second is proportional to the number of nuclei present. 

Thus we can write for the decay rate, —cLN/dt, 
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where X is called the decay constant of the nucleus, and N is the number of 
nuclei in the sample. We can write this expression in the form 

which shows that the fraction of nuclei, dN/N, that decay in a length of time dl 
is a constant. Integration of this last expression gives 

N 
ln-rr=—X*, (19.4) 

iv o 

where N is the number of nuclei left at time t, and N0 is the number of nuclei 
present at time zero. Rather than report the rate of a nuclear disintegration in 
terms of its decay constant, it is more convenient to give the half-life of the 
process; that is, the time it takes for half of the sample present at any given 
time to decay. To see the relation between the half-life and the decay constant, 
substitute N = \N0, and t = L/2 in Eq. (19.4) to give 

In \ — X<i/2, 

2.3 log 2 = X<i/2, 

U,2 = 0.693/X. 

Thus if the half-life of a nucleus is known, its decay constant can be calculated 
and vice versa. 

Radiometric Dating 

The measured decay rates of certain naturally cocurring radioactive nuclei can 
be used to date minerals—that is, to determine the time at which the mineral 
sample was solidified. To illustrate the ideas involved in ratiometric dating, let us 
discuss the so-called rubidium-strontium method for determining the ages of 
mica and feldspar minerals. 

Naturally occurring rubidium contains 28 percent Rb87, which decays to 
Sr87 by emission of a /3-particle: 

37Rb87 -> 3gSr87 + _!/3° 

The half-life of Rb87 is 4.7 X 109 years, which is comparable to the estimated 
age of the universe. Let us assume that at the time a sample of mica solidified, 
it contained no Sr87, and that in the time since solidification, all Sr87 formed by 
decay of Rb87 has been trapped in the rigid crystal lattice of the mica. If we also 
assume that no Sr87 from any other source entered the crystal, then it is clear 
that by measuring the ratio of Sr87 to Rb87 and knowing the half-life or decay 
constant of Rb87, wre can calculate the length of time that the mica has been 
solidified. 
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The mathematical details are quite straightforward. Let P stand for the 

number of parent Rb87 nuclei in the sample, and D stand for the number of 

daughter Sr87 nuclei. Then at any time 

D + P = P0 

where P0 is the number of parent nuclei at the time when the mineral solidified. 

According to Eq. (19.4), we have 

In — = -XL 
P o 

Substituting for P0, and rearranging, we get 

t = i In ^1 + . (19.5) 

The decay constant X for Rb87 is given by 

X = 0.693/H/2 = 1.47 X 10-11 yr_1. 

Thus by measuring D/P, the age of the sample can be calculated. 
There are other parent-daughter pairs whose relative abundance can be used 

to date minerals that do not contain rubidium. The properties of the most 

important of these are summarized in Table 19.2. The potassium-argon method 

is valuable because potassium is abundant and widespread in the Earth’s crust. 

The isotope K40 decays in two different ways: 89 percent of the nuclei form Ca40 
by d-decay, and 11 percent form Ar40 by electron capture. The formation of 

Ca40 cannot be used to date minerals, since this isotope is very abundant, and 
extraneous sources of it mask the Ca40 formed from K40. However, certain 

minerals have the property of trapping the radiogenic Ar40, and preventing 

argon from the atmosphere from entering. Thus reliable age estimates can be 

from measurements of the K40 to Ar40 ratio. The uranium-lead methods provide 

valuable consistency tests on dating procedures. The U238 radioactivity series 
involves eight a-decay steps and six /3-decay steps, and ends with the stable 

daughter nucleus Pb206. The U235 series involves seven a-decay steps and four 

/3-decay steps, and terminates with the stable nucleus Pb207. If the ages cal¬ 

lable 19.2 Methods of radiometric age determination 

. . Half life . . 
Parent nucleus . . Daughter nucleus 

(years) 

U238 4.51 X 109 pb206 
U235 0.713 X 109 Pb207 
K40 1.30 X 109 Ar40 
Rb87 47.0 X 109 Sr87 
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culated from U238/Pb206 and U235/Pb>207 agree, it is highly likely that no 

contamination or loss of isotopes has occurred, and that the radiometric age is 
the true age of the mineral. 

As an example of the dating of more recently formed objects, let us consider 

the technique of C14 dating of archeological materials. In the atmosphere, 

nitrogen is constantly bombarded by cosmic neutrons and converted to 6C14, 

7N14 + on1 -> 6C14 + iH1. 

This carbon is oxidized to carbon dioxide and eventually ingested by plants 
which are in turn consumed by animals. The 6C14 nucleus is radioactive, and 

emits a low-energy /3-particle in a process that has a half-life of 5730 years. 

Through natural balance of 6C14 intake and radioactive decay, living organisms 
reach a stationary level of 6C14 radioactivity which amounts to 15.3 ±0.1 

disintegrations per minute per gram of carbon. When life ceases, intake of 6C14 

stops, and the radioactivity decays with a half-life of 5730 years. By carefully 
measuring the decay rate of a sample of wood, for instance, it is possible to tell 
when the tree died. In this way, an absolute time scale for dating archeological 

objects of ages between 1000 and 10,000 years has been developed, as shown 
in Fig. 19.10. 

19.5 APPLICATIONS OF ISOTOPES 

Although the decay of a single radioactive nucleus may seem to be an insignifi¬ 
cant event, the amount of energy released in such a process is often large enough 

to be detected easily. Consequently, measurement of nuclear radioactivity is 
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the most sensitive technique available for the detection of atoms. This sensi¬ 

tivity can be used to advantage in a number of ways. For example, consider 

the method of radioactivation analysis. The absorption of a neutron by any 

nucleus produces an “activated” or energy-rich species that decays by a process 

characteristic of the nucleus involved. The various isotopes of the elements 

differ considerably in their ability to absorb a neutron. Consequently, by irradi¬ 

ating a mixture of nuclei with neutrons, it is possible to selectively activate 

certain elements, detect their presence, and measure their concentration by 

ascertaining the intensity of the induced radioactivity. The sensitivity of 

activation analysis depends on the neutron flux available for irradiation, the 

ability of a nucleus to absorb a neutron, and on the energy of the decay process. 

It is possible to detect as little as 10~10 gm of copper, sodium, or tungsten by 

activation analysis, and the method can be applied to a number of other ele¬ 

ments with somewhat reduced sensitivity. 

Another application of radioactive isotopes, in which the emphasis is more 

on specificity than on sensitivity, occurs in the study of reaction rates and 

mechanisms. With the aid of a radioactive isotope, it was possible to determine 

the rate at which iron ions change their oxidation states in an aqueous solution 

of ferric and ferrous perchlorate. In a mixture of ordinary ferric and ferrous 

ions, the exchange reaction 

Fe++ + Fe+3 -» Fe+3 + Fe++ 

goes on all the time, but it is impossible to observe, since the products are 

chemically the same as the reactants. It was possible to observe the reaction 

through use of 26Fe55, a positron emitter with a half-life of four years. In the 

mixture, the radioactive isotope was present initially as ferrous ion, and as 

time passed, extraction of samples of the solution, followed by separation of the 

Fe++ from the Fe+3, and determination of their radioactivities showed that 

the Fe+3 became increasingly radioactive. By studying the rate of exchange of 

radioactivity as a function of concentration, one term in the rate law for the 

exchange reaction was shown to be 

rate of exchange = /c[Fe++][Fe+3]. 

Thus the use of radioactive or “tagged” atoms makes the exchange of oxidation 

states observable, and the reaction rate measurable. 

Use of radioactive isotopes in tracer experiments such as the one just de¬ 

scribed is advantageous, since the detection of the nature and intensity of the 

radioactivity is a simple method of qualitative and quantitative analysis. Some 

elements do not have a radioactive isotope of convenient half-life, and in these 

instances stable isotopes must be used in tracer experiments. As an example, 

let us consider the problem of determining the course of an esterification re- 
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action such as 

O O 
•/ / 

c6h5c + CH3OH -* c6h5c + h2o. 

\ \ 
OH 0*CH3 

Does the starred oxygen atom come from the alcohol or from the acid? The 
problem was solved by synthesizing methyl alcohol in which the oxygen was 

abnormally enriched with the O18 isotope. This “labeled” methyl alcohol was 

then used in the esterification reaction, and the isotopic composition of the 

product ester examined with a mass spectrometer. The mass spectrum showed 
that the ester was enriched with the O18 isotope, and consequently, the oxygen 

atom in the ester linkage must come from the alcohol, not the acid. 

These simple examples indicate the types of applications of radioactive and 
stable isotopes in chemical research. There have been countless elaborations 

and variations on these ideas to deal with more complicated chemical systems. 
In particular, much of what we know of the chemistry of biological systems has 

been deduced from experiments with radioactive and stable isotopes. For more 

detailed discussions of these applications, the reader is referred to the reading 
list at the end of the chapter. 
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Overman, R. T., Basic Concepts of Nuclear Chemistry. New York: Reinhold, 1963. 

PROBLEMS 

19.1 Write equations that represent each of the following processes: (a) positron 
emission by siSb120; (b) negative beta emission by igS35; (c) alpha emission by 
ssRa226; (d) electron capture by 4Be7. 

19.2 The masses of nNa22 and ioNe22 atoms are 21.994435 and 21.991385 amu, 
respectively. Is it energetically possible for Na22 to decay to Ne22 by positron emis¬ 
sion? 

19.3 What is the alpha activity in disintegrations per min for a 0.001-gm sample of 
Ra226 (<1/2 = 1620 years)? 

19.4 A radioisotope decays at such a rate that after 68 min, only 5 of the original 
amount remains. Calculate the decay constant and half-life of the radioisotope. 
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19.5 Articles found in the Lascaux Caves in France have a C14 disintegration rate 
of 2.25 disintegrations per minute per gram of carbon. How old are these articles? 

19.6 The only stable isotope of fluorine is F19. What type of radioactivity would you 
expect from each of the isotopes F17, F18, F20, and F21? 

19.7 When an electron and positron encounter each other, they are annihilated and 
two photons of equal energy formed. Calculate the wavelength of these photons. 
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APPENDIX A 

Avogadro’s Number 

The Avogadro number is of fundamental importance in chemistry, and a variety 

of methods have been used to determine its value. Here we cite only a few. 
Radioactive decay and gaseous viscosity are two phenomena that can be 

used to give Avogadro’s number, accurate to within a few percent. The a-decay 

of a mole of Ra226, 

88R&220 -> 8cRn222 + 2He4 

produces 1.35 X 1()-11 mole of helium/sec, while the number of disintegrations 

is 8.15 X 1012/sec. The ratio of these two rates is Avogadro’s number, but the 
accuracy of the result is limited by the difficulty of collecting and measuring 

the extremely small amounts of helium produced by the decay. 
The rigorous kinetic theory of a gas of hard spheres of diameter cr shows that 

the viscosity is 

5 VtMRT 
77 ~ 16 tnVo-'-' ’ 

while the volume of a mole of liquid is 
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where M is the molecular weight, R is the gas constant, T is the absolute tem¬ 
perature, and N is Avogadro’s number. Simultaneous solution of these equa¬ 

tions yields N and a in terms of measured values of V and r?. However, the 

accuracy of the result is limited by the underlying assumption that molecules 

behave like hard spheres. 
One of the most reliable methods of determining N involves combining the 

density of a crystal, its formula weight, and its interatomic spacing, as deter¬ 
mined by x-rays. This method has been discussed in Section 3.3. The diffrac¬ 

tion pattern of x-rays of grazing incidence on a plate that has been ruled with 
accurately spaced lines gives the wavelength X of the x-rays. The x-ray diffrac¬ 

tion pattern of a crystal then gives the interatomic spacing d through the 

Bragg equation n\ = 2d sin 9, where 9 is the diffraction angle. Since one mole 

of a crystal like NaCl contains 2N atoms, we have for the volume V of 1 mole 

of NaCl 

where M is the molecular weight, and p is the density. Knowledge of d allows 

calculation of N with an uncertainty of less than 0.01%. 
Another reliable method for determining N is through measurement of the 

Faraday constant and the electronic charge e, since 

ff = Ne. 

The most direct way to determine the Faraday constant is to measure the 

number of coulombs (ampere-seconds) necessary to deposit one equivalent by 

electrolysis. The determination of the electronic charge e can be carried out 

by Millikan’s method, as discussed in Section 10.1. However, this technique 

does not give a particularly accurate result for e, and other procedures described 

below are preferred. 
The electronic charge, in combination with other physical constants, deter¬ 

mines a number of quantities that can be measured precisely. The problem is 

to combine these measurements so as to yield separate values of the constants. 

For example, the natural orbital frequency of an electron in a magnetic field, 

the so-called cyclotron resonance frequency v, is given by 

where 3C is the magnetic field and c is the velocity of light. The value of e/m 

derived from measurements of v and 3C can be combined with the measured 

value of the Rydberg constant 
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to give 

Only one more measurement of a quantity that involves e and Planck's constant 

h is necessary to give values of both constants. The most straightforward, 
although not the most precise, method of separating the constants is to use the 
photoelectric effect: 

h(v — v0) = (lmv2)m&x, 

where v0 is the photoelectric threshold frequency. The kinetic energy of the 
electrons is frequently measured by a device that involves the interaction of 

their charge e with an electric field E. The electric field necessary to repel the 

most energetic electrons and prevent them from leaving the photoelectric 
surface is given by 

(\mv2) max = eE. 

Thus the photoelectric experiment determines h/e, and this, combined with 

the Rydberg constant and the cyclotron frequency, gives values for e, h, and m. 

Combination of e and gives Avogadro’s number N. 

APPENDIX B 

Table B.l Physical constants 

Avogadro’s number 
Electronic charge 

Electron mass 
Atomic mass unit 
Gas constant 

Faraday constant 

Boltzmann constant 
Planck constant 

6.02217 X 1023 particles/mole 
4.80325 X 10“10 esu 
1.60219 X 10-19 coulomb 
9.10956 X 10-28 gm 
1.66053 X 10-24 gm 
8.31434 X 107 erg/mole deg 
1.9872 cal/mole deg 
0.08206 liter atm/mole deg 
96486.7 coulomb/mole 
23061 cal/volt mole 
1.38062 X 10“16 erg/deg 
6.6262 X IQ-27 erg sec 

Table B.2 Energy conversion factors 

ergs/molecule kJ/mole kcal/mole 
electron 

volts/molecule 

ergs/molecule 1 6.0222 X 1013 1.4393 X 1013 6.2415 X 1011 
kJ/mole 1.6605 X 10~14 1 0.23901 1.0364 X 10-2 
kcal/mole 
electron 

6.9478 X 10~14 4.184 1 4.336 X 10-2 

volts/molecule 1.6022 X 10“12 9.6487 X 101 23.061 1 
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APPENDIX C 

SI UNITS AND CONVERSION FACTORS 

To make them meaningful, measurements of physical quantities must be 

expressed as multiples of appropriate standards or units. Thus the same length 

can be expressed as 10 inches, 0.83333 feet, or 0.2f)40 meters, where the words 

inches, feet, and meters refer to different standard lengths. As the various 

physical quantities we know came to be recognized and measured, units were 

defined for them usually to suit the immediate convenience of the experimenter. 

As a result, we have such units as light-years and nautical miles for length, 
electron volts, joules, and calories for energy. Consequently, it is necessary to 

have conversion factors such as 2.54 cm/inch to allow results expressed in one 

unit to be compared with findings expressed in other units. 

As the understanding of physical science increased, it became clear that all 

physical quantities such as volume, density, and energy could be expressed in 

terms of a few fundamental entities such as length, mass, and time. This led 

to the idea of a system of units where, for example, the unit of energy would be 

equal to the energy associated with a unit mass moving a unit distance in unit 

time. An important such system of units is the centimeter, gram, second, or 

CCS system, where the units for derived quantities such as force and energy 

are defined in terms of the base units for length, mass, and time. Thus the 

(unnamed) unit velocity in the CGS system is the cm/sec, and the unit of 

acceleration is the cm/sec2. 
Since force is defined as the product of mass and acceleration, the unit of 

force is the gm cm/sec2, which for convenience is called the dyne. The product 

of force and distance is work, and consequently the unit of work or energy is 

the dyne-cm, or one gm cm2/sec2. Again for convenience, the unit of work 

or energy is given a special name, the erg. 
To include electrical quantities in the CGS system, it is only necessary to use 

Coulomb’s law. The force / between two equal charges q separated by a distance 

r is given by / = q2/r2. Thus the electrostatic unit (esu) is defined as the amount 

of charge that produces a force of one dyne on an identical charge at one cm 

distance in vacuum. One of the most attractive aspects of the CGS-esu system 
is the simplicity with which electrostatic quantities can be included in mechanical 

problems. For example, since the esu as defined has units of (dyne)1/2 cm, use 

of esu and cm in the expression </> = q2/r gives the electrostatic potential energy 

<£ directly in units of dyne-cm or ergs. 
Unfortunately, there are several different systems of units. For example, 

the MKS (meter-kilogram-second) system of units offers certain advantages 

over CGS in dealing with macroscopic systems. The FPS (foot-pound-second) 

has been popular among engineers in English speaking countries. There are also 

units such as the atmosphere, the calorie, and the electron-volt which have no 
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obvious connection to a system of units. The existence of data expressed in these 

various units has necessitated the use of conversion factors which allow the 

results measured in one set of units to be compared or combined with data 

expressed in other units. To eliminate the necessity for the excessive use of unit 
conversion factors, the International System of Units (SI) was defined by the 

General Conference on Weights and Measures in I960. This system has been 

widely adopted in Europe, and its use in the United States is being encouraged 
by the National Bureau of Standards. 

The SI is constructed from seven fundamental units, given in Table C.l. 
These base units are, as far as possible, defined in terms of naturally occurring 

physical phenomena which can be reproduced and referred to with high precision. 

Thus the second is defined as 9,192,631,700 cycles of the radiation associated 
with a certain electronic transition of the cesium atom, and the meter is defined 

as 1,650,763.73 wavelengths in vacuum of a certain orange-red spectral line 

of Kr8G. The Kelvin degree is defined as 1/273.16 of the interval between 

absolute zero and the triple point of water. The fundamental unit of mass is 
the kilogram, the mass of a platinum-iridium alloy cylinder kept in Paris. 

Thus in contrast to the foregoing base units, the kilogram is defined in terms of 

an artifact, not a naturally occurring phenomenon. The base unit of electrical 

current, the ampere, is defined in terms of the force between parallel wires 

produced by current they carry. We see that in contrast to the CGS system, 
the base electrical unit in the SI is a current, not a charge. 

Table C.l SI base units 

Physical quantity Name of unit Symbol 

length meter m 
mass kilogram kg 
time second s 
electric current ampere A 
thermodynamic temperature kelvin K 
luminous intensity candela cd 
amount of substance mole mol 

Table C.2 gives the special names and symbols for certain derived units in 

the SI. The unit of energy is the joule or km m2/sec2. The unit of pressure is 

the pascal, or newton (force) per square meter. The utility of expressing all 

measurements in one such system of units can be illustrated by the following 

example. 
Suppose a gas undergoes an expansion and does 1 liter-atm of work. It is 

desired to compare this work with the energy change of some chemical reaction 

expressed in the conventional unit of kilocalories. To convert 1 1-atm to calories, 

it is necessary to have the appropriate conversion factor tabulated, or to re- 
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Table C.2 Certain SI derived units 

Physical quantity Name Symbol Definition 

force newton N kg m s—2 
pressure pascal Pa kg m — 1 s —1 (= N m—2) 
energy joule J kg m2 s—2 
power watt W kg m2 s—3 (= J s—!) 
electric charge coulomb c A s 
potential difference volt V kg m2 s 3 A-1 (= J C-1) 
electric resistance ohm S2 kg m2 s-3 A-2 (= V A-1) 
frequency hertz Hz s—1 

member that 1 atm = 1.013 X 10° dynes/cm2, and 1 cal = 4.184 J. Then 

1 1-atm = 103 cm3 X 1.013 X 10° dyne/cm2 = 1.013 X 109 dyne-cm 

= 1.013 X 102 J = 1.013 X 102 J X 1/4.184 cal/J 

= 24.21 cal. 

Now if the measurements had been made in SI units of pressure (pascals) and 

volume (cubic meters), we would have for the same quantities 

1.013 X 105 Pa X 10~3 m3 = 101.3 N m = 101.3 J. 

Since in an exclusive SI tabulation of data, all energies, including heats of 

reaction, would be expressed in terms of joules, there would be no need to carry 

the calculation further to calories. 

In using one base unit of, for example, length to describe dimensions ranging 

from atomic to astronomic size, it is useful to have prefixes which designate a 

multiple of the base unit. Thus distances between various cities are specified 

in terms of thousands of meters or kilometers (km), and atomic dimensions are 

given as a multiple of 10~9 m or the nanometer (nm). Table C.3 contains a 

list of these prefixes and their symbols. 

As the SI units are adopted, they will replace a number of conventional units 

whose use will gradually diminish. However, because the older literature con- 

Table C.3 Prefixes for fractions and multiples 

Fraction Prefix Symbol Multiple Prefix Symbol 

10 i deci d 10 deka da 
lO-2 centi c 102 hecto h 
10-3 milli m 103 kilo k 
10-6 micro M 10° mega M 
lO”9 nano n 109 giga G 
10-12 pico p 1012 tera T 
10-15 femto t 
10“18 atto a 
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Table C.4 Units to be abandoned 

Physical quantity Name Symbol Definition 

length inch in 2.54 X 10~2 m 
mass pound lb 0.45359237 kg 
pressure atmosphere atm 101,325 N m—2 
energy calorie cal 4.184 J 

tains data expressed in these units, it will be necessary to be able to re-express 

these data in SI units. Table C.4 gives a list of these units which will eventually 

be abandoned, and their definitions in terms of SI units. 

There is a special aspect of SI (and MKS) units that should be mentioned. 

Because static charge is not defined directly in terms of force and distance in 
these systems, Coulomb’s law involves a proportionality constant between 

<72/r2 in terms of C2/m2 and / in terms of newtons. The required expression is 

m = 
i 2 2 

—— 2- = 8.9874 X 109 ^ 
47T6o r2 r 

) 

where the proportionality constant which is conventionally written as l/ireo 

has the value 8.9874 X 109 N m2/C2. Thus the force between two electrons 

(1.602 X 10-19 C) one Angstrom (10“10 m) apart is 

/ = 8.9874 X 109 (L6°2 X110°219)2 = 2.31 X 1(T8 N. 
(io-10)2 

The same calculation done in CGS units is 

/(dynes) = e— 
rz 

(4.803 X 1Q~10 esu)2 

(1(T8 cm)2 
= 2.31 X 10 3 dynes. 

This is the same result, since 1 N = 105 dynes. The calculation done in SI or 

MKS units is only very slightly more complicated by the inclusion of the 

proportionality constant. 

APPENDIX D 

Some Fundamental Operations of the Calculus 

Often it is possible to put the equation that relates two variables x and y into 

the form 
V = fix), 

which is read: y is some function (/) of x. The quantity x is called the inde- 
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pendent variable, and y is the dependent variable, inasmuch as the equation 
expresses the fact that y depends in some fashion on x. 

It is frequently of interest to learn what change Ay, in y, is produced by a 
given change Ax, in x. The equation 

y + Ay = f(x + Ax) 

states that a change Ax in x does produce some change Ay in y. The question to 
be answered is, what is the relation between Ay and Ax? 

When y is a linear function of x, as in 

y = f 0) = a + bx, 

where a and b are constants, the answer is simple. We write 

V + Ay = a -(- b(x + Ax), 

V — a + bx, 

and subtract the second equation from the first to get 

Thus the quantity 

Ay = b(x + Ax) — bx, 

Ay = b Ax. 

Ay/Ax = b, 

which is the change in y per unit change in x, is for this function a constant, 

and is equal to the slope of the straight line represented by y = a + bx. 

Because the equation represents a straight line, the slope b = Ay/Ax is a con¬ 
stant, independent of x and y. 

Suppose we apply the same operation to the function 

y = fix) = x2, 

which represents a parabola. Then we have 

y + Ay = (x + Ax): 

The method by which we found dy/dx for the function y = x2 is called the 
delta process. Application of the delta process shows that for 

and, in general, for 

y = x , 

y = *n, f = nx'-\ 
dx 

The derivatives of other important functions are listed in Table D.l. 
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Table D.l Some important derivatives 

1 
d du 

— (eu) = e“ — 
dx dx 

d 

dx 
(au) = a 

du 

dx 

d du 
— (sin u) = cos u — 
dx dx 

d . du 
— (un) = nu"-1 — 
dx dx 

d 1 du 

dx v u dx 

d du 
— (cos x) = —sin u — 
dx dx 

d dv du 
— (uv) = u-1- v — 
dx dx dx 

u and v denote functions of x; a is a constant. 

The following are noteworthy properties of derivatives. If c is any constant, 

and 

y — cxn, then ^ = (c)nxn~\ 

If we have y not a function of x, as in 

y = c, then — 0. 
dx 

Finally, to find dy/dx when y is the product of two functions/(x) and g(x), as in 

we write 

y = /0) • g(x), 

fx = miM + gix) 

To demonstrate this relation, let us differentiate 

y — x 

df(x) 

dx 

by writing it as 

We get 

y = xlxm, l + m = n. 

dy 
dx 

( m— 1 t mp l—l 
x mx + x lx 

mx + lx 

= nx n —1 
> 

which is the answer found by more direct differentiation of xn. 

APPENDIX D 871 



y 

FIG. D.l 

A 

x1 X2 

It is often necessary to find the area under a curve y = /(x) between two 

values of the independent variable x. When /(x) has one of two simple forms, 
this presents no difficulty. As shown by Fig. D.l, if y = c, a constant, then 

the area under y — c between Xi and x2 is simply A = c(x2 — x\). Also, if 

we have the expression y = cx, which represents a straight line through the 

origin, then the area A between x = Xi = 0 and x2 is A — |cx2, as Fig. D.2 

suggests. For situations in which y = /(x) represents a curve, a different 

approach is required in order to find the required area. 

y 

This type of problem and its possible solution is sketched in Fig. D.3. 

The area under the curve is approximated by a series of rectangles of equal 

872 APPENDIX D 



width Ax and height yi} for the ith rectangle. Thus if AT,- is the area of the 
tth rectangle, 

n n 

A =* E AT; = £ Vi Ax. 
2 = 1 2 = 1 

It seems intuitively obvious that the approximation should improve if we were 

to increase the number of rectangles and make each one narrower. The area 
of a rectangle of height y is 

and since 

we can write 

AT = y Ax — f(x) Ax; 

r AT dT ,, . 

4'™0 =m’ 

dA — /(x) dx. 

The interpretation of dA is that it is the area of a rectangle of height /(x) and 

infinitesimal width dx. Consequently, we can express the total area as the sum 
(or integral) of the infinitesimal contributions 

T = lim X) AT i = lim ?/,■ A.r, 
Ax—>0 Ax—>0 

T = JdA = J f(x) dx. 

That is, the integral is the sum of small areas between x\ and x2 in the limit 
where Ax approaches zero. 

To evaluate the integral, we note from above the following relation: 

T - 

Thus, since dT is the differential of T, and the integral sign restores dT to T, 
the integral sign must stand for the operation of reverse differentiation or 

antidifferentiation. With this in mind, we can evaluate 

Jf{x) dx. 

If the function f(x) were itself the derivative with respect to x of another func¬ 

tion F(x), that is, if 

m = i fm, 
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then we could make the substitution 

Jm^-J^dx-JdF. 

The last form shows that the integral sought is just F, so we might write 

where 

.4= I f(x) dx= F, 

fix) = 
dF 

dx 

We conclude that in order to evaluate the integral of fix), we must find the 

function F whose derivative dF/dx is equal to fix). To check this we start with 

our answer 

A = Fix), fix) = dF/dx, 

and differentiate 

(LA _ dFf 

dx dx 

fix) = fix). 

There is one very important problem remaining, however. Besides the 

answer already found, the result 

Ai x) = Fix) + c, 

where c is any constant, is apparently equally valid, for differentiation gives us 

dA dF 

dx ~ dx + 

fix) = fix). 

Thus the integral we have found is indefinite in that any constant may be added 

to it. 
This problem has arisen because we have ignored the fact that what we are 

seeking is the area under the curve y = fix) between two limits X\ and x2. 

If we regard A(x2), that is, Aix) evaluated at x = x2, as the area under the 

curve up to the limit x2 plus the constant c, and Aix\) as the area up to X\ 

plus the same constant, then we can write 

A(x2) — Aixi) — A — F(x2) + c — Fix i) — c, 

A = F(x2) - Fix,). 
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That is, the area A under y = f(x) between x2 and Xy is just the difference 

between the integral evaluated at the “upper limit” x2 and the “lower limit” Xy. 

This is compactly denoted by 

~x2 

f(x) dx = 

= A - 0 = F(x) 

x2 

*1 

F(x 2) F(x 1). 

Thus, when the limits of integration are specified, the numerical result is not 

arbitrary, and we have a definite integral. 

From the table of derivatives, we can deduce a few specific formulas for the 

evaluation of integrals. Since 

we must have 

Also from 

we deduce that 

Because 

d n 
dx x 

= nx 
n — 1 

) 

xn+1 

m + 1 

*2 

d(sin x) 

dx 
COS X, 

d(cos x) 

dx 
—sin x 

rx2 

sin x dx = —cos x 

x2 

cos x dx = sin x 

*2 

X 

d In x _ 1 

dx 

*2 A dx 

x 

*2 

— = / d In x = In x 

x2 

Finally, we have the very important relation 

d_ 

dx 
eax 

ax 
ae j 
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so 

rX2 
i r i |I2 

ea* dx = - / d(eax) = -e° 
a a 

Other important integrals are given in Table C.2. 

Table D.2 Some important integrals 

df(x) = f(x) + c 

af(x) dx — a f(x) dx 

du 
— = In u + c 
u 

eudu — eu + c 

(u ± v) dx = j u dx ± J v dx j sin u du = —cos u + c 

U" + ! f 
un du —-- + c, n ^ —1 / cos u du = sin u + c 

n + 1 / 
'6 /•« 

f(x) dx — — f(x) dx f(x) dx = j f(x) dx j f(x) dx 

u and f(x) are functions of x; a, b, and c are constants. 

APPENDIX E 

Some Useful Mathematical Approximations 

The form 1/(1 +a;) occurs frequently in equations that describe physical 
phenomena. It can be replaced by an infinite series of powers of x with alter¬ 
nating sign 

1 

1 + a; 
= 1 — X + x2 — X + 

As we can verify by algebraic division, 

1 — x + x2 

1 + xJT~ 
1 + x 

—X 

If x is less than unity, each higher power will be a smaller magnitude than the 
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one preceding, and for x very small, it may be sufficiently accurate to write 

1 

= 1 - x, x « 1, 
1 + X 

which is a useful approximation. Similar analysis of 1/(1 — x) shows that 

1 
1 — x 

^1 + X, X « 1. 

A useful approximation to square roots can be derived in the following 
manner. Consider that 

If x <5C 1, we can write 

x « 1. 

Taking the square root of both sides and transposing gives 

(1 ± x)1/2 1 db * « 1, 

which is the desired approximation. For example, the square root of ten is 

101/2 = (9+ 1)1/2 = 3(1 + i)1/2 

S 3(1 + ys) = 3.1G7 

approximately, while the more accurate value is 3.1623. 
Other frequently used approximations are derived from infinite series. The 

series 

±x , , , X2 x~ , X 
3* = 1 ± X + ± 

3! + 4! 

is valid for any value of x, but if x is much less than unity, the higher powers of 

x can be neglected to give simply 

e±x ] q_ £, x « i. 

If we take the natural logarithm of both sides we get 

In e±x = In (1 ± x) 

or 

In (1 ± x) = ix, x « 1, 

which is another useful approximation. 
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ANSWERS TO 
SELECTER PROBLEMS 

Chapter 1 

1.1 Sb205 1.2 CH2, C3Hg 1.4 Fe203 

1.7 (d) T1 1.9 199, MO 1.11 0.74 
1.15 BH3, B2Hg, 27.6, 1.51 gm 1.17 0.377 

1.6 SnF4 

1.13 95.3% 

Chapter 2 

2.1 23.1 cc 2.3 274, HgCl2 2.5 9 vol 02, CSH4, molecular 
2.7 0.48 2.9 He 
2.11 N2; 5.4 X 109, 5.4 X 106, 54; He, 7.1 X 109, 7.1 X 106, 71 
2.13 1.16 X 107 cm/sec, 1.45 X 104 cm/sec 
2.15 X >> distance between walls, P < 10-4 mm Hg 2.17 H2 

2.19 Cp/Cy = 1-67 for monatomic gases only 

Chapter 3 

3.3 V = 16^2 R3, 0.74 
3.5 Octahedral face planes contain all Na+ or all Cl-. 
3.6 V6 R, (V3 — V2)R/V2 3.9 (a) 0; (b) 0.002 gm/cc 
3.11 0.53A 
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Chapter 4 

4.3 40 ml 
4.9 470, Hg2Cl2 

4.5 3.85 4.1 2.92 m, 2.57 M 
4.7 333 gm 

4.11 (a) ethanol = 0.51 

b) P(ethanol) = 22.7, P(methanol) 

4.13 absorbed, AH > 0 
= 43.5, ethanol = 0.34 

Chapter 5 

5.2 reaction (b) 

5.4 (a) increased (b) decreased (c) increased 5.6 0.137 

5.8 2.31 X 10-4, greater, decrease 5.10 202 gm 

5.12 SO2CI2 = 0.67 atm, SO2 = 0.86 atm, CI2 = 1.86 atm 

5.14 CO = H20 = 1.36 atm, C02 = H2 = 4.3 atm 

Chapter 6 

6.1 1.1 X 10-1° 6.3 0.69 X 10-3 M, Ksr> = 6.1 X 10-12 

6.5 (a) 1.34 X 10-4 M (b) 1.8 X 10~7 M (c) 1.8 X 10-5 M 
6.7 [SOr] = 1.1 X 10-9 il/, BaS04, [Ba++] = 4.6 X 10~7 Af 
6.9 [Pb++] = 2.9 X 10-1°, [IO3 ] = 0.03 M 
6.11 (a) [OH- ] = 4.2 X 10-4 M II 

' a
 

£
 

g
 6.5 X 10-5 M, [OH -] = 3.1 5X 10 

6.13 [H30+] = = 0.11 M, [SOJ=] = = 0.94 X 10-2 M, [HSO^] = 9.1 X 10-2 M 
6.14 [NH3] = 0.15 M, [OH-] = 0.05 M, [NH 4+] : = 5.4 X 10- -5 M 
6.17 [OH-] = [HCN] = 2.72 X 10-3 M 6.19 4.1: X 10-4 M 
6.21 [OH-] = 4.4 X 10-11 M 6.23 1.2: X 10-5 
6.25 [cori = 0.05 M, [HCOi-] = 3.23 X 10" -3 6.27 pH = 10.3 
6.29 1.23 X 10 i-5 M, 1.36 X 10“ 5 M 6.31 pH = 2.12, no 
6.32 (a) 2.1 X 10-s M (b) 2.5 X 10-1° M (c) 10-13 M 

M 

Chapter 7 

7.4 stronger: Cr2Of, MnOp ; unchanged: CI2, Fe+3 

7.6 AS0 = 0.13 volt, K = 1.6 X 102 

7.8 (a) negative (b) Ni + +, Zn (c) no, yes (d) less positive (e) zinc, 0.52 volt 

7.10 (a) Co + CI2 = 2C1~ + Co++ (b) —0.27 volt (c) increase (d) 1.67 volts 
7.12 H+ < 0.1 M, H+ = 1.9 X 10-4 M 
7.15 872 sec, 0.430 gm, 0.443 gm 

Chapter 8 

8.1 A///[Ca(OH)2] = -235.4 kcal 8.3 AE = 1238 kcal, A/// = 18.3 kcal 
8.7 (a) AiSsys = 4.57 eu = —A»S8urr, (b) AiSsy8 = 4.57 eu, A<S8urr = 0 

8.9 AS(H20) = —4.94 eu, A5surr = 5.13 eu, AS tot = 0.2 eu, yes 
8.11 (a) Ag (b) B(398°K) (c) 2Br(g) (d) Ar(0.1 atm) 
8.13 AG° = —8.33, K = 1.3 X 106, enthalpy 

8.15 K298 = 1.86 X 1012, K600 = 3.96 X 103 
8.17 3.38 kcal, 0 8.19 AH = 13.1 kcal 

8.21 AG° = -2.12 X 105 joules = -50.7 kcal, K = 1.94 X 1037 
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Chapter 9 

9.1 (a) sec 1 (b) liter/mole-sec (c) liter2/mole2-sec 9.4 —1 
9.6 -[d[NH+]M] = A:3KiK2[HN02][NH+] 

9.7 (a) fc2[E] « k-i[D] (b) *2[E] » fc_i[D] 

9.9 first order, k = 5 X 10~4 sec-1 9.11 12.4 kcal 9.12 AE 

Chapter 10 

10.1 1.24 X 1015 cps, 2412 A 

10.3 5263 A, 2.35 eV 

10.9 \f/2(2p;) a cos2 6, cos 8 = 0 in xy-plane 

10.11 Na, Na+, Zn, N, 0 = 

10.13 1.63 X 10_n ergs = 10.1 ev, 1.29 X 10~8 ergs = 8.05 X 103 ev 

Chapter 11 

11.1 LiF has smallest separation and is most stable. 

11.3 MgO, 1110 kcal; CaO, 970 kcal; SrO, 900 kcal; BaO, 840 kcal 

11.5 tetrahedral, very distorted tetrahedral, linear, bent, octahedral, square planar, 
linear 

11.7 Build-up of electron density between and near nuclei; electron sharing is not 
sufficient. 

11.11 sp2, sp3, sp3d2, sp3d 
11.13 Linear molecule, sp hybrid at carbon atoms, carbon atoms linked by one 
a-bond and two 7r-bonds 

11.15 12.8 D 

Chapter 12 

12.1 (a) (b) NO (c) BO (d) NO (e) Be^ 12.4 nonlinear 

12.5 linear: (a), (b), (f), (g) 12.7 linear: (a), (b), (d) 

Chapter 13 

13.3 Increasing nuclear charge increases bonding energy of extra electron. In nitrogen 

an extra electron must be added to a p-orbital that is already half-filled. 

13.5 Ti++, Mn++, 0=, Se“, T1+ 13.6 HC1, PH3, H20 

13.7 Higher oxidation state (a) increases (b) decreases in stability 

13.8 (a) acidic (b) small molecules (c) covalently 

13.9 Increasing metallic bond strength, ionization energy, and ionic size makes A//° 

more positive. 

Chapter 14 

14.1 Increasing [OH~] should make Mg a better reductant, and the same effect should 

occur for Ba, but less marked. 

14.3 Compare Li+, Be + +, Mg++, A1+3 14.5 2.14 A 14.7 10~54 

14.9 Least stable BeSO.*, most stable BaSO-i 
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Chapter 15 

882 

15.1 As atomic number increases, so do van der Waals attractions, and volatility goes 

down. 

15.3 Properties indicate incipient metallic behavior, which is appropriate for this 

region of the periodic table. 

15.6 N-f, OCN- are isoelectronic with CO2, and are linear. 15.8 pH = 10.1 

15.9 X-ray determination of O—0 bond length to distinguish between O2 (1.21 A) 

and (1.12 A) 

15.11 3.2 X 1026, 5 X 1045, 3.2 X 1027 15.12 A kinetic effect 

15.15 SOCI2 is pyramidal, SO2CI2 tetrahedral. 

Chapter 16 

16.1 The values of AHBU b, /1 for IB metals are uniformly greater than those of IA 

metals, and this accounts for difference in activity. 

16.3 Cu is a poorer reductant than Ni because of difference in 12, Cu is poorer than 

Zn because of difference in AHBUb- 
16.5 tetraamminezinc(II) ion, hexafluoroferrate(III) ion, dicyanoargentate(I) ion, 

trichlorotriamminecobalt(III), hexacyanoferrate(III) ion, hexaaquochromium(III) ion 

16.9 [H+] = 9 X lO-3 M, [H+] = 9.5 X lO"3 M 
16.12 Second reaction has greater AS, first complex is the more stable. 

Chapter 17 

17.6 (a) £er£-butyl chloride (b) 3-chloro-3-methyl pentane 

17.8 (a) acetic acid (b) methyl ethyl ketone (c) acetic acid and acetone 

17.9 1,3,5-trinitrobenzene 

Chapter 19 

19.2 yes 19.3 2.16 X 109 events/min 

19.4 0.0204 mm-1 19.5 1.5 X 104 years 
19.7 0.024 A 
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INDEX 

Acetic acid, 751 

Acetylides, 625 

Acids and bases, Arrhenius theory of, 212 

Lewis theory of, 216 

Lowry-Bronsted theory of, 214 

strength of, 215 

Activated complex, 377 

Activation energy, 389 

Activity, 193 

Addition reaction, of aldehydes, 766 

of alkenes, 761-763 

of ketones, 766-768 

Adenine, 821-822 

Adenosine triphosphate, 792 

Alcohols, 750, 753-759 
Aldehydes, 751, 764-769 

Aliphatic compounds, 771 

Alkali elements, 594-602 

boiling points, 595 

diatomic molecules, 595 

hydration energies, 595 

ionic radii, 595 

ionization energy, 595 

melting points, 595 

reductiontion potentials, 595 

Alkali halides, 598-600 

gaseous molecules, 600 

lattice energies, 599 

Alkali-metal oxides, 598 

Alkaline-earth elements, 602-61 1 

boiling points, 603 

halides of, 607 

hydration energies, 603 

ionization energies, 603 

melting points, 603 

occurrence and properties, 602 

oxides, 605 

reduction potentials, 603 
salts of, 608 

Alkanes, 744-750 

Alkenes, 759-764 

Alkyl radicals, 746 

Alpha-decay, 841-842 

Alpha-helix structure of proteins, 816- 

819 

Alpha-particle, 841 

Alumina, 618 

Aluminum, 611, 618-619 

Amines, 753 

Amino acids, 781,810-820 
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Ammonia, dipole moment, 519 

geometry, 510 
synthesis, 636-638 

Amphoteric behavior, 584 

Amylopectin, 805 
Amylose, 805 

Anisole, 738 

Antibonding orbital, 501, 537 

Antifluorite structure, 116 

Antimony, 636, 655 

Approximation, algebraic, 876-878 

Aromatic compounds, 771-782 

substitution reactions of, 775-779 

Arrhenius, S., theory of acids and bases, 

212 
Arsenic, 636, 655 

Atomic number determination, 420, 

428 

Atomic orbitals, 441-450 

hybrid, 514-518 

Atomic radii, 578-580 

table, 580 

Atomic volume, 578-580 

Atomic weight, determination, 7-18 
scale, 14 

variations, 4 

ATP, see Adenosine triphosphate 

Auric ion, 714 

Aurous ion, 714 

Avogadro, A., number, 18, 104, 863- 

865 
principle of, 9-11, 23 

Azeotrope, 164 

Balmer spectrum, 425 

Barium, 602-611 

Barometer, 34 

Bases, see Acids and bases 

Battery, 291-294 

B2, molecular orbitals of, 542 

Benzene, electronic structure, 565 

substitution reactions, 775-779 

Beryllium, 602-61 1 

Beta-decay, 839-841 

Bimolecular process, 373 

Bismuth, 636, 655 

Body-centered cubic lattice, 111 

Bohr, N., atomic model, 425-428 

Boiling-point elevation constants 

derivation of, 153-155 
table, 1 55 

Boiling temperature, 143 

elevation of, 152-1 55, 347 

Boltzmann, L., constant of, 55 

distribution law, 61-64 

factor of, 62, 139 

Bond angle(s), 477-479 

table of, 477, 478 

Bond energy(ies), 472-475 

table of, 472, 474 

Bond lengths, 475-477 

table of, 475, 476, 477 
Bonds, energy-rich, 793 

Boranes, 614 

Borates, 613 

Borax, 613 

Borohydride ion, 617 

Boron, 611-617 

atomic weight variation, 4 

Boyle, R., law of, 35, 48-54 

Bragg, W. L., diffraction equation of, 

102, 133, 429 

Bravais lattices, 107 

Bromate ion, 676 

Bromic acid, 675-676 

Bromine, 669-680 

Brownian motion, 131 

Buffer solutions, 228-233 

Butane, 547 

1, 3-butadiene, electronic structure of, 

565 

C2 , molecular orbitals of, 542 
Cadmium, 714-716 

Cage effect, 399 

Calcium, 602-61 1 

Calculus, fundamental operations of, 

869-875 

Cannizzaro, S., 10-12 

Carbides, 625 

Carbohydrate, 802-810 

Carbon, 620-625 

dating, 857 

dioxide, 624 

monoxide, 623 

Carbonate ion, 243-250, 624 
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Carbonic acid, 243-250, 624 

Carbonium ion, 758, 762 
Carbonyl compounds, inorganic, 735- 

737 

organic, 764-769 

Carboxyl group, 751 

Catalyst, 400-406 
Cathode rays, 412 

Cell, biological, 790-792 

nucleus of, 792 

Cellulose, 804 

Cesium, 594-602 
Cesium-chloride lattice, 495 

Chain reactions, 383-385 

Charles’ law, 38-40 

Chelate, 718 

Chlorate ion, 676 

Chloric acid, 676 

Chlorine, 668-680 

dioxide, 674 

heptoxide, 674 

hexoxide, 674 

monoxide, 674 

Chlorous acid, 675 

Chromate ion, 698 

Chromic ion, 679-680 

Chromium, 686, 696-699 

Chromium subgroup, 696-699 

Chromous ion, 699 

Citric-acid cycle, 802, 808-810 

Closest-packed structures, 108-112 

octahedral site in, 112, 115 

structures related to, 112 

tetrahedral sites in, 112, 115 

Coal, 782-784 

Cobalt, 703, 706 
Coenzyme A, 800-802 

Colligative properties, 345-349 

Collisions, rate of, 387-389 

Complex ions, bonding in, 722-735 

equilibria among, 250 

nomenclature, 721-722 

stereochemistry, 717-721 

Compressibility factor, 67 

Concentration, units of, 148-150 

Concentration cell, 279 

Coordinate-covalent bond, 717 

Coordination, number, 1 10, 717 

sphere, 717 

Copper, 686, 709-712 

Copper subgroup, 709-714 

Corrosion, 289-291 

Coulomb barrier, 833 

Covalent bonds, 496-528 

coordinate, 717 

multicenter, 525-528 

multiple, 522-525 

Crystal-field theory, 723-730 

Crystal-lattice geometry, 492-496 

Crystals, covalent network, 94-95 

ionic, 91-93, 485-496 

metallic, 95-96 

molecular, 93-94 

sizes and shapes, 88-90 

Cubic closest packing, 109 

Cupric ion, 710-711 

Cuprous ion, 710-711 

Cyanide ion, 523 

Cyclobutane, 748 

Cyclopropane, 748 

Cytochromes, 797 

Cytoplasm, 792 

Cytosine, 821 

Dalton, J., atomic theory, 2-10 

Law of Partial Pressures, 44 

rule of greatest simplicity, 8 

DeBroglie, L., and wave-particle duality, 

430 

Defects in solids, 1 19-122 

Definite Proportions, Law of, 3 

Deoxyribose, 721 

Derivatives, table of, 871 

Detailed balancing, 387 
Diagonal relationship in periodic table, 

572,633 
Diamagnetism, 726 

Diamond, 621-622 

Diamond-crystal lattice, 94 

Dichromate ion, 698 

Diffusion of gases, 57-59, 74-77 

Diffusion-controlled reactions, 398-399 

Dinitrogen pentoxide, 643 

tetroxide, 642 

trioxide, 642 

Dipole moments, 518-520 

table of, 519 

Displacement reactions, 755-757 
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Disproportionation reaction, 266 

Dissociation constants of acids, 216 

Dissociation energy of diatomic molecules, 

table, 472 

Distillation, 161 

DNA, see Nucleic acids 
Double bond, carbon-carbon, 523, 760 

carbon-oxygen, 764 

Dulong and Petit law, 12-13, 122, 126 

Effusion, 57-59 

Einstein, A., theory of heat 

capacities, 123 

mass-energy relation, 835 

and photoelectric effect, 424 

Electrical nature of matter, 412-417 

Electrolysis, 287-289 

Electromagnetic waves, 96-100, 421 

Electron 

capture, 839-884 

charge, 416 

charge-to-mass ratio, 412-416 

configuration of atoms, 452-459 

mass, 417 

table of, 454 

Electron affinities, 466, 574-576 

table of, 466 

Electron-dot structures, 506 

Electronegativity(ies), 575 

table of, 576 

Elementary process, 373-375 

Elements, allotropy, 573 

electrical properties, 573 

structural properties, 572 

Elimination reaction, 753 

of alcohols, 758 

Embden-Meyerhof pathway, 808-810 

Enantiomorphs, 780 

Endothermic reactions, 309 

Energy, conservation of, 306 

conversion factors, 865 

and first law of thermodynamics, 306- 

308 

influence on equilibria, 142 

Energy levels, of a diatomic molecule, 

479-484 

of hydrogen atom, 427, 439, 449 

of lithium atom, 451 
of many-electron atoms, 451-454 

Engines, 349-352 

Carnot, 349 

Cheat, 349 
Enthalpy, change, 137, 309 

of formation, 313-315 

of fusion, 138 

standard state for, 311 

of sublimation, 137 
temperature dependence of, 316-318 

of vaporization, 137 

Entropy, 142, 322-333 

of elements and compounds, 331 

influence on equilibria, 142 

and molecular chaos, 142, 327-329 

temperature dependence, 326-328 

Enzymes, 402 

Equation of state, 34 

ideal gas, 41-44 

van der waals, 67 

virial, 71 

Equilibrium, chemical, 174-179 

liquid-vapor, 139, 175 

Equilibrium constant, 179-188, 194-200 

and cell potentials, 279-282 

and free energy, 338 

temperature dependence, 343-345 

Equilibrium state, 136, 140-142, 175-179 

Equivalent Proportions, Law of, 6 

Esters, 752 

Ethane, 746 

Ethanol, 751 

Ethers, 752 

Ethyl formate, 752 

Ethyl radical, 746, 749 
Ethylene, electronic structure, 524 

geometry of, 524, 760 
Electron affinities, 466, 574-576 

Ethylene diamine, tetra-acetic acid, 719 

Eutectic temperature, 169 

Exothermic reactions, 309 

Face-centered cubic lattice, 109-1 12 

FAD, 795 

Faraday constant, 288 

Fats, 798-802 

Fatty acids, 798 

oxidation of, 800-802 

Ferrate ion, 705 

Ferric ion, 705 
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Ferricyanide ion, 705 

Ferrocene, 740 

Ferrocyanide ion, 705 

Ferromagnetism, 726 

Ferrous ion, 704-705 

Fission, 845-846 

Fluorine, 669 

monoxide, 674 

Fluorite structure, 116 

Force constant, 482 

Formality, 150 

Formic acid, 751 

Formula, empirical, 23 

molecular, 27 

Formula weight, 19 

Free energy, see Gibbs free energy 

Freezing point, 145 

depression of, 156, 347 

Frenkel defect, 1 19 

Frequency of electromagnetic radiation, 

98 

Fuel cell, 291-294 

Functional groups, 750-751 

Functional isomers, 779 

Fusion, nuclear, 849 

Gallium, 61 1, 619 

Galvanic cell, 266-276 

Gamma emission, 842-843 

Gas constant, R, 43 

Gas electrode, 267 

Gas laws, 34-47 

Gases, kinetic theory of, 47-59 

Gay-Lussac, J., law of combining 

volumes, 8 

law of volume and temperature, 

38 

Genetic code, 829-830 

Geometrical isomers, 779 

Geometry of molecules, 508 

Germanium, 621, 630 

Gibbs free energy, 333-341 

and electrical work, 341 

and equilibrium constants, 335-341 

of formation, 335 

standard, 335 

Glucose, 803-810 

Glyceraldehyde, 78 1 

Glycerides, 799 

Glycogen, 804-810 

Glycosidic link, 804 

Gold, 709, 714 

Graphite, 622 

crystal lattice of, 94 

Grignard reagent, 767 

Group I elements, 594 

Group II elements, 602 

Group III elements, 611 

Group IV elements, 620 

Group V elements, 635 

Group VI elements, 656 
Group VII elements, 668 

Group VIII elements, 703-707 
Guanine, 821 

AH, see Enthalpy 

H^, molecular orbitals, 548 

Hafnium, 691-693 

Half-life, 855 

Half-reactions, 259-261 

Halides, of hydrogen, 671-673 

of metallic elements, 670 

of nonmetallic elements, 670 

Heat, 302-306 

Heat capacity, 315 

of gases, 64-66 

of solids, 123-127 

Hemoglobin, 816 

Hess’ law of heat summation, 312 

Heterogeneous reactions, 401 

Hexagonal closest packing, 109-1 1 1 

Hybrid atomic orbitals, 5 14 

Hydride ion, 587 

Hydrides, enthalpies of formation, 

586 

and the periodic table, 586-590 

Hydrocarbons, 744-750, 784-786 

Hydrogen atom, orbitals, 441-450 

quantum numbers, 439 

wave functions, 441-450 

Hydrogen bond, 162, 588-590 

Hydrogen halides, 671-673 

crystal structures, 110 

Hydrogen molecule, 502-503 

Hydrogen molecule-ion, 497-502 

Hydrogen peroxide, 658-659 

Hydrogen sulfide, 661 

Hydrolysis, 226-228 

INDEX 889 



Hydrolysis constant, 226 

Hydronium ion, 213 

Hypobromous acid, 675 

Hypochlorous acid, 675 

Hypoiodous acid, 675 

Hypophosphorous acid, 652 

Ideal gas, 41 

Ideal solutions, 147-161 

Imperfect gases, 67-72 

Indicators, acid-base, 233 

table of, 234 

Indium, 611, 619 

Insulin structure, 816 

Integrals, table of, 876 

Interhalogen compounds, 678- 

680 

Intermolecular forces, 68-72 

Iodate ion, 678 

Iodic acid, 676 

Iodine, 668-680 

Iodine pentoxide, 673-675 

Ionic bonding, 484-496 

Ionic radius, 117, 492-496 

of lanthanides, table, 581 

as a periodic property, 580 

table, 493 

Ionization energy, 459-466 

and periodic table, 462-466 

table, 460 

Iridium, 707-709 

Iron, 686, 703-706 

Iron oxides, 703-704 

Iron triad, 703-707 
Irreversible process, 319-326 

Isobutane, 749 

Isomer, functional, 779 
geometrical, 721, 760, 779 

optical, 721, 780 

positional, 747, 779 

structural, 719 

Isopropanol, 751,759 
Isotherms, pressure-volume, 36 

Isotope, masses of, 17, 833 

Joule, J., 305 

joule, energy unit, 868 

K-capture, see Electron capture 

Ketone, 751, 764-769 

Kinetic theory, of gases, 47-68 

of liquids, 131-136 

Krebs cycle, 802, 808-8 10 

Lanthanide elements, 689-690 

Lanthanum, 689 
Lattice energies, 485-496 

table of, 494 
Laws of electrolysis, 288, 412 

LCAO-MO, 536-542 

Lead, 621, 631 

Le Chatelier’s principle, and chemical 

equilibria, 188-193 

and liquid-vapor equilibria, 166 

and solubility, 207 

statement of, 166 

Lennard-Jones, J., intermolecular 

potential-energy function, 72 

Lewis, G. N., theory of acids and bases, 

216 

Ligand, 717 

Ligand-field theory, 732-735 

Lipids, 798-802 

Liquids, atomic distribution in, 134 

kinetic theory of, 131-136 

superheating of, 143 

vapor pressures of, 143 

Lithium, 594-602 

Lithium borohydride, 617 

Lowry-Br0nsted acid-base theory, 214 

Lysosomes, 792 

Madelung constant, 489 

Magnesium, 602-61 1 
Magnetite, 704 

Manganate ion, 701 

Manganese, 686, 699-702 

dioxide, 701 

subgroup, 699-703 

Manganic ion, 700-701 

Manganous ion, 700 

Markovnikov’s rule, 762 

Mass spectrograph, 16 
Maxwell-Boltzmann speed distribution, 

59-64, 388-390 

Mean free path, 74-79 
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Mechanism of reaction, 373 

and rate law, 375-383 

Mendeleev, 13 

Mercuric ion, 716 

Mercurous ion, 716 

Mercury, 714-717 

Metallic bond, 528-532 

Metallic elements, 528, 572-574 

crystal structures, 111 

and periodic table, 572-574 

Metal-organic compounds, 738-741 
Methane, 745 

Methanol, 751 

Methyl, acetate, 752 

radical, 746 
Methylamine, 753 

Methylene, molecular orbitals, 549-553 

Michaelis-Menten equation, 404 

Microscopic reversibility, 387 

Mitochondria, 792 

Molality, 149 

Molar volume of gases, 42 

Molarity, 149 

Mole, 18-29 

Mole fraction, 44, 149 

Molecular chaos, 141, 177 

Molecular formulas, 7-19 

Molecular orbitals, antibonding, 501 

bonding, 501 

in complex ions, 722-741 

description, 501 

in diatomic molecules, 535-546 

in H*2, 497 
and ionic bond, 546 

in triatomic molecules, 546-554 

Molecular speed, average, 56, 60 

distribution of, 59-64 

most probable, 60 

root-mean-square, 56, 60 

Molecular weights, 9-12, 15 

Molecularity, of a reaction, 373-375 

and order, 375 

Molybdenum, 696, 699 

Moment of inertia, 480 

Moseley, H.G.S., 429 

Multiple bonds, 522-525 

Multiple Proportions, Law of, 5 

Myoglobin, 816, 819 

NAD+, 795 

Naphthalene, 773 

Nernst equation, and cell voltages, 276- 

279 

derived, 342 

Nickel, 686, 703, 706-707 

Niobium, 693, 695-696 

Nitrate ion, electronic structure, 560- 

563 

geometry, 644 

Nitric acid, 644 

oxide, 641 

Nitrides, 639 

Nitrobenzene, 776 

Nitrogen, 636-649 

electronic structure, 542 

fixation, 638 

oxides of, 640-644 

Nitrogen dioxide, 642 

Nitronium ion, 644 

electronic structure of, 557 

Nitrosonium ion, 641 

Nitrosyl halides, 648 

Nitrous acid, 645 

Nitrous oxide, 640 

Nitryl halides, 648 

Noble-gas compounds, 680-682 

Nomenclature, of complex ions, 721-722 

of organic compounds, 749 

Nonstoichiometric compounds, 4 

Normality, 150 

Nuclear reactions, 845-854 

Nucleic acids, 792, 820-830 

Nucleon, 832 

Nucleoside, 822 

Nucleotide, 822 

Nucleus, forces therein, 836-838 

mass, 835 

radius, 833-834 

shape, 834-835 

02 , molecular orbitals of, 543 

Octet rule, 506 

Oil, 782-786 
Olefins, see Alkenes 

Orbitals, atomic, 441-450 

in many-electron atoms, 450-459 

molecular, 497-506, 535-569 
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Order of a reaction, 367 

determination of, 371 

of elementary processes, 374 

Osmium, 707-709 

Osmotic pressure, 158-160, 348 

Overlap integral, 536 

Oxalic acid, 751 

Oxidation, 256 

of alcohols, 758 

of aldehydes, 768 

of alkenes, 763-764 

in biochemical systems, 794-798 
of ketones, 768 

Oxidation state, assignment of, 257-259 

definition of, 257 

and periodic table, 576-578 

Oxides, 582 

acid-base properties, 583-585 

bonding in, 585-586 

free energy of formation, 582 

and periodic table, 582-586 

Oxidizing agent, 257 

Oxygen, 656-660 

Ozone, 658 

electronic structure, 559 

Palladium, 707-709 

Paraffin hydrocarbons, 744 

Paramagnetism, 726 

Partial Pressures, Law of, 44 

Particle in a box, 433-438 

Pauli Exclusion Principle, 450 

role in chemical bonding, 502 

role in molecular geometry, 509 

Peptide bond, 8 11 

Perchloric acid, 676 

Periodic table, 13, 569-572 

and atomic structure, 454-466 
Permanganate ion, 702 

Peroxydisulfuric acid, 664 

Perxenate ion, 68 1 

Phase changes, 136 

Phase diagrams, 144-147 

two component, 167-171 

Phase rule, 170 

Phosphoric acid, 65 1 

Phosphorous acid, 652 

Phosphorous oxide, 650 

Phosphorus, 636, 649-655 

halides, 653 

pentoxide, 650 

Phosphoryl chloride, 654 

Photoelectric effect, 423-425 

Photons, 424 

pH scale, 2 18 

Physical constants, 865 

pK, definition of, 218 

Planck’s constant, h, 422 

Planck’s quantum hypothesis, 423 

Platinum, 707-709 
Platinum metals, 707-709 

pOH, definition, 218 

Polypeptide, 8 11 

Positron, 840 

Positron-decay, 840-841 

Potassium, 594-602 

Precipitation of salts, 210-212 

Pressure, measurement, 34 

units of, 35 

Proteins, 810-820 

synthesis, 828-829 

Purine bases, 821 

Pyrimidine bases, 821 

Quantum mechanics, 430-438 

Quantum numbers for hydrogen atom, 439 

Quantum theory, 421-438 

Quartz, 626 

Quasistatic process, 319 

Radial distribution function, 134, 141 

Radiation, wave theory of, 421 

Radioactivation analysis, 858 

Radioactive decay constant, 855 

Radioactivity, 838-843 

Radium, 602-604 

Raoult’s law, 15 1 
deviations from, 163 

Rate constant, 368 

bimolecular, 393 

Rate-determining step, 375 

Rate law, differential, 366 

integral, 368-371 

and reaction mechanisms, 372-383 
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Rate of reaction, 366-368 

in condensed phases, 397-400 

dependence on temperature, 394-397 

and equilibrium, 385-394 
Reduced mass, 480 

Reducing agent, 257 

Reduction-potential diagram, 646 

Representative elements, 571 

Resonance, 526-528 

Reversibility, 319 

Rhenium, 700, 702-703 

Rhodium, 707-709 

Ribonuclease, 816 

Ribose, 82 1, 823 

Ribosomes, 792 

RNA, see Nucleic acids 

Rock-salt lattice, 1 1 5 

Rubidium, 594-602 

Ruthenium, 707-709 

Rutherford’s scattering experiment, 418- 

421 

Saccharides, 803-810 

Salt bridge, 259 

Scandium, 686, 689 

Schottky defect, 119 

Schrodinger equation, 433 

Second law of thermodynamics, 323 

Selenium, 656, 667 

Silanes, 626 

Silicates, 627-633 

Silicon, 621,625-630 

Silicon dioxide, 626 

Silicones, 627-630 

Silver, 709, 712-714 

Sodium, 594-602 

Sodium-chloride crystal structure, 93, 

115 
Solids, amorphous, 86, 88 

crystalline, 86, 88 

Solubility, of ideal solutes, 164-167 

product, 205 

of slightly soluble salts, 204-2 1 2 

Solute, definition of, 148 

Solutions, 147-167 

ideal, 151-162 

boiling points of, 1 52 

freezing points of, 152 

vapor pressures of, 152 

nonideal, 162-164 

solid, 148 

Solvay process, 610 

Solvent, 148 

Specific heat, 12 

Spectra, atomic, 425-430 

molecular, 479-484 

x-ray, 428 

Spectrochemical series, 726 

Spectrograph, 425 

Speed distribution, Maxwell-Boltzmann, 

59-64 

Spontaneous processes, 318-322 

Standard atmosphere, 34 

Standard cell potential, 271 

and equilibrium constant, 279 

sign convention for, 272 

Standard half-cell potentials, 269-276 

conventions for use of, 274 

definition and measurement, 269- 

276 

and standard free-energy change, 

table of, 275 

Standard temperature and pressure (STP), 

23, 42 

Starch, 804-810 

State function, 301 

State of a system, macroscopic, 327 

microscopic, 328 

Statistical mechanics, 332, 352-358 

Steady-state approximation, 379-383 

Stereochemistry, of complex ions, 717 

of organic molecules, 779 

Steric factor, 392 
Strontium, 602-61 1 

Sublimation temperature, 147 

Sulfanes, 662 

Sulfite ion, 664 

Sulfur, 656, 660-667 

dioxide, 662 

electronic structure, 527 

hexafluoride, 666 

trioxide, 663 

electronic structure, 527, 560 

Sulfuric acid, 663 
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Sulfurous acid, 664 

Superoxide ion, 657 

Surroundings, 136 

System, 136, 300-302 

Tantalum, 693, 695-696 

Technetium, 700, 702-703 

Tellurium, 656, 667 

Temperature, absolute, 40 

and kinetic theory, 54 

scales, 38-40 

Termolecular process, 374 

Thallium, 611,619 

Thermal conductivity of gases, 73, 79 

Thermite process, 618, 697 

Thermometers, comparison of, 39 

Thiosulfate ion, 664 

Thomson, J.J., 412 

Thymine, 821 

Tin, 621,631 

Titanium, 686, 690-692 
dioxide, 690 

subgroup, 690 
tetrachloride, 692 

Titanous ion, 69 1 

Titrations, acid-base, 239-243 

oxidation-reduction, 282-287 

Torr, 35 

Transition elements, 571, 685-744 

atomic radii, 686 

electrode potentials, 686 

electron configurations, 686 

Transport phenomena in gases, 73-79 

Triple-point temperature, 145 

Tungsten, 699 

Uncertainty Principle of Heisenberg, 432 

Unimolecular process, 373 

Unit cell, 105 

Units and conversion factors, 866-869 

Uracil, 821 

Valence, 471 

Valence-bond theory of complex ions, 

730-732 

Vanadium, 686, 693-695 

Vanadium subgroup, 693-696 

Van der Waals equation, 67 

Vapor pressure, 139-147 

dependence on temperature, 142-144 

of a solid, 144 

Virial, coefficient, 71 

equation of state, 71, 79-81 

theorem, 52-54, 498 

Viscosity of gases, 74-79 

Water, self-ionization of, 218 

Wave function, 433 

for one-electron atoms, 441-449 

for particles in a box, 434 

Wavelength, 97 

Wavelength-momentum relation, 431 

Wave-particle duality, 430 

Waves, electromagnetic, 96 

interference of, 98-100 

Work, 302-306 

Work-heat equivalence, 305 

Xenon, fluorides, 680-682 

oxides, 680-682 

X-rays, and chemical analysis, 104 

and crystal structure, 96-104 

diffraction by crystals, 100-103 

and electron density, 103 

and liquid structure, 132-134 

X-ray spectra, 428-430 

Yttrium, 689 

Zinc, 686, 714-717 

Zinc blende structure, 116 

Zinc subgroup, 714-71 7 

Zirconium, 692-693 

894 INDEX 









L
IS

T
 O

F
 T

H
E
 A

T
O

M
IC

 W
E

IG
H

T
S
 O

F
 T

H
E
 E

L
E

M
E

N
T

S
 

CO K o CN 
o 00 ,— O O' K O' O CO *— K 
wo <> CN K O O CN O' O' o »— O' CN o ''t 

o WO V o K 00 CN CO o wo *d o wo CN o c> o K o CN >d CN wo •— 
o o CN CO wo O wo o o CO O' ’t .— CO co CN CN 00 o 00 o 
CN f— CN CN — *— — CN CN — •— CN CN CN 

OCNOOCOOO — KCN>O00 
CO ^ >0 r- o (N ^ OK 

o-o as a _q o x ^ 
^zzzzzzzOO 

'0<000't,,t0‘0‘'- •— 00'O‘OiOK 
^r-KOcOr-iO'OO'COCON^n 

"O ■*- 3 
Q_ Q_ Q_ a_ 

v. E O C <1) -C -Q D 
a: a: oc ql ql qc 

£* E 

. — *- 
Z Z 

EEgESEEEEEEEEg 

^ E 5 “D 2 •- c c '^ 'c Ic 'c "5 ^ 
Xi J? x ° Q.O-S — o >« « ''5 0 OL 
o O n = S5l^(Po‘S E 5“ 

_C o- a. 2 O 
« OS k. 
Ok- Q_ 

o 

00 CN o co 
00 WO CN r— 00 r— o o 00 CN »— wo O co O 
O' K O' q CO o ON 00 o o O' o O; wo wo 

K o* CO d V o K O' <> 00 o O'* CN o r— CN o CN wo CN 00 CO K CN ■’T 
CN CN CN CO K p— CO o K wo r— CO CO wo WO >o O wo 
CN CN •— CN »— CN CN r— CN •— CN CN 

0'COwo*-oocowo>oK'<r 
CO*— O-WO — COaOWOO 

C0W0W0 00 O00'000W0K'*K0''0'0O' 
ao n ^ CN 0> 'O'O'-CNCNCNO'OO 

O — E_Q w tn 0 OS “D O m- QJwo — k_ O D E ^ 
<<<u0<<<cdco<O£OcocoUUUUUUOUUUUQw 

>* c u 
C O c 
O O) 4> 

E J? r 

F F F X c as E E F c E E as 
3 3 3 3 3 3 3 3 3 
k. 
o 

CO 
~0S 
-SC 
k. 
a; 

co 

>* 
k- 
as 

E 
wn 

CO 

o 
CO 

E 
o 
k. 

CO 

E 
TJ 
O 

_U 

o 
U 

C 
— 
o 

*♦- 
o 

U 

k. 
as 
u 

«A 
as 
u 

k. 
_o 
-C 
u 

co u "5 u 
u 



A
to

m
ic
 

A
to

m
ic
 

A
to

m
ic
 

A
to

m
ic

 

E
le

m
e
n

t 
S

y
m

b
o

l 
N

u
m

b
e
r 

W
e
ig

h
t 

E
le

m
e
n

t 
S

y
m

b
o
l 

N
u
m

b
e
r 

W
e
ig

h
t 

00 

WO o >o O' 
o 
N 

O' 
00 CN 

''t 
>o wo o CN K CO O' o wo CO o K CN 

CO o (> o 00 O o O' no q CO o O' no O' CO o O' q o o» q CN 

o V 00 00 K CN K CN o o K 00 N’ CN ad 00 K cd cd o cd CO wd _J 
wo K CN O CN 00 CO 00 c> CN wo o CO >o •— 00 CO wo CO 00 O O' 

*— »— '— CN CN *■» r— *— CN r— •— 

CN r— xf Tf 
■O CN CO — 

E u 0) — 
I/) (/) I/) lo 

oo o co ro 
n r- K Tf 

cn wo »— 
wo >o oo 

O O O CN 
O' O W0 CN 

CN CO 
O' CN 

o o o o 
N CO CO ^ 

tO cO 
4) -0 — jc E — > 0) -O c 

h= > Z) > X >■>- N M 

E E E c k. E E k. E E E 
3 3 3 > 3 3 3 3 3 

0 
E 

"O 
c 
o 

c 
_a> 
4) 

to 
to 

S
o
d
i 

C 
O k- 

3 
to o 

c 
a> 
c 

-C 
_3 
*a5 

0 
tO tO 

to Jo H- u 
0) 

c 
S E E 

3 3 
C 
0 E 

t3 
E 
3 

U 
c E 

3 

o> 
c 

s ^ 
c 
a> 15 ‘k M ‘E 

2 o X aJ > 
o 
u 3 

h- => 0 
i- 

> >- M 

NO 
CN 

>o 
O' 

o 
o 

WO 
CN 

CN 
f\ 

O' 
q 

K 
O' 

O' 
q 

CO 
O 
o 

CO 
o 

00 
o 
o 

CN 
q 

O 
O' CN 

wo 
cq 

o 
°°. o 

O' 
O' 
CO 
O' 

N 
Ojj 

CN 

q q 
K «— CO <> CO K O'* CN o’ 00 d d *— d CN wd cd ad K N d d d N O 
O WO W0 

CN 
CN 
CN 

WO o K O' K o 
- 

CN O' wo 00 CO wo 
CN 

O 
CN 

K CN wo wo 
CN 

00 CO o O' N 
O NO O 00 

•— CN O' CN CN N r- 
CO CO N N NO 

O'CONO'ONOCN 
^uoKCNCOwooao 

_ C ^ D ^ -3 <D Q 

iuiEu_£000<XXXX.E_ 
Oj k. 0 i_ JD 

u_ ^ —j _j Q- 

CO •— CN W) »— 
K — CN o 

□> C "O 

4) £ 

ill o'i| = |o||I 2lo| 
“Ji-orrOO.ijE °x°-o— — = ^ ^ ^ -o O £ i X >. 



2015-10-16 11:20 

ISBN 0-201-04405-6 


